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Abstract. In this paper we establish some conditions for an almost π-domain to be a π-
domain. Next π-lattices satisfying the union condition on primes are characterized. Using
these results, some new characterizations are given for π-rings.

Keywords: π-domain, almost π-domain, π-ring, d-prime element

MSC 2000 : 06F10, 06F05, 13A15

1. Introduction

By a C-lattice we mean a (not necessarily modular) complete multiplicative lattice,
with least element 0 and compact greatest element 1 (a multiplicative identity),
which is generated under joins by a multiplicatively closed subset C of compact
elements. Throughout this paper L denotes a principally generated C-lattice. C-
lattices can be localized. For any prime element p of L, Lp denotes the localization
at F = {x ∈ C | x � p}. For details on C-lattices and their localization theory, the
reader is referred to [11]. We note that in a C-lattice a = b if and only if am = bm

for all maximal prime elements m of L.
Recall that an element e ∈ L is said to be principal [6], if it satisfies the dual

identities (i) a ∧ be = ((a : e) ∧ b)e and (ii) (ae ∨ b) : e = (b : e) ∨ a. Elements
satisfying the weaker identity (i′) a ∧ e = (a : e)e obtained from (i) by setting
b = 1 are called weak meet principal and elements satisfying the weaker identity (ii′)
ae : e = (0 : e) ∨ a obtained from (ii) by setting b = 0 are called weak join principal.
Elements satisfying both (i′) and (ii′) are called weak principal. Note that weak
principal elements are compact in L [2, Theorem 1.3].
An element a ∈ L is said to be a complemented element if a ∨ b = 1 and ab = 0

for some b ∈ L and a is called invertible if a is principal and (0 : a) = 0. An element
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a ∈ L is called a σ-element if for every compact element x 6 a, a∨ (0 : x) = 1 and a

is called nilpotent if an = 0 for some positive integer n. Note that a compact element
is a σ-element if and only if it is a complemented element. For more information
on σ-elements, the reader is referred to [13]. A prime element p of L is said to be
unbranched if p is the only p-primary element, and p is called an `-prime if the set of
all p-primary elements of L is linearly ordered. A prime element p of L is said to be
a d-prime [12] if Lp is a discrete valuation lattice (i.e., consists just of the elements
0, 1 and the powers of p all of which are distinct).

L is said to be a principal element lattice if every element is principal. Similarly,
L is said to be an almost principal element lattice if Lm is a principal element lattice
for every maximal prime element m of L. For various characterizations of almost
principal element lattices and principal element lattices, the reader is referred to [4],
[9] and [10]. L is said to be a special principal element lattice if it has a unique
maximal element which is principal and every element is a power of the maximal
element. L is said to be reduced if 0 is the only nilpotent element of L. L is said
to be an M -normal lattice if every prime element contains a unique minimal prime
element. For more information on M -normal lattices, the reader is referred to [3]
and [13]. It is well known that L is a reduced M -normal lattice if and only if Lm is
a domain for every maximal prime element m of L [13, Theorem 1].

L is said to be a π-lattice if L is generated by a set S of elements (not necessarily
principal) each of which is a finite product of prime elements. L is said to be an
almost π-lattice if Lm is a π-lattice for every maximal prime element m of L. L is
a π-domain if L is a π-lattice and a domain. L is said to be an almost π-domain if
Lm is a π-domain for every maximal prime element m of L. π-lattices and almost
π-lattices have been studied in [2], [4] and [10]. Note that if L is a π-domain, then
L is an almost π-domain. But the converse need not be true. For example, if L is
an almost principal element domain which is not a principal element domain, then
L is an almost π-domain. But by Theorem 4 of [10], L is not a π-domain.

