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Abstract. The first explicit example of a positive semidefinite double sequence which is
not a moment sequence was given by Friedrich. We present an example with a simpler
definition and more moderate growth as (m,n)→∞.
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1. Introduction

Suppose (S, +) is an abelian semigroup with zero. A function ϕ : S → � is positive
semidefinite if

n∑

j,k=1

cjckϕ(sj + sk) > 0

for every choice of n ∈ � , s1, . . . , sn ∈ S, and c1, . . . , cn ∈ � , and positive definite if
the same sum is positive whenever the sj are pairwise distinct and the cj are not all 0.

Denote byP(S) the set of all positive semidefinite functions on S. A character on S

is a function σ : S → � satisfying σ(0) = 1 and σ(s + t) = σ(s)σ(t) for all s, t ∈ S.

Denote by S∗ the set of all characters. A function ϕ : S → � is a moment function
if there is a measure µ on S∗ such that

(1) ϕ(s) =
∫

S∗
σ(s) dµ(σ), s ∈ S.
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Denote by H (S) the set of all moment functions on S. We have H (S) ⊂ P(S)
since if (1) holds then

n∑

j,k=1

cjckϕ(sj + sk) =
∫

S∗

( n∑

j=1

cjσ(sj)
)2

dµ(σ) > 0.

The semigroup S is semiperfect if H (S) = P(S). For these topics, see the mono-
graph by Berg, Christensen, and Ressel [2], especially Chapter 6.
For k ∈ � consider the semigroup S = � k

0 . The moment functions on S are

the moment sequences (more precisely, moment multisequences if k > 1), that is,
functions ϕ : S → � such that

ϕ(n) =
∫
�

k

xn dµ(x), n ∈ S

for some measure µ on � k , with the notation xn = xn1
1 . . . xnk

k for x = (x1, . . . , xk) ∈
� k and n = (n1, . . . , nk) ∈ � k

0 . Hamburger’s Theorem [6] asserts that S is semiperfect

if k = 1. On the other hand, if k > 2 then S is non-semiperfect as shown by Berg,
Christensen, and Jensen [1] and independently by Schmüdgen [8]. Each set of authors

appealed to the Hahn-Banach Theorem and so produced no explicit example of a
function ϕ ∈ P( � 2

0 ) \H ( � 2
0 ). The first such example was given by Friedrich [5]. In

his example,

ϕ(0, n) = exp
{[(

n/2 + 2
2

)
+ 1

]
! log

(
n/2 + 2

2

)
!
}

for even n > 8. This raised the question: How fast must ϕ(m, n) grow asm+n →∞ if
ϕ ∈ P( � 2

0 )\H ( � 2
0 )? It was shown in [3] that there is a function ϕ ∈ P( � 2

0 )\H ( � 2
0 )

such that ϕ(m, n) = O((m+n)a(m+n)) as n →∞ for each a > 1, and the constant 1
is the best possible.
The example in [3] involves the integral

∫ ∞

0

xne−x/(1+(log x)2) dx,

which we have not been able to evaluate. The purpose of the present note is to
exhibit a funciton ϕ ∈ P( � 2

0 )\H ( � 2
0 ), of growth intermediate between the example

of Friedrich and the example from [3], which has the merit of being of an extremely
simple form.

Let S be the semigroup � 0 \ {1}. The non-semiperfectness of S was shown by
Nakamura and Sakakibara [7]. We shall show that if γ is the positive solution to the
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equation
∞∑

n=1
γn2

= 1
2 and a = γ−1/4 then the function f : S → � defined by

f(n) =

{
an2

if n is even and n 6= 2,

0 if n is odd or n = 2

is in P(S) \H (S). Any larger value of a can be used instead. (For example, take
a = 2.) Now define ϕ : � 2

0 → � by ϕ(m, n) = f(2m + 3n) for (m, n) ∈ � 2
0 . Then

ϕ ∈ P( � 2
0 ) \H ( � 2

0 ).

