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EVALUATION FORMULAS FOR A CONDITIONAL

FEYNMAN INTEGRAL OVER WIENER PATHS

IN ABSTRACT WIENER SPACE

� � � ������� 	 
 � �
, � � � � 
�� � � � 	 � , Seoul, and ����� ��� , Wonju
(Received June 20, 2001)

Abstract. In this paper, we introduce a simple formula for conditional Wiener integrals
over C0( � ), the space of abstract Wiener space valued continuous functions. Using this
formula, we establish various formulas for a conditional Wiener integral and a conditional
Feynman integral of functionals on C0( � ) in certain classes which correspond to the classes
of functionals on the classical Wiener space introduced by Cameron and Storvick. We also
evaluate the conditional Wiener integral and conditional Feynman integral for functionals
of the form

exp

� � T

0
θ(s, x(s)) dη(s) �

which are of interest in Feynman integration theories and quantum mechanics.

Keywords: Banach algebra S′′� , Banach space S′′n,
� , conditional Wiener integral, condi-

tional Feynman integral, simple formula for conditional Wiener integrals

MSC 2000 : 28C20

1. Introduction

Let C0[0, T ] denote the classical Wiener space, that is, the space of real-valued
continuous functions x(t) which are defined on [0, T ] with x(0) = 0. The concept of
conditional Wiener integrals on this space was introduced by Yeh in [18], [19]. By a
conditional Wiener integral we mean the conditional expectation E[F |X ] of a real or
complex-valued Wiener integrable function F conditioned by a Wiener measurable
function X on C0[0, T ], which is given as a function on the value space of X . We
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shall be concerned exclusively with X given by X(x) = (x(t1), . . . , x(tm)), where
0 < t1 < . . . < tm = T . In [16], Park and Skoug derived a simple formula for the
conditional Wiener integral with the conditioning function X . Using this formula,
they expressed the conditional Wiener integral directly in terms of ordinary Wiener

integrals.

Let C0( � ) be the space of abstract Wiener space-valued continuous functions x(t)
which are defined on [0, T ] with x(0) = 0. In [13], the space C0( � ) was introduced
and in [17] Ryu developed several theories which appeared in classical and abstract

Wiener spaces. In [20], Yoo introduced a Banach space S ′′n,
� and a Banach algebra S ′′�

on C0( � ) which correspond to the Banach space � ′′n and the Banach algebra � ′′ on
the classical Wiener space, respectively, introduced by Cameron and Storvick ([3]).

In this paper, we introduce a simple formula for a conditional Wiener integral

on C0( � ). Using the formula we establish various formulas for a conditional Wiener
integral and a conditional Feynman integral of functionals in the Banach space S ′′n,

�
and the Banach algebra S ′′� on C0( � ). Also, we evaluate the conditional Wiener
integral and conditional Feynman integral of functionals of the forms

exp
{∫ T

0

θ(s, x(s)) ds
}
,

exp
{∫ T

0

θ(s, x(s)) ds
}
ψ(x(T )),

exp
{∫ T

0

θ(s, x(s)) dη(s)
}
,

exp
{∫ T

0

θ(s, x(s)) dη(s)
}
ψ(x(T ))

which are of interest in Feynman integration theories and quantum mechanics.

2. Preliminaries

Let (Ω,A , P ) be a probability space and let B be a real normed linear space with
norm ‖ · ‖ and let B(B) be the Borel σ-field on B. Let X : (Ω,A , P ) → (B,B(B))
be a random variable. Let F : Ω → � be an integrable function and let PX be the
probability distribution of X on (B,B(B)). Let D be the σ-field {X−1(B1) : B1 ∈
B(B)}. Let PD be the probability measure induced by P , that is, PD(E) = P (E)
for E ∈ D . For every E ∈ D , let

QX(E) =
∫

E

F (ω) dP (ω).
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Clearly, QX is a complex measure on D such that QX(E) = 0 for every E ∈ D for

which PD(E) = 0. Hence QX � PD , so that in view of the Radon-Nikodym theorem
there exists a D-measurable function E[F |X ] defined on Ω such that the relation

∫

E

E[F |X ](ω) dPD(ω) = QX(E) =
∫

E

F (ω) dP (ω)

holds for every E ∈ D . Here the function E[F |X ] is determined uniquely PD -a.s.

and it is called the conditional expectation of F given X .

Also there exists a PX -integrable function ψ defined on B which is unique up
to PX -a.s. such that E[F |X ](ω) = (ψ ◦ X)(ω) for PD -a.s. ω. ψ is also called the

conditional expectation of F given X and without loss of generality, it is denoted by
E[F |X ](η) for η ∈ B.
Throughout this paper, we will consider the function ψ as the conditional expec-

tation of F given X .

The following lemma is useful for the proof of a simple formula for conditional

Wiener integrals on C0( � ).
Lemma 2.1 (Scalora [15]). Let B be a real normed linear space and let (Ω,A , P )

be a probability space. If X1 and X2 defined on (Ω,A , P ) are independent random
variables in B, then l1 ◦X1 and l2 ◦X2 are independent random variables for every

l1, l2 ∈ B∗, where B∗ is the dual space of B. Furthermore, if B is separable, then

the converse is true.

