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NORMAL VIETORIS IMPLIES COMPACTNESS:

A SHORT PROOF
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Abstract. One of the most celebrated results in the theory of hyperspaces says that
if the Vietoris topology on the family of all nonempty closed subsets of a given space is
normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use
cardinality arguments and are long. In this paper we present a short proof using known
results concerning Hausdorff uniformities.
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Suppose (X, τ) is a T1 space and CL(X), the family of all nonempty closed sub-
sets of X , is assigned the Vietoris topology τV . Suppose (CL(X), τV ) is normal.
One of the most spectacular results in Hyperspaces due to Ivanova, Keesling and
Velichko ([4], [6] and [8]) implies that (X, τ) is compact. In this paper we provide
an alternative short proof using some recent results in Hyperspaces.

We use the notation

V + = {E ∈ CL(X) : E ⊂ V },
V − = {E ∈ CL(X) : E ∩ V 6= ∅},

for A ⊂ τ , A− =
⋂{V − : V ∈ A}.

The Vietoris topology τV is generated by sets of the form {V + : V ∈ τ} and A−
where A ⊂ τ is finite ([1]).

Let U be a compatible uniformity on X ([3]). For each U ∈ U , let Û = {(A, B) :
A, B ∈ CL(X), A ⊆ U [B] and B ⊆ U [A]}. Then, {Û : U ∈ U} is a base for a
uniformity UH on CL(X) called the Hausdorff uniformity associated with U ([7],
[2]).
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We note the following:

(a) Since X is embedded in (CL(X), τV ) as a closed subset, (X, τ) itself is normal.
(b) Each real valued continuous function f on a space gives rise to a continuous
pseudometric df (x, y) = |f(x)− f(y)|.

(c) The finest totally bounded uniformity U0 on the normal space X is generated
by pseudometrics arising from all the members of C?(X) (the set of all contin-
uous functions f from X to the real interval [0, 1]). Moreover, the Hausdorff
uniformity U0H on CL(X) associated with U0 is compatible with the Vietoris

topology τV ([2]).
(d) If F is a nonconvergent ultrafilter, then each F ∈ F has more than one point
(otherwise it would be a principal ultrafilter; a contradiction).

�! #"$"&%
. Suppose (CL(X), τV ) is normal but not compact. Then it has a noncon-

vergent ultrafilter F which is Cauchy with respect to U0H . Choose distinct elements
{xF , yF } from each element F ∈ F . Then {(xF , yF ) : F ∈ F} is a Cauchy net with
respect to U0H . Obviously A = {xF : F ∈ F} and B = {yF : F ∈ F} are disjoint
closed sets in X and so there is a continuous function f : X → [0, 1] with f(A) = 0
and f(B) = 1. This shows that the net {(xF , yF ) : F ∈ F} is not small (see [3])
with respect to the entourage in U0H corresponding to the pseudometric df on X ;

a contradiction.
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