The goal of this paper is to establish some conditions for an almost π-domain to
be a π-domain. We prove that if L is an almost π-domain satisfying the condition (∗)
(see Definition 1), then every principal element is a finite product of primes which
are either complemented minimal primes or invertible d-primes. Next we show that
if L is an almost π-domain in which every prime minimal over a principal element is
compact, then every principal element is a finite product of primes which are either
complemented minimal primes or invertible d-primes. Using these results, π-lattices
which are also locally domains and π-domains are characterized (see Theorem 3 and
Theorem 4). Further, we establish some equivalent conditions in terms of almost
π-lattices for a lattice L satisfying the union condition on primes to be a π-lattice (see
Theorem 5). As a consequence of these results, we obtain some new characterizations
for π-rings (see Theorem 6).
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For general background and terminology, the reader may consult [2] and [11].
We shall begin with the following definition.

Definition 1. A multiplicative lattice L0 is said to satisfy the condition (∗)
if there exists a multiplicatively closed set S of (not necessarily principal) elements
which generate L0 under joins such that every element of S is a finite meet of primary
elements.

Noether lattices [6], Dedekind domains [4] and one dimensional quasi-local domains
are examples of multiplicative lattices satisfying the condition (∗). Obviously if R is
a Laskerian ring [8] or a Krull domain [15, p. 195, Ex. 2], then L(R), the lattice of
all ideals of R, satisfies the condition (∗).

Lemma 1. Suppose L satisfies the condition (∗). Let x be a principal element
of L. Then x has only finitely many minimal primes over x.

��������

. Let S be the set which generates L under joins such that every element
of S is a finite meet of primary elements. Let p be a prime minimal over x. Then xp

is p-primary [11, Property 0.5]. Also by Proposition 2 of [5], xp is completely join
irreducible in Lp, so xp = yp for some y ∈ S. Therefore p is minimal over y. As x is
the join of a finite number of elements of S and every element of S has only finitely
many minimal primes, it follows that x has only finitely many minimal primes and
the proof is complete. �

Lemma 2. Suppose L is a π-lattice. Then every principal element has only
finitely many minimal primes.

��������

. The proof of the lemma is similar to that of Lemma 1. �

Lemma 3. Suppose L satisfies the condition (∗). If a ∈ L is locally principal,
then a is principal.

��������

. Suppose a is locally principal. Let

θ(a) =
∨
{(x : a) | x 6 a and x is principal}.

We claim that θ(a) = 1. Let θ(a) 6 m for some maximal prime element m of L.
Since a is locally principal, by [5, Proposition 2(d)], it follows that am = ym for some
principal element y 6 a. Again ym = xm and x 6 y for some x ∈ S, where S is the
set which generates L under joins such that every element of S is a finite meet of

primary elements. By hypothesis, x =
n∧

i=1

qi where qi are primary elements. Note

that xm =
∧{(qi)m | qi 6 m}. If qi 6 m for i = 1, 2, . . . , n, then x = xm = am, so
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a = x = y and therefore θ(a) = 1 6 m, a contradiction. So assume that qi 6 m

for i = 1, 2, . . . , k and qj � m for j = k + 1, k + 2, . . . , n. Choose principal elements

xj 6 qj such that xj � m for j = k + 1, k + 2, . . . , n. Note that xm =
k∧

i=1

(qi)m. Put

z = xk+1xk+2 . . . xn. Since a 6
k∧

i=1

qi and z 6
n∧

i=k+1

qi, it follows that az 6
n∧

i=1

qi =

x 6 y and hence z 6 (y : a) 6 θ(a) 6 m, a contradiction. Therefore θ(a) = 1. Since

1 is compact, it follows that 1 =
n∨

i=1

{(yi : a) | yi 6 a and yi is principal}. Again

a = a.1 =
n∨

i=1

(yi : a)a 6
n∨

i=1

yi 6 a, so a =
n∨

i=1

yi and hence a is compact. As a is

compact and locally principal, by [5, Theorem 1], it follows that a is principal and
the proof is complete. �

Lemma 4. Suppose L is an almost π-domain satisfying the condition (∗). If p is
a rank one prime, then p is an invertible d-prime.