Let (H , � ,m) be an abstract Wiener space ([14]). Let {ej : j > 1} be a complete
orthonormal set in the real separable Hilbert space H such that ej ’s are in � ∗ , the
dual of the real separable Banach space � . For each h ∈ H and y ∈ � , let

(h, y)∼ =





lim
n→∞

n∑
j=1

〈h, ej〉(y, ej), if the limit exists;

0, otherwise,

where (·, ·) denotes the dual pairing between � and � ∗ .
Note that for each h(6= 0) in H , (h, ·)∼ is a Gaussian random variable on � with

mean zero and variance |h|2; also (h, y)∼ is essentially independent of the choice of the
complete orthonormal set used in its definition and, further, (h, λy)∼ = (λh, y)∼ =
λ(h, y)∼ for all λ ∈ � . It is well-known that if {h1, h2, . . . , hn} is an orthogonal set
in H , then the random variables (hj , ·)∼ are independent. Moreover, if both h and
y are in H , then (h, y)∼ = 〈h, y〉 ([12]).
Let C0( � ) denote the set of all continuous functions on [0, T ] into � which vanish

at 0. Then C0( � ) is a real separable Banach space with the norm ‖x‖C0(
�
) ≡
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sup
06t6T

‖x(t)‖ � . And from [13], the minimal σ-field making the mapping x → x(t)

measurable is B(C0( � )), the Borel σ-field on C0( � ). Further, the Brownian motion
in � induces a probability measure m � on (C0( � ),B(C0 ( � ))) which is mean-zero
Gaussian ([13]).
A complex-valued measurable function defined on C0( � ) is said to be Wiener

measurable and a Wiener measurable function is said to be Wiener integrable if it is
integrable.

Definition 2.2. Let F : C0( � ) → � be Wiener integrable and let
X : (C0( � ),B(C0 ( � )),m � ) → (B,B(B))

be a random variable, where B is a real normed linear space with the Borel σ-field
B(B). The conditional expectation E[F |X ] of F given X defined on B is called the
conditional Wiener integral of F given X .

Now we introduce the Wiener integration theorem without proof. We easily obtain

this theorem by using change of variable theorem.

Theorem 2.3 (Wiener Integration Theorem). Let ~t = (t1, t2, . . . , tn) be given
with 0 = t0 6 t1 6 t2 6 . . . 6 tn 6 T . Let T~t : � n → � n be given by
T~t(x1, x2, . . . , xn) =

(√
t1 − t0x1,

√
t1 − t0x1 +

√
t2 − t1x2, . . . ,

n∑
j=1

√
tj − tj−1xj

)

and let f : � n → � be a Borel measurable function.
Then

∫

C0(
�
)

f(x(t1), x(t2), . . . , x(tn)) dm � (x)
∗=

∫ �
n

(f ◦ T~t)(x1, x2, . . . , xn) d
( n∏

i=1

m

)
(x1, x2, . . . , xn),

where by
∗= we mean that if either side exists, then both sides exist and they are

equal.

The following results are useful for the proof of Theorem 3.1. For more details,
see [17].

(1) Let 0 = t0 < t1 < . . . < tn 6 T be a partition of [0, T ]. Then x(tj) − x(tj−1)
(j = 1, 2, . . . , n) are independent as functions of x on C0( � ).

(2) Let {Wt : 0 6 t 6 T} be the Wiener process on C0( � ) × [0, T ], where Wt(x) =
x(t) for x ∈ C0( � ). Then, {Wt : 0 6 t 6 T} is a stochastic process with
stationary increments, that is, for t1, t1 + s, t2, t2 + s ∈ [0, T ], Wt2 −Wt1 and
Wt2+s −Wt1+s have the same distribution.
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(3) Let {Wt : 0 < t 6 T} be the Wiener process and let l ∈ � ∗ − {0}. Then l ◦Wt

is normally distributed with mean 0 and variance t‖l‖2.

3. Simple formula for a conditional Wiener integral

In this section, we introduce a simple formula for conditional Wiener integrals on

the space C0( � ).
Let τ : 0 = t0 < t1 < . . . < tm = T be a partition of [0, T ] and let x be in C0( � ).

Define the polygonal function [x] of x on [0, T ] by

(3.1) [x](t) =
m∑

i=1

χ(ti−1,ti](t)
[
x(ti−1) +

t− ti−1

ti − ti−1
(x(ti)− x(ti−1))

]
,

where t ∈ [0, T ]. For each ~ξ = (ξ1, . . . , ξm) ∈ � m , let [~ξ] be the polygonal function
of ~ξ on [0, T ] given as in (3.1) with ξ0 = 0. Note that both [x] : [0, T ] → � and
[~ξ] : [0, T ] → � are continuous.
Throughout this section, define Wt : C0( � ) → � by Wt(x) = x(t) for x ∈ C0( � ),

where 0 6 t 6 T , and define Xt : C0( � ) → � by Xt(x) = [x](t) for x ∈ C0( � ), where
0 6 t 6 T .

The following theorem corresponds to the Theorem 1 in [16]. But our proof is

different from that of the latter theorem.

Theorem 3.1. Let {Wt : 0 6 t 6 T} be the Wiener process on C0( � ) × [0, T ]
and define Xτ : C0( � ) → � m by Xτ (x) = (x(t1), . . . , x(tm)).
Then the processes {Wt − Xt : 0 6 t 6 T} and Xτ (x) = (x(t1), . . . , x(tm)) are

stochastically independent.� �"!#!%$
. First, we will show that for l ∈ � ∗ − {0}, {l(Wt) : 0 6 t 6 T} is a

standard Brownian motion process and hence it is a Gaussian process. For x ∈ C0( � ),
l(W0(x)) = l(x(0)) = 0. Let 0 6 s < t 6 T and let B ∈ B( � ). Then

m � [(l(Wt)− l(Ws))−1(B)] = m � [(Wt −Ws)−1(l−1(B))]

= m � [(Wt−s)−1(l−1(B))]

= m � [(l(Wt−s))−1(B)],

where the second equality follows from the property (2) in Section 2. Thus l(Wt)−
l(Ws) is normally distributed with mean 0 and variance ‖l‖2(t−s) by the property (3)
in Section 2. By Lemma 2.1 and the property (1) in Section 2, {l(Wt) : 0 6 t 6 T}
is a process with independent increments.
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Thus for l ∈ � ∗ − {0}, by the property (3) in Section 2,

l(Wt −Xt) = l(Wt)− l(Wti−1)−
t− ti−1

ti − ti−1
(l(Wti)− l(Wti−1))

is normally distributed, where ti−1 < t < ti, i = 1, . . . ,m.
On the other hand, for s1 ∈ (0, ti−1]∪ [ti, T ] and l1 ∈ � ∗−{0}, l1(Ws1) is normally

distributed.