2. The example

Suppose S is a set. A kernel (that is, a function) Φ: S × S → � is positive
semidefinite if

n∑

j,k=1

cjckΦ(sj , sk) > 0

for every choice of n ∈ � , s1, . . . , sn ∈ S, and c1, . . . , cn ∈ � , and positive definite if
the same sum is positive whenever the sj are pairwise distinct and the cj are not all 0.

Every positive semidefinite kernel Φ is hermitian in the sense that Φ(t, s) = Φ(s, t)
for all s, t ∈ S.

Theorem 1. If Φ: S × S → � is hermitian and such that Φ(s, s) = 1 and

(2)
∑

t : t6=s

|Φ(s, t)| 6 1

for all s ∈ S then Φ is positive semidefinite (and positive definite if strict inequality
holds in (2)).
�������! 

. For n ∈ � , s1, . . . , sn ∈ S pairwise distinct, and c1, . . . , cn ∈ � we have
n∑

j,k=1

cjckΦ(sj , sk) =
n∑

j=1

|cj |2 +
∑

j,k : j 6=k

cjckΦ(sj , sk)

>
n∑

j=1

|cj |2 −
∑

j,k : j 6=k

|cj ||ck||Φ(sj , sk)|

>
n∑

j=1

|cj |2 −
1
2

∑

j,k : j 6=k

(|cj |2 + |ck|2)|Φ(sj , sk)|

=
n∑

j=1

|cj |2
(

1−
∑

k : k 6=j

|Φ(sj , sk)|
)

>
n∑

j=1

|cj |2
(

1−
∑

t : t6=sj

|Φ(sj , t)|
)

> 0,

with strict inequality if we have strict inequality in (2) and if the cj are not all 0. �
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Corollary 1. If S is an abelian semigroup with zero and if f : S → � satisfies
f(2s) > 0 for all s ∈ S and

∑

t : t6=s

|f(s + t)|√
f(2s)f(2t)

6 1

for all s ∈ S then f is positive semidefinite.
�������! 

. For any function λ : S → � \{0}, the function f is positive semidefinite
if and only if the kernel (s, t) 7→ λ(s)λ(t)f(s + t) : S → � so is. Now apply this to
λ(s) = f(2s)−1/2, and apply the Theorem. �

Theorem 2. With S and f as at the end of the Introduction, the function f is

positive definite but not a moment function.
�������! 

. Apply the Corollary. Denoting by 2 " the set of all even integers, for
j ∈ S we have

∑

k : k 6=j

f(j + k)√
f(2j)f(2k)

6
∑

k : k 6=j,k−j∈2 #
a(j+k)2

√
a(2j)2a(2k)2

=
∑

k : k 6=j,k−j∈2 #
a−(k−j)2 < 2

∞∑

n=1

a−4n2
= 1.

This proves that f is positive definite. To see that f is not a moment function,
suppose it is. Choose a measure µ on S∗ such that f(s) =

∫
S∗ σ(s) dµ(σ) for s ∈ S.

Then 0 < a16 = f(4) =
∫

S∗ σ(4) dµ(σ) =
∫

S∗ σ(2)2 dµ(σ), so with A = {σ ∈ S∗ |
σ(2) 6= 0} we have µ(A) > 0. Now for σ ∈ A we actually have σ(2) > 0. Indeed,
σ(2)3 = σ(6) = σ(3)2 > 0, and taking third roots we obtain σ(2) > 0. Since σ ∈ A,
it follows that σ(2) > 0. Now 0 <

∫
A

σ(2) dµ(σ) =
∫

S∗ σ(2) dµ(σ) = f(2) = 0, a
contradiction. �

Corollary 2. The function ϕ : � 2
0 → � given by ϕ(m, n) = f(2m+3n) is positive

semidefinite but not a moment sequence.
�������! 

. Define a homomorphism h of � 2
0 onto S by h(m, n) = 2m + 3n, so

ϕ = f ◦ h. Since f is positive semidefinite, so is ϕ. If ϕ is a moment function then

it follows from [4], Proposition 1, that so is f , a contradiction. �
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