��������

. As L is an almost π-domain, by [4, Theorem 2.2 and Corollary 2.3],
p is locally principal and hence by Lemma 3, p is principal. Obviously, 0 : p = 0 and
so p is invertible. Again by [4, Lemma 3.2(d)], p is an `-prime. Therefore by [12,
Theorem 1 and Theorem 2], p is a d-prime. �

Lemma 5. Suppose L is a quasi-local π-domain in which p is a prime minimal
over a non zero principal element a ∈ L. Then p is a rank one principal prime.

��������

. By [4, Corollary 2.3], p is principal. Again by [4, Lemma 1.4], there
exists a prime q < p such that pq = q and any prime properly contained in p is
contained in q. If q 6= 0, then by [4, Theorem 2.2 and Corollary 2.3], there exists
a non zero principal prime q1 6 q. Since q1 < p and p is principal, it follows that
q1 = q1p, so by [2, Theorem 1.4], q1 = 0, a contradiction. Therefore q = 0 and hence
p is a rank one principal prime. �

Lemma 6. Let L be a π-lattice which is also locally a domain. If p is a rank one
prime, then p is an invertible d-prime.

��������

. As L is an M -normal lattice, every prime element contains a unique
minimal prime element. Suppose p1 < p is a minimal prime element contained in p.
Choose any principal element a 6 p such that a 66 p1. Let m > p be a maximal
prime element of L. Then Lm is a π-domain. Since pm is a prime minimal over a
non zero principal element am ∈ Lm, by Lemma 5, pm is principal in Lm. Therefore
p is locally principal. It can be easily verified that p is weak join principal. Now we
show that p is weak meet principal. Note that p1p = p1 locally and hence globally.
Let S be the set which generates L under joins such that every element of S is a
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finite product of prime elements. Let x 6 p be any element of S. Again there exist
prime elements q1, q2, . . . , qn such that x = q1q2 . . . qn. As x 6 p, it follows that
qi 6 p for some i, say q1 6 p. Then either q1 = p or q1 = p1. In either case x is a
multiple of p. As S generates L under joins, it follows that p is weak meet principal
and hence weak principal. Again by [2, Theorem 1.3], p is compact and hence by [5,
Theorem 1], p is principal. Obviously, 0 : p = 0. Again by [4, Lemma 3.2(d)] and
[12, Theorem 1 and Theorem 2], p is an invertible d-prime. �

Lemma 7. Let L be a π-lattice which is also locally a domain. If p is a prime
minimal over a principal element a, then p is either a complemented minimal prime
or an invertible d-prime.

��������

. Suppose p is a prime minimal over a principal element a. Note that
in a π-lattice, there are only a finite number of minimal primes. As L is a reduced
M -normal lattice, it follows that the minimal primes are complemented elements.
Therefore if p is a minimal prime, then p is a complemented element. Suppose p is
non minimal. Let m > p be a maximal prime element of L. As Lm is a π-domain
and pm is minimal over a non zero principal element am of Lm, by Lemma 5 and
Lemma 6, p is an invertible d-prime. �

Lemma 8. Let p1, p2, . . . , pn be distinct prime elements of L and let qi be
pi-primary elements. If each qi is weak meet principal, then q1 ∧ q2 ∧ . . . ∧ qn =
q1q2 . . . qn.
��������

. Rearrange p1, p2, . . . , pn, if necessary, so that pi 66 pj for i < j. We
prove the result by induction on n. Since p1 66 p2 and q1 is weak meet principal,
it follows that q1 ∧ q2 = q1q2. Therefore the result is true for n = 2. Now assume
that q1 ∧ q2 ∧ . . . ∧ qn−1 = q1q2 . . . qn−1. Since each qi is weak meet principal, by [5,
Proposition 1(a) and Theorem 6] q1q2 . . . qn−1 is weak meet principal. Again since
q1q2 . . . qn−1 is weak meet principal, it follows that (q1q2 . . . qn−1)∧qn = q1q2 . . . qn−1x

for some x ∈ L. As q1q2 . . . qn−1x 6 qn and qi 66 pn for 1 6 i 6 n− 1, it follows that
x 6 qn. Therefore q1∧q2∧ . . .∧qn = (q1∧q2∧ . . .∧qn−1)∧qn = (q1q2 . . . qn−1)∧qn 6
q1q2 . . . qn−1qn and hence q1∧q2∧ . . .∧qn = q1q2 . . . qn−1qn. This completes the proof
of the lemma. �

Lemma 9. Let L be a π-lattice which is also locally a domain. Then every
principal element is a finite product of primes which are either complemented minimal
primes or invertible d-primes.