Let 0 6 s 6 t 6 T and l, l1 ∈ � ∗ . Then
Cov(l(Ws), l1(Wt)) = Cov(l(Ws), l1(Wt)− l1(Ws) + l1(Ws))

= E[l(Ws)l1(Wt −Ws)] +E[l(Ws)l1(Ws)]

=
∫

C0(
�
)

l(x(s))l1(x(s)) dm � (x)
=

∫ � l(√sx1)l1(
√
sx1) dm(x1)

= s

∫ � l(x1)l1(x1) dm(x1) = sCov(l, l1),

where the second equality follows from the first part of this proof and the fourth

equality follows from Theorem 2.3.

Thus, for t ∈ [ti−1, ti], s1 ∈ [0, ti−1] ∪ [ti, T ] and l, l1 ∈ � ∗ ,
Cov(l(Wt −Xt), l1(Ws1))

= E
[(
l(Wt)− l(Wti−1)−

t− ti−1

ti − ti−1
(l(Wti)− l(Wti−1))

)
l1(Ws1)

]

=





Cov(l, l1)
[
t− ti−1 −

t− ti−1

ti − ti−1
(ti − ti−1)

]
if s1 ∈ [ti, T ]

Cov(l, l1)
[
s1 − s1 −

t− ti−1

ti − ti−1
(s1 − s1)

]
if s1 ∈ [0, ti−1]

= 0.

By the first part of this proof, {l(Wt−Xt), l1(Ws1 )} are independent for any l, l1 ∈ � ∗ .
By Lemma 2.1 {Wt −Xt,Ws1} are independent for t ∈ [ti−1, ti] and s1 ∈ [0, ti−1] ∪
[ti, T ]. In particular, for i = 1, 2, . . . ,m, {Wt −Xt : ti−1 6 t 6 ti} is independent of
Xτ (x) = (x(t1), . . . , x(tm)). Therefore the result follows. �

Corollary 3.2. If {Wt : 0 6 t 6 T} is the Wiener process on C0( � ) × [0, T ], then
{Wt −Xt : ti−1 6 t 6 ti}, where i = 1, . . . ,m, are stochastically independent.
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Corollary 3.3. Let Xτ be given as in Theorem 3.1. Define Y : C0( � ) → C0( � )
by Y (x) = x− [x].
Then Xτ and Y are independent, that is, the σ-fields induced by Xτ and Y ,

respectively, are independent.� �"!#!%$
. By Theorem 3.1, X−1

τ (B1) = {x ∈ C0( � ) : (x(t1), x(t2), . . . , x(tm)) ∈
B1} and Y −1(B2) = {x ∈ C0( � ) : (Y (x)(s1), . . . , Y (x)(sn)) ∈ B2} are independent,
where 0 < s1 < . . . < sn 6 T is any partition of [0, T ] and B1, B2 are any Borel

subsets of � m and � n , respectively. Then the result follows from Problem 4 [2,
p. 216]. �

The following theorem corresponds to the Theorem 2 in [16].

Theorem 3.4. Let F be integrable on C0( � ). Let Xτ be given as in Theorem 3.1.
Then for every Borel measurable subset B of � m ,

µτ (B) ≡
∫

X−1
τ (B)

F (x) dm � (x) =
∫

B

E[F (x− [x] + [~ξ])] dPXτ (~ξ),

where PXτ is the probability distribution of Xτ on ( � m ,B( � m )).� �"!#!%$
. Let A ∈ B(C0( � )) and F = χA. Then

∫

X−1
τ (B)

χA(x) dm � (x) = m � (A ∩X−1
τ (B))

=
∫

B

m � (x ∈ A | Xτ (x) = ~ξ) dPXτ (~ξ)

=
∫

B

m � (x − [x] + [~ξ] ∈ A | Xτ (x) = ~ξ) dPXτ (~ξ)

for any B ∈ B( � m ). Since x− [x] and Xτ (x) are independent by Corollary 3.3,

µτ (B) =
∫

B

m � (x− [x] + [~ξ] ∈ A) dPXτ (~ξ)

=
∫

B

E[χA(x− [x] + [~ξ])] dPXτ (~ξ).

The general case can be proved easily. �

By the definition of the conditional Wiener integral (Definition 2.2), we have

(3.2) E[F |Xτ ](~ξ) = E[F (x− [x] + [~ξ])] for PXτ -a.s. ~ξ.

The equation (3.2) is called a simple formula for the conditional Wiener integral of F
given Xτ on the space C0( � ).
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For λ > 0 and ~ξ ∈ � m , let F λ(x) = F (λ−1/2x), Xλ
τ (x) = Xτ (λ−1/2x), and suppose

E[F λ|Xλ
τ ](~ξ) exists. From (3.2) we have

E[F λ|Xλ
τ ](~ξ) = E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))]

for a.s. ~ξ ∈ � m . If, for ~ξ ∈ � m , E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))] has the analytic
extension Jλ(~ξ) on � + ≡ {λ ∈ � : Reλ > 0}, then we write

Jλ(~ξ) = Ean wλ [F |Xτ ](~ξ)

for λ ∈ � + . Jλ(~ξ) is a version of conditional Wiener integral.
For non-zero real q and ~ξ ∈ � m , if the limit

lim
λ→−iq

Ean wλ [F |Xτ ](~ξ)

exists, where λ approaches −iq through � + , then we write

lim
λ→−iq

Ean wλ [F |Xτ ](~ξ) = Ean fq [F |Xτ ](~ξ).

Ean fq [F |Xτ ](~ξ) is a version of conditional Feynman integral.

4. Evaluation formulas for a conditional Feynman integral

Let H be an infinite dimensional separable real Hilbert space. LetM (H ) be the
class of all complex Borel measures on H . Let ∆n = {(s1, s2, . . . , sn) ∈ [0, T ]n : 0 =
s0 < s1 < s2 < . . . < sn 6 T}.
LetM ′′

n = M ′′
n (∆n×H n) be the class of all complex Borel measures on ∆n×H n

and let ‖µ‖ = varµ, the total variation of µ in M ′′
n .