��������

. By Lemma 2, every principal element has only finitely many minimal
primes. Again by Lemma 7, every prime minimal over a principal element is ei-
ther a complemented minimal prime or an invertible d-prime. Let a be a principal
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element of L. Let p1, p2, . . . , pn be the minimal primes over a. Without loss of gen-
erality, assume that p1, p2, . . . , ps are the invertible d-primes and ps+1, ps+2, . . . , pn

are the complemented minimal primes. Since p1, p2, . . . , ps are d-primes, by [4,
Lemma 3.2(c)], there exist positive integers ni for i = 1, 2, . . . , s such that a 6 pni

i

and a 66 pni+1
i . Observe that by [4, Lemma 3.2(d)], the powers of pi (1 6 i 6 s)

are pi-primary elements. Let b = pn1
1 pn2

2 . . . pns
s ps+1ps+2 . . . pn. We claim that a = b.

Let m be a maximal prime element of L. If pj 6 m for some j ∈ {s + 1, s + 2, . . . n},
then am = bm = 0m. Without loss of generality, assume that p1, p2, . . . , pt 6 m for
(1 6 t < s) and pj 66 m for (t + 1 6 j 6 s). Note that Lm is a π-domain and am is a
non zero principal element of Lm. Therefore by [4, Lemma 2.3] and Lemma 5, am is a
finite product of the rank one principal prime elements minimal over it. Again using
Lemma 8, it can be easily shown that am = (p1m)n1(p2m)n2 . . . (ptm)nt . There-
fore am = (p1m)n1(p2m)n2 . . . (ptm)nt . . . (psm)nsps+1mps+2m . . . pnm = bm since
(pjm)nj = 1m for (t + 1 6 j 6 s) and pkm = 1m for (s + 1 6 k 6 n). This
shows that am = bm for all maximal prime elements m containing a. Further, if
a 66 m, then am = bm = 1m. Consequently, a = b and the proof is complete. �

Lemma 10. Let L be a π-lattice which is also locally a domain. Then L satisfies
the condition (∗).

��������

. Note that by [1, Lemma 2.2], complemented elements are idempotent
principal elements and by [4, Lemma 3.2(d)], powers of invertible prime elements are
primary. Now the result follows from Lemma 8 and Lemma 9. �

Lemma 11. Let a ∈ L. Suppose every prime minimal over a is compact. Then
a has only finitely many minimal primes.


��������
. Note that by [9, Lemma 1], a finite product of compact elements is

compact. Therefore by hypothesis and [18, Theorem 3.4], a has only finitely many
minimal primes. �

Lemma 12. Suppose L is an almost π-domain satisfying the condition (∗). Let p

be a prime minimal over a principal element a ∈ L. Then p is either a complemented
minimal prime or an invertible d-prime.


��������
. Suppose p is minimal. Then p is locally principal and hence by Lemma 3,

p is principal. As L is a reducedM -normal lattice, by [13, Theorem 1], p is a principal
σ-element and hence complemented. Suppose p is non minimal. Let m > p be a
maximal prime element of L. As Lm is a π-domain and pm is minimal over a non
zero principal element am in Lm, by Lemma 5, rank pm = 1 and hence rank p = 1.
Again by Lemma 4, p is an invertible d-prime. �
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If {pα}α∈I is the collection of prime elements minimal over a, then by the isolated
primary component of a belonging to pβ (or the isolated pβ-primary component
of a) we mean the meet qβ of all pβ-primary elements which contain a. The kernel a∗

of a is the meet of all qβ’s. If p is a prime minimal over a, then ap is p-primary
and contained in any p-primary element which contains a. Hence ap is the isolated
p-primary component of a and a∗ =

∧
α∈I

apα . The kernel of an element was studied

in [10].