Let S′′n,
� = S′′n,

� (∆n ×H n) be the space of functions of the form

(4.1) F (x) =
∫

∆n×H n

exp
{

i
n∑

k=1

(hk, x(sk))∼
}

dµ(~s,~h)

for x ∈ C0( � ), where µ ∈ M ′′
n . Here we take ‖F‖′′n = inf{‖µ‖}, where the infimum

is taken over all µ’s so that F and µ are related by (4.1).

Let M ′′ = M ′′(
∑

∆n ×H n) be the class of all sequences {µn} of measures such
that each µn ∈ M ′′

n and
∞∑

n=1
‖µn‖ <∞.
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Let S′′� = S′′� (∑∆n ×H n) be the space of functions on C0( � ) of the form
(4.2) F (x) =

∞∑

n=1

Fn(x),

where each Fn ∈ S′′n,
� and ∞∑

n=1
‖Fn‖′′n < ∞. The norm of F is defined by ‖F‖′′ =

inf
{ ∞∑

n=1
‖Fn‖′′n

}
, where the infimum is taken over all representations of F given

by (4.2).

Theorem 4.1. Let F ∈ S′′n,
� be given by (4.1). Let 0 = t0 < t1 < . . . < tm = T

be a partition of [0, T ] and let Xτ (x) = (x(t1), . . . , x(tm)).
Then Ean wλ [F |Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ) exist for a.s. ~ξ ∈ � m . Moreover, for

λ ∈ � + and for a.s. ~ξ ∈ � m ,
Ean wλ [F |Xτ ](~ξ) = g(λ, µ, ~ξ),

where

g(λ, µ, ~ξ)(4.3)

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

exp
{ m∑

p=1

[
i

jp∑

k=1

(hp,k, [~ξ](sp,k))∼

− 1
2λ

jp+1∑

l=1

αp,l

∣∣∣∣
l−1∑

k=1

tp−1 − sp,k

tp − tp−1
hp,k +

jp∑

k=l

tp − sp,k

tp − tp−1
hp,k

∣∣∣∣
2]}

dµ(~s,~h).

Also for non-zero real q and for a.s. ~ξ ∈ � m ,
Ean fq [F |Xτ ](~ξ) = g(−iq, µ, ~ξ),

where ∆′
n;j1,...,jm

= {(s1,1, . . . , s1,j1 , s2,1, . . . , s2,j2 , . . . , sm,1, . . . , sm,jm) : 0 = s1,0 <

s1,1 < . . . < s1,j1 6 t1 < s2,1 < . . . < s2,j2 6 t2 < . . . 6 tm−1 < sm,1 < . . . <

sm,jm 6 tm = T} and αp,l = sp,l − sp,l−1, tp = sp+1,0 = sp,jp+1 for p = 1, . . . ,m− 1,
tm = sm,jm+1 = T , ~h = (h1,1, . . . , h1,j1 , h2,1, . . . , h2,j2 , . . . , hm,1, . . . , hm,jm) ∈ H n

for j1 + . . . + jm = n with the convention that
l−1∑
k=1

tp−1−sp,k

tp−tp−1
hp,k = 0 if l = 1,

jp∑
k=l

tp−sp,k

tp−tp−1
hp,k = 0 if l = jp + 1 and

jp∑
k=1

(hp,k, [~ξ](sp,k))∼ = 0 if jp = 0.
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� �"!#!%$
. By Fubini’s theorem, we obtain that for λ > 0 and for a.s. ~ξ ∈ � m ,

E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))]

=
∫

C0(
�
)

F (λ−1/2(x(·)− [x](·)) + [~ξ](·)) dm � (x)
=

∫

C0(
�
)

∫

∆n×H n

exp
{

i
n∑

k=1

(hk, λ
−1/2(x(sk)− [x](sk)) + [~ξ](sk))∼

}

dµ(~s,~h) dm � (x)
=

∫

∆n×H n

∫

C0(
�
)

exp
{

i
n∑

k=1

(hk, λ
−1/2(x(sk)− [x](sk)) + [~ξ](sk))∼

}

dm � (x) dµ(~s,~h)

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

∫

C0(
�
)

exp
{

i
n∑

k=1

(hk, λ
−1/2(x(sk)

− [x](sk)) + [~ξ](sk))∼
}

dm � (x) dµ(~s,~h).

Let sp,k = sj1+...+jp−1+k and hp,k = hj1+...+jp−1+k. Then

E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))]

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

∫

C0(
�
)

exp
{

i
m∑

p=1

jp∑

k=1

(
hp,k, λ

−1/2(x(sp,k)

− [x](sp,k)) + [~ξ](sp,k)
)∼

}
dm � (x) dµ(~s,~h)

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

∫

C0(
�
)

m∏

p=1

exp
{

i
jp∑

k=1

(
hp,k, λ

−1/2
(
x(sp,k)

− x(tp−1)−
sp,k − tp−1

tp − tp−1
(x(tp)− x(tp−1))

)
+ [~ξ](sp,k)

)∼}
dm � (x) dµ(~s,~h).