Lemma 13. Suppose L is an almost π-domain satisfying the condition (∗). Then
the kernel of a principal element is a finite product of primes which are either com-
plemented minimal primes or invertible d-primes.

��������

. Let a be a principal element of L. Then

a∗ =
∧
{ap | p is a prime minimal over a}.

By Lemma 1, a has only finitely many minimal primes. Let p1, p2, . . . , pn be the
minimal primes of a. By Lemma 12, each pi is either a complemented minimal
prime or an invertible d-prime. Without loss of generality, assume that p1, p2, . . . , ps

are the invertible d-primes and ps+1, ps+2, . . . , pn are the complemented minimal
primes. Note that each api (1 6 i 6 n) is pi-primary. Since the minimal primes are
complemented, it follows that the minimal primes are unbranched, so api = pi for
i = s + 1, s + 2, . . . , n. As each pi (1 6 i 6 s) is invertible, by [4, Lemma 3.2(d)],
each pi-primary element is a power of pi. Therefore api = pni

i (for i = 1, 2, . . . , s) for
some positive integer ni. Again by Lemma 8, a∗ = pn1

1 ∧ . . .∧ pns
s ∧ ps+1 ∧ . . .∧ pn =

pn1
1 . . . pns

s ps+1 . . . pn. This completes the proof of the lemma. �

Lemma 14. Suppose L is an almost π-domain satisfying the condition (∗). Then
every principal element is equal to its kernel.

��������

. Let a be a principal element of L. By the proof of Lemma 13, there exist
prime elements p1, p2, . . . , pm minimal over a such that api = pni

i for some positive
integer ni and a∗ = pn1

1 pn2
2 . . . pnm

m , where each pi is either a complemented minimal
prime or an invertible d-prime. Again by imitating the proof of Lemma 9, it can be
easily shown that a = a∗ and the proof is complete. �

Lemma 15. Suppose L is an almost π-domain. If p is a compact prime of rank
less than or equal to one, then p is either a complemented minimal prime or an
invertible d-prime.

��������

. Suppose p is a compact minimal prime. As L is a reduced M -normal
lattice, it follows that p is complemented. If rank p = 1, then by the proof of
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Lemma 4, p is locally principal and hence by [5, Theorem 1], p is principal. The
remaining proof is similar to that of Lemma 4. �

Lemma 16. Suppose L is an almost π-domain. If p is a compact prime minimal
over a principal element a ∈ L, then p is either a complemented minimal prime or
an invertible d-prime.


��������
. If p is minimal, then by Lemma 15, p is complemented. Suppose p

is non minimal. Then by Lemma 5, rank p = 1 and hence by Lemma 15, p is an
invertible d-prime. �

Lemma 17. Suppose L is an almost π-domain. Let a ∈ L be a principal element
such that every prime minimal over a is compact. Then a∗ is a finite product of
primes which are either complemented minimal primes or invertible d-primes.


��������
. By Lemma 11, a has only finitely many minimal primes. Again by

Lemma 16, each prime minimal over a is either a complemented minimal prime or
an invertible d-prime. Now by imitating the proof of Lemma 13, we can get the
result. �

Lemma 18. Suppose L is an almost π-domain. Let a ∈ L be a principal element
such that every prime minimal over a is compact. Then a is equal to its kernel.


��������
. Using Lemma 17 and by imitating the proof of Lemma 14, we can get

the result. �

Theorem 1. Suppose L is an almost π-domain satisfying the condition (∗). Then
every principal element is a finite product of primes which are either complemented
minimal primes or invertible d-primes.


��������
. The proof of the theorem follows from Lemma 13 and Lemma 14. �

Theorem 2. Suppose L is an almost π-domain. Let every prime minimal over
a principal element is compact. Then every principal element is a finite product of
primes which are either complemented minimal primes or invertible d-primes.


��������
. The proof of the theorem follows from Lemma 17 and Lemma 18. �

126



Theorem 3. The following statements on L are equivalent:
(i) L is a π-lattice which is also locally a domain.
(ii) L is an almost π-domain satisfying the condition (∗).
(iii) L is a reduced lattice in which every principal element is a finite product of

primes which are either complemented minimal primes or invertible d-primes.
(iv) L is an almost π-domain in which every prime of rank less than or equal to one

is compact.
(v) L is a reduced lattice in which every prime minimal over a principal element is
either a complemented minimal prime or an invertible d-prime.


��������
. (i)⇒(ii) follows from Lemma 10 and (ii)⇒(iii) follows from Theorem 1.

(iii)⇒(iv). Suppose (iii) holds. By (iii), L is a reduced π-lattice and anM -normal
lattice. Therefore L is an almost π-domain. The remaining proof is obvious.
(iv)⇒(v). Suppose (iv) holds. Let p be a prime minimal over a principal element

a ∈ L. By Lemma 5, rank p 6 1 and hence by Lemma 15, p is either a complemented
minimal prime or an invertible d-prime. Thus (v) holds.
(v)⇒(i). Suppose (v) holds. By (v), every prime minimal over a principal element

is compact. Therefore by Theorem 2, it is enough if we show that L is an almost
π-domain. Note that by [13, Theorem 1(v)], L is a reduced M -normal lattice and
so every prime element contains a unique minimal prime element. Therefore by (v),
every non minimal prime contains an invertible d-prime. Now we show that L is an
almost π-domain. Let m be a maximal prime element of L. If m is minimal, then
Lm is a two element chain. Suppose m is non minimal. Let pm be a non zero prime
element of Lm. Since p is a non minimal prime, there exists an invertible d-prime p1

such that p1 6 p. Clearly, p1m is a non zero principal prime element contained in pm

and hence by [4, Theorem 2.3 and Corollary 2.3], Lm is a π-domain. Consequently,
L is an almost π-domain and the proof is complete. �

Theorem 4. Suppose L is a domain. Then the following statements on L are
equivalent:
(i) L is a π-domain.
(ii) L is an almost π-domain satisfying the condition (∗).
(iii) Every non zero principal element is a finite product of invertible d-primes.
(iv) L is an almost π-domain in which every rank one prime element is compact.
(v) Every prime minimal over a non zero principal element is an invertible d-prime.

��������

. The proof of the theorem follows from Theorem 3. �

L is said to satisfy the union condition on primes if for any set p1, . . . , pn of primes
in L and any a ∈ L with a 66 p1, . . . , pn there exists a principal element e 6 a with
e 66 p1, . . . , pn.
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Theorem 5. Suppose L satisfies the union condition on primes. Then the fol-
lowing statements on L are equivalent:

(i) L is a π-lattice.

(ii) L is an almost π-lattice in which every principal element is a finite meet of
primary elements.

(iii) L is an almost π-lattice satisfying the condition (∗).
(iv) L is an almost π-lattice in which every prime of rank less than or equal to one

is compact.

(v) Every minimal prime is principal and every non minimal prime contains a non
minimal principal prime.


��������
. (i)⇒(ii). Suppose (i) holds. Clearly, L is an almost π-lattice. As

L satisfies the union condition on primes, by [4, Corollary 2.1], for every maximal
prime element m of L, Lm is either a domain or a special principal element lattice.
Therefore every prime contains a unique minimal prime and non maximal minimal
primes are unbranched and idempotent. Using these facts and by imitating the
proofs of Lemma 5 and Lemma 6, it can be easily shown that every prime minimal
over a principal element is either a minimal prime or an invertible d-prime. Let
a be a principal element of L. By Lemma 2, a has only finitely many minimal
primes. Let p1, p2, . . . , pm be the primes minimal over a. Without loss of generality,
assume that p1, p2, . . . , ps are the invertible d-primes, ps+1, ps+2, . . . , ps+t are the
non maximal minimal primes and ps+t+1, ps+t+2, . . . , pm are the minimal primes
which are also maximal. Since p1, p2, . . . , ps are the invertible d-primes minimal
over a, there exist positive integers ni for i = 1, 2, . . . , s, such that a 6 pni

i and
a 66 pni+1

i . Since each Lpi (s + t + 1 6 i 6 m) is a special principal element
lattice, there exist positive integers nj (for s + t + 1 6 j 6 m) such that apj =
(pnj

j )pj . Observe that the powers of pi (1 6 i 6 m) are pi-primary elements. Let
b = pn1