By Corollary 3.2 and Theorem 2.3,

E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))]

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

m∏

p=1

[∫

C0(
�
)

exp
{

i
jp∑

k=1

(
hp,k, λ

−1/2(x(sp,k)

− x(tp−1)−
sp,k − tp−1

tp − tp−1
(x(tp)− x(tp−1))

)
+ [~ξ](sp,k))∼

}
dm � (x)]
dµ(~s,~h)
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=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

exp
{

i
m∑

p=1

jp∑

k=1

(hp,k, [~ξ](sp,k))∼
}

m∏

p=1

[∫ �
jp +1

exp
{

iλ−1/2

jp∑

k=1

(
hp,k,

k∑

v=1

√
αp,vyp,v −

sp,k − tp−1

tp − tp−1

jp+1∑

v=1

√
αp,vyp,v

)∼}

d
(jp+1∏

1

m

)
(yp,1, . . . , yp,jp+1)

]
dµ(~s,~h)

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

exp
{

i
m∑

p=1

jp∑

k=1

(hp,k, [~ξ](sp,k))∼
}

m∏

p=1

[∫ �
jp +1

exp
{

iλ−1/2

jp+1∑

l=1

( l−1∑

k=1

√
αp,l

tp−1 − sp,k

tp − tp−1
hp,k

+
jp∑

k=l

tp − sp,k

tp − tp−1
hp,k

√
αp,l, yp,l

)∼}
d
(jp+1∏

1

m

)
(~y)

]
dµ(~s,~h)

=
∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

exp
{ m∑

p=1

[
i

jp∑

k=1

(hp,k, [~ξ](sp,k))∼

− 1
2λ

jp+1∑

l=1

αp,l

∣∣∣∣
l−1∑

k=1

tp−1 − sp,k

tp − tp−1
hp,k +

jp∑

k=l

tp − sp,k

tp − tp−1
hp,k

∣∣∣∣
2]}

dµ(~s,~h).

Using Morera’s theorem and Dominated Convergence Theorem, the results follow.
�

Theorem 4.2. Let F ∈ S′′� be such that
F (x) =

∞∑

n=1

Fn(x) =
∞∑

n=1

∫

∆n×H n

exp
{

i
n∑

k=1

(hk, x(sk))∼
}

dµn(~s,~h),

where each Fn ∈ S′′n,
� and µn ∈ M ′′

n with
∞∑

n=1
‖Fn‖′′n < ∞. Let Xτ be given as in

Theorem 4.1.

Then for any non-zero real q and a.s. ~ξ ∈ � m , Ean fq [F |Xτ ](~ξ) exists and is given
by

Ean fq [F |Xτ ](~ξ) =
∞∑

n=1

Ean fq [Fn|Xτ ](~ξ) =
∞∑

n=1

g(−iq, µn, ~ξ),

where g and the conditions are given as in Theorem 4.1.
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� �"!#!%$
. Without loss of generality, we can assume that

∞∑
n=1

‖µn‖ < ∞. For

a.s. ~ξ ∈ � m and λ > 0, by Fubini’s theorem and Dominated Convergence Theorem,

E[F (λ−1/2(x(·) − [x](·)) + [~ξ](·))]

=
∫

C0(
�
)

F (λ−1/2(x(·) − [x](·)) + [~ξ](·)) dm � (x)
=

∞∑

n=1

∫

∆n×H n

∫

C0(
�
)

exp
{

i
n∑

k=1

(hk, λ
−1/2x(sk)− λ−1/2[x](sk) + [~ξ](sk))∼

}

dm � (x) dµn(~s,~h)

=
∞∑

n=1

∑

j1+...+jm=n

∫

∆′
n;j1,...,jm

×H n

exp
{ m∑

p=1

[
i

jp∑

k=1

(
hp,k, [~ξ](sp,k)

)∼

− 1
2λ

jp+1∑

l=1

αp,l

∣∣∣∣
l−1∑

k=1

tp−1 − sp,k

tp − tp−1
hp,k +

jp∑

k=l

tp − sp,k

tp − tp−1
hp,k

∣∣∣∣
2]}

dµn(~s,~h).

Since
∞∑

n=1
‖µn‖ <∞, the last series converges uniformly with respect to λ on � + and

each term of the series is analytic on � + . By Morera’s theorem it is analytic on � +

and by Dominated Convergence Theorem, the result follows. �

Let G be the set of all � -valued functions θ on [0, T ]× � which have the following
form

(4.4) θ(s, y) =
∫

H

exp{i(h, y)∼} dσs(h)

where {σs : s ∈ [0, T ]} is a family from M (H ) satisfying the following conditions:
(1) For each Borel subset E of H , σs(E) is a Borel measurable function of s on

[0, T ].
(2) ‖σs‖ ∈ L1([0, T ]).

Theorem 4.3. Let θ ∈ G be given by (4.4) and let Xτ be given as in Theorem 4.1.
Then Fn(x) =

[∫ T

0
θ(s, x(s)) ds

]n
and F (x) = exp

{∫ T

0
θ(s, x(s)) ds

}
are elements

of S′′� for x ∈ C0( � ). Thus for a.s. ~ξ ∈ � m and non-zero real q, Ean fq [Fn|Xτ ](~ξ) and
Ean fq [F |Xτ ](~ξ) exist. Moreover,

Ean fq [Fn|Xτ ](~ξ) = g(−iq, µn, ~ξ)

and

Ean fq [F |Xτ ](~ξ) = 1 +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ) = 1 +

∞∑

n=1

g(−iq, µ′n, ~ξ),
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where dµn(~s,~h) = n!
m∏

p=1

jp∏
k=1

dσsp,k
(hp,k) dsp,k, dµ′n(~s,~h) =

m∏
p=1

jp∏
k=1

dσsp,k
(hp,k) dsp,k

and both g and the conditions are given as in Theorem 4.1 for each n ∈ & .� �"!#!%$
. By Theorems 4.1, 4.2 and by Theorem 3.3 in [20], we have the results.

�

Let F ( � ) be the class of all functions on � of the form
(4.5) ψ(y) =

∫

H

exp{i(h, y)∼} dν(h)

for y ∈ � where ν ∈ M (H ).
For λ > 0 and ~ξ ∈ � m ,

(4.6) ψ(λ−1/2(x(T )− [x](T )) + [~ξ](T )) = ψ([~ξ](T )) = ψ(ξm).

Hence we have the following results.

Theorem 4.4. Let θ ∈ G and ψ ∈ F ( � ) be given by (4.4) and (4.5), respectively,
and let Xτ be given as in Theorem 4.1.

Then the functions

Fn(x) =
[∫ T

0

θ(s, x(s)) ds
]n

ψ(x(T ))

and

F (x) = exp
{∫ T

0

θ(s, x(s)) ds
}
ψ(x(T ))

are elements of S′′� for x ∈ C0( � ). Thus Ean fq [Fn|Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ) exist
for a.s. ~ξ ∈ � m . Moreover, for a non-zero real q and for a.s. ~ξ ∈ � m ,

Ean fq [F |Xτ ](~ξ) = ψ(ξm) +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)

= ψ(ξm)
[
1 +

∞∑

n=1

g(−iq, µ′n, ~ξ)
]
,

where the conditions are given as in Theorem 4.3.� �"!#!%$
. By Theorem 4.3 and (4.6), we have the results. �

173



Let η be a � -valued Borel measure on [0, T ]. Then η = µs + µa + ν can be

decomposed uniquely into the sum of a discrete measure ν, a continuous but singular
measure µs (with respect to the Lebesgue measure) and an absolutely continuous
measure µa (with respect to the Lebesgue measure) ([8, p. 142]). Let µ = µs + µa

and let δτp denote the Dirac measure with total mass one concentrated at τp. Note
that µ is a continuous measure.

Let G ∗ be the set of all � -valued functions θ on [0, T ]× � which have the form (4.4)
where {σs : s ∈ [0, T ]} is the family fromM (H ) satisfying the following conditions:
(1) For each Borel subset E of H , σs(E) is a Borel measurable function of s on

[0, T ],
(2) ‖σs‖ ∈ L1([0, T ],B([0, T ]), |η|).

Theorem 4.5. Let η = µ+
r∑

p=1
wpδτp , where 0 6 τ1 < . . . < τr 6 T and the wp’s

are in � for p = 1, 2, . . . , r. Let θ ∈ G ∗ be given by (4.4) and Xτ be given as in The-

orem 4.1. Let Fn(x) =
[∫ T

0 θ(s, x(s)) dη(s)
]n
and F (x) = exp

{∫ T

0 θ(s, x(s)) dη(s)
}
.

Then for all non-zero real q and a.s. ~ξ ∈ � m , Ean fq [Fn|Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ)
exist. Moreover,

Ean fq [F |Xτ ](~ξ) = 1 +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)

= 1 +
∞∑

n=1

∑

q1+...+qm=n

m∏

p=1

∑

lp,0+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

]

[ ∑

j1+...+jrp+1=lp,0

∫

∆lp,0;j1,...,jrp+1

∫

H
qp

exp
{

i
rp∑

α=0

jα+1+1∑

i∗=1

(hp,α,i∗ , [~ξ](sp,α,i∗))∼
}

exp
{

1
2qi

rp∑

u=0

ju+1+1∑

v=1

βu+1,v

∣∣∣∣
u−1∑

α=0

jα+1+1∑

i∗=1

tp−1 − sp,α,i∗

tp − tp−1
hp,α,i∗

+
v−1∑

i∗=1

tp−1 − sp,u,i∗

tp − tp−1
hp,u,i∗ +

ju+1+1∑

i∗=v

tp − sp,u,i∗

tp − tp−1
hp,u,i∗

+
rp∑

α=u+1

jα+1+1∑

i∗=1

tp − sp,α,i∗

tp − tp−1
hp,α,i∗

∣∣∣∣
2}

d
( rp∏

α=0

jα+1∏

i∗=1

σsp,α,i∗

)( rp∏

α=1

lp,α∏

i∗=1

στp,α

)
(~h,~k) d

( rp∏

α=0

jα+1∏

i∗=1

µ

)
(~s)

]
,

where βu,v = sp,u−1,v − sp,u−1,v−1, tp−1 = sp,0,0, tp = sp,rp,jrp+1+1, τp,α =

sp,α−1,jα+1 = sp,α,0, hp,α−1,jα+1 =
lp,α∑
i∗=1

kp,α,i∗ , hp,rp,jrp+1+1 = 0, wp,k =
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wr1+...+rp−1+k and ∆lp,0;j1,...,jrp+1 = {(sp,0,1, . . . , sp,0,j1 , . . . , sp,rp,1, . . . , sp,rp,jrp+1) :
0 6 tp−1 6 sp,0,1 6 . . . 6 sp,0,j1 6 τp,1 < sp,1,1 < . . . < sp,1,j2 < τp,2 < . . . < τp,rp 6
sp,rp,1 6 . . . 6 sp,rp,jrp+1 6 tp 6 T} with, upon reordering τp’s, ti∗ ’s and renaming
τp’s, 0 6 τ1,1 < τ1,2 < . . . < τ1,r1 6 t1 < τ2,1 < . . . < τ2,r2 6 t2 < . . . 6 tm−1 <

τm,1 < . . . < τm,rm 6 tm = T where r1 + . . .+ rm = r.

� �"!#!%$
. By reordering τp’s, ti∗ ’s and renaming τp’s, let 0 6 τ1,1 < τ1,2 < . . . <

τ1,r1 6 t1 < τ2,1 < . . . < τ2,r2 6 t2 < . . . 6 tm−1 < τm,1 < . . . < τm,rm 6 tm = T ,

where r1 + . . .+ rm = r. Let A1 = [0, t1] and Ap = (tp−1, tp] for p = 2, . . . ,m.