1 ∧ pn2
2 ∧ . . . ∧ pns

s ∧ ps+1 ∧ . . . ∧ ps+t ∧ p
ns+t+1
s+t+1 ∧ . . . ∧ pnm

m . Now by imitating
the proof of Lemma 9, it can be easily shown that a = b. Therefore (ii) holds.

(ii)⇒(iii) is obvious.
(iii)⇒(iv). Suppose (iii) holds. By [4, Corollary 2.1, Theorem 2.2 and Corol-

lary 2.3], every prime of rank less than or equal to one is locally principal and hence
by Lemma 3, principal.

(iv)⇒(v). Suppose (iv) holds. Observe that the rank of every prime minimal over
a principal element is less than or equal to one and every prime of rank less than
or equal to one is locally principal. Therefore by (iv), every prime minimal over a
principal element is a principal prime of rank less than or equal to one. Therefore
(v) holds.

(v)⇒(i). Suppose (v) holds. We show that L is an almost π-lattice. Let m be a
maximal prime element of L. If m is minimal, then Lm is a special principal element
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lattice. Suppose m is non minimal. By (v), there exists a non minimal principal
prime p 6 m. Let q < p be a principal minimal prime. As p is principal, it follows
that pq = q. Therefore by [2, Theorem 1.4], qm = 0m in Lm and hence Lm is a
domain. Again since by (v), every non zero prime element of Lm contains a non zero
principal prime element, by [4, Theorem 2.2 and Corollary 2.3], Lm is a π-domain.
This shows that L is an almost π-lattice. Note that by (v) and by Lemma 5, every
prime minimal over a principal element is a principal prime of rank less than or equal
to one. Therefore every principal element has only finitely many minimal primes.
Now by using [4, Lemma 1.4] and Lemma 8 and by imitating the proof of (i)⇒(ii)
(or Lemma 9), it can be easily shown that every principal element is a finite product
of principal primes of rank less than or equal to one. Therefore L is a π-lattice and
the proof is complete. �

Let R be a commutative ring with identity and let L(R) be the lattice of all ideals
of R. An ideal M of R is called a quasi-principal ideal [15, p. 147] (or a principal
element of L(R) [17]) if it satisfies the following identities (i) (A ∩ (B : M))M =
AM ∩ B and (ii) (A + BM) : M = (A : M) + B, for all A, B ∈ L(R). It should
be mentioned that every quasi-principal ideal is finitely generated and also a finite
product of quasi-principal ideals of R is again a quasi-principal ideal [15, Exercise 10,
p. 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated
and locally principal [17, Theorem 2].

R is said to be a π-ring [7, p. 572] if every principal ideal is a finite product of
prime ideals. For various characterizations of π-rings which are also domains, the
reader is referred to [14] and [16]. We call a ring R an almost π-ring if RM is a
π-ring, for every maximal ideal M of R. The following Theorem 6 gives some new
characterizations for π-rings in terms of almost π-rings.

Theorem 6. The following statements on R are equivalent:
(i) R is a π-ring.
(ii) R is an almost π-ring in which every quasi-principal ideal is a finite intersection
of primary ideals.

(iii) R is an almost π-ring in which every principal ideal is a finite intersection of
primary ideals.

(iv) R is an almost π-ring in which every prime ideal of rank less than or equal to
one is finitely generated.

(v) Every minimal prime ideal is quasi-principal and every non minimal prime ideal
contains a non minimal quasi-principal prime ideal.


��������
. The proof of the theorem follows from Theorem 5 and the fact that the

lattice of all ideals of R is a principally generated C-lattice and satisfies the union
condition on prime ideals. �
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