From the multinomial expansion theorem, the simplex trick [11], Fubini’s theorem

and Corollary 3.2, it follows that for λ > 0 and a.s. ~ξ ∈ � m ,
E[Fn(λ−1/2(x(·) − [x](·)) + [~ξ](·))]

=
∫

C0(
�
)

[∫ T

0

θ(s, λ−1/2(x(s)− [x](s)) + [~ξ](s)) dη(s)
]n

dm � (x)
=

∑

q1+...+qm=n

n!
q1! . . . qm!

m∏

p=1

∫

C0(
�
)

[∫ tp

tp−1

θ
(
s, λ−1/2(x(s) − [x](s)) + [~ξ](s)

)
dµ(s)

+
rp∑

k=1

wp,kθ
(
τp,k, λ

−1/2(x(τp,k)− [x](τp,k)) + [~ξ](τp,k)
)]qp

dm � (x)
=

∑

q1+...+qm=n

n!
q1! . . . qm!

m∏

p=1

∫

C0(
�
)

[ ∑

lp,0+...+lp,rp=qp

qp!
lp,0! . . . lp,rp !

w
lp,1
p,1 . . . w

lp,rp
p,rp

(∫ tp

tp−1

θ
(
s, λ−1/2(x(s) − [x](s)) + [~ξ](s)

)
dµ(s)

)lp,0

[ rp∏

k=1

(
θ
(
τp,k, λ

−1/2
(
x(τp,k)− [x](τp,k)

)
+ [~ξ](τp,k)

))lp,k

]]
dm � (x)

=
∑

q1+...+qm=n

n!
m∏

p=1

[ ∑

lp,0+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

][ ∑

j1+...+jrp+1=lp,0

∫

∆lp,0;j1,...,jrp+1

∫

C0(
�
)

[ rp∏

α=0

jα+1∏

i∗=1

θ
(
sp,α,i∗ , λ

−1/2(x(sp,α,i∗)− [x](sp,α,i∗)) + [~ξ](sp,α,i∗)
)]

×
[ rp∏

α=1

(θ(sp,α,0, λ
−1/2(x(sp,α,0)− [x](sp,α,0)) + [~ξ](sp,α,0)))lp,α

]
dm � (x)

d
( rp∏

α=0

jα+1∏

i∗=1

µ

)
(~s)

]]
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=
∑

q1+...+qm=n

n!
m∏

p=1

[ ∑

lp,0+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

][ ∑

j1+...+jrp+1=lp,0

∫

∆lp,0;j1,...,jrp+1

∫ �
lp,0 +rp+1

rp∏

α=0

jα+1∏

i∗=1

θ

(
sp,α,i∗ , λ

−1/2

( α∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v +

i∗∑

v=1

√
βα+1,vyα,v

− sp,α,i∗ − tp−1

tp − tp−1

(rp+1∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v

))
+ [~ξ](sp,α,i∗)

)

[ rp∏

α=1

(
θ

(
sp,α,0, λ

−1/2

( α∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v

− sp,α,0 − tp−1

tp − tp−1

(rp+1∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v

))
+ [~ξ](sp,α,0)

))lp,α
]

d
(lp,0+rp+1∏

1

m

)
(y0,1, . . . , y0,j1+1, y1,1, . . . , y1,j2+1, . . . , yrp,1, . . . , yrp,jrp+1+1)

d
( rp∏

α=0

jα+1∏

i∗=1

µ

)
(~s)

]]
,

where wp,k = wr1+...+rp+k and the last equality follows from Theorem 2.3. From

Fubini’s theorem and unsymmetric Fubini’s theorem ([10]), it follows that

E[Fn(λ−1/2(x(·) − [x](·)) + [~ξ](·))]

= n!
∑

q1+...+qm=n

m∏

p=1

[ ∑

lp,0+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

]

[ ∑

j1+...+jrp+1=lp,0

∫

∆lp,0;j1,...,jrp+1

∫

H
qp

exp
{

i
rp∑

α=0

jα+1+1∑

i∗=1

(hp,α,i∗ , [~ξ](sp,α,i∗))∼
}

∫ �
lp,0 +rp+1

exp
{

iλ−1/2

rp∑

α=0

jα+1+1∑

i∗=1

(
hp,α,i∗ ,

α∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v

+
i∗∑

v=1

√
βα+1,vyα,v −

sp,α,i∗ − tp−1

tp − tp−1

rp+1∑

u=1

ju+1∑

v=1

√
βu,vyu−1,v

)∼}

d
(lp,0+rp+1∏

1

m

)
(~y) d

( rp∏

α=0

jα+1∏

i∗=1

σsp,α,i∗

)( rp∏

α=1

lp,α∏

i∗=1

στp,α

)
(~h,~k)

d
( rp∏

α=0

jα+1∏

i∗=1

µ

)
(~s)

]]
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= n!
∑

q1+...+qm=n

m∏

p=1

[ ∑

lp,0+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

]

[ ∑

j1+...+jrp+1=lp,0

∫

∆lp,0;j1,...,jrp+1

∫

H
qp

exp
{

i
rp∑

α=0

jα+1+1∑

i∗=1

(
hp,α,i∗ , [~ξ](sp,α,i∗)

)∼
}

exp
{
− 1

2λ

rp∑

u=0

ju+1+1∑

v=1

βu+1,v

∣∣∣∣
u−1∑

α=0

jα+1+1∑

i∗=1

tp−1 − sp,α,i∗

tp − tp−1
hp,α,i∗

+
v−1∑

i∗=1

tp−1 − sp,u,i∗

tp − tp−1
hp,u,i∗ +

ju+1+1∑

i∗=v

tp − sp,u,i∗

tp − tp−1
hp,u,i∗

+
rp∑

α=u+1

jα+1+1∑

i∗=1

tp − sp,α,i∗

tp − tp−1
hp,α,i∗

∣∣∣∣
2}

d
( rp∏

α=0

jα+1∏

i∗=1

σsp,α,i∗

)( rp∏

α=1

lp,α∏

i∗=1

στp,α

)
(~h,~k)

d
( rp∏

α=0

jα+1∏

i∗=1

µ

)
(~s)

]]
,

where hp,rp,jrp+1+1 = 0 and the last equality follows from Section 2 in this paper (or
see [12]).

Using the same process as in Theorems 4.1, 4.2 and 4.3, we can get the result. �

Remark 4.6. Let η = µ+
∞∑

r=1
wrδτr , where the τr’s are in [0, T ] and the wr’s are

in � for r ∈ & . In the proof of the above theorem, Ap contains infinitely many τr’s

for some p ∈ {1, . . . ,m}. Using the following version of the ℵ0-nomial formula ([11,
p. 41])

( ∞∑

r=0

br

)qp

=
∞∑

rp=0

∑

lp,0+...+lp,rp=qp,lp,rp 6=0

qp!
lp,0! . . . lp,rp !

b
lp,0
0 . . . b

lp,rp
rp ,

we can show that Ean fq [F |Xτ ](~ξ) exists for a.s. ~ξ ∈ � m and for any non-zero real q.
Corollary 4.7. Let η =

r∑
p=1

wpδτp , where 0 6 τ1 < . . . < τr 6 T and the wp’s

are in � for p = 1, . . . , r. Let θ ∈ G ∗ be given by (4.4). Let Fn, F be given as in

Theorem 4.5 and Xτ be given as in Theorem 4.1.
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Then for all non-zero real q and a.s. ~ξ ∈ � m ,
Ean fq [F |Xτ ](~ξ) = 1 +

∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ) = 1 +

∞∑

n=1

∑

q1+...+qm=n

m∏

p=1

{ ∑

lp,1+...+lp,rp=qp

[ rp∏

k=1

w
lp,k

p,k

lp,k!

]∫

H
qp

exp
{

i
rp∑

k=1

lp,k∑

α=1

(hk,α, [~ξ](τp,k))∼
}

exp
{

1
2qi

rp+1∑

u=1

(τp,u − τp,u−1)
∣∣∣∣
u−1∑

k=1

tp−1 − τp,k

tp − tp−1

lp,k∑

α=1

hk,α +
rp∑

k=u

tp − τp,k

tp − tp−1

lp,k∑

α=1

hk,α

∣∣∣∣
2}

d
( rp∏

k=1

lp,k∏

α=1

στp,k

)
(~h)

}
,

where wp,k = wr1+...+rp−1+k, with, upon introducing τp’s, τp,0 = tp−1, τp,rp+1 = tp,

0 6 τ1,1 < . . . < τ1,r1 6 t1 < . . . 6 tm−1 < τm,1 < . . . < τm,rm 6 tm = T and

r1 + . . .+ rm = r.

Corollary 4.8. Let η = µ and θ ∈ G ∗ be given by (4.4). Let Fn, F be given as

in Theorem 4.5 and Xτ be given as in Theorem 4.1.

Then for all non-zero real q and a.s. ~ξ ∈ � m ,
Ean fq [F |Xτ ](~ξ) = 1 +

∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)

= 1 +
∞∑

n=1

∑

q1+...+qm=n

m∏

p=1

[∫

∆qp

∫

H
qp

exp
{

i
qp∑

k=1

(hk, [~ξ](sk))∼
}

exp
{

1
2qi

qp+1∑

k=1

(sk − sk−1)
∣∣∣∣
k−1∑

α=1

tp−1 − sα

tp − tp−1
hα +

qp∑

α=k

tp − sα

tp − tp−1
hα

∣∣∣∣
2}

d
( qp∏

k=1

σsk

)
(~h) d

( qp∏

k=1

µ

)
(~s)

]
,

where ∆qp = {(s1, . . . , sqp) : 0 6 tp−1 = s0 < s1 < . . . < sqp 6 sqp+1 = tp}.

By (4.6), we have the following results.

Theorem 4.9. Let η be given as in Theorem 4.5. Let θ ∈ G ∗ and ψ ∈
F ( � ) be given by (4.4) and (4.5), respectively. Let Gn(x) = Fn(x)ψ(x(T )) =[∫ T

0 θ(s, x(s)) dη(s)
]n
ψ(x(T )) and G(x) = F (x)ψ(x(T )) = exp

{∫ T

0 θ(s, x(s)) dη(s)
}

ψ(x(T )) where Fn, F are given as in Theorem 4.5. LetXτ be given as in Theorem 4.1.
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Then for all non-zero real q and a.s. ~ξ ∈ � m , Ean fq [Gn|Xτ ](~ξ) and Ean fq [G|Xτ ](~ξ)
exist. Moreover,

Ean fq [G|Xτ ](~ξ) = ψ(ξm) +
∞∑

n=1

1
n!
Ean fq [Gn|Xτ ](~ξ)

= ψ(ξm) +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)ψ(ξm)

= Ean fq [F |Xτ ](~ξ)ψ(ξm),

where Ean fq [Fn|Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ) are given as in Theorem 4.5.

Corollary 4.10. Let η be given as in Corollary 4.7. Let θ ∈ G ∗ and ψ ∈ F ( � )
be given by (4.4) and (4.5), respectively. Let Gn, G be given as in Theorem 4.9 and
Xτ be given as in Theorem 4.1.

Then for all non-zero real q and a.s. ~ξ ∈ � m ,
Ean fq [G|Xτ ](~ξ) = ψ(ξm) +

∞∑

n=1

1
n!
Ean fq [Gn|Xτ ](~ξ)

= ψ(ξm) +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)ψ(ξm)

= Ean fq [F |Xτ ](~ξ)ψ(ξm),

where Ean fq [Fn|Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ) are given as in Corollary 4.7.

Corollary 4.11. Let η be given as in Corollary 4.8. Let θ ∈ G ∗ and ψ ∈ F ( � )
be given by (4.4) and (4.5), respectively. Let Gn, G be given as in Theorem 4.9 and
Xτ be given as in Theorem 4.1.

Then for all non-zero real q and a.s. ~ξ ∈ � m ,
Ean fq [G|Xτ ](~ξ) = ψ(ξm) +

∞∑

n=1

1
n!
Ean fq [Gn|Xτ ](~ξ)

= ψ(ξm) +
∞∑

n=1

1
n!
Ean fq [Fn|Xτ ](~ξ)ψ(ξm)

= Ean fq [F |Xτ ](~ξ)ψ(ξm),

where Ean fq [Fn|Xτ ](~ξ) and Ean fq [F |Xτ ](~ξ) are given as in Corollary 4.8.
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