
Czechoslovak Mathematical Journal

Jiří Močkoř
Complete subobjects of fuzzy sets over MV -algebras

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 2, 379–392

Persistent URL: http://dml.cz/dmlcz/127895

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127895
http://dml.cz


Czechoslovak Mathematical Journal, 54 (129) (2004), 379–392

COMPLETE SUBOBJECTS OF FUZZY SETS

OVER MV -ALGEBRAS

� � ��� � ��� 	 �
�
, Ostrava

(Received August 1, 2001)

Abstract. A subobjects structure of the category Ω-FSet of Ω-fuzzy sets over a complete
MV -algebra Ω = (L,∧,∨,⊗,→) is investigated, where an Ω-fuzzy set is a pair A = (A, δ)
such that A is a set and δ : A × A → Ω is a special map. Special subobjects (called
complete) of an Ω-fuzzy set A which can be identified with some characteristic morphisms
A→ Ω∗ = (L×L, µ) are then investigated. It is proved that some truth-valued morphisms
¬Ω : Ω∗ → Ω∗,∩Ω, ∪Ω : Ω∗×Ω∗ → Ω∗ are characteristic morphisms of complete subobjects.
Keywords: fuzzy set over MV -lagebra, complete subobjects, subobjects classification
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1. Introduction

There are various categories which can be used as a natural basis for generalization
of classical [0, 1]-fuzzy sets and their internal logic (see for example [1], [4], [6], [14],
[15], [16] and others). A very natural and classical example is the category Ω-Set of
Ω-sets ([3]), where Ω is a complete Heyting algebra Ω = (∧,∨,→) and an Ω-set is a
pair (A, δ) such that A is a set and δ : A×A→ Ω is a map such that
(1) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(2) (∀x, y, z ∈ A) δ(x, y) ∧ δ(y, z) 6 δ(x, z),
with naturally defined morphisms. It can then be proved that this category Ω-Set
can represent classical fuzzy sets A→ Ω with their morphisms on the one hand, but
on the other hand its structure is very different from that of classical fuzzy sets. The
principal reason is that the category Ω-Set is a topos and, hence, its external (and
internal, as well) logic is intuitionistic and based on Heyting algebra structure, while
the external logic of classical fuzzy sets is based mostly on Lukasiewicz algebra, i.e. on
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different operations ⊗ and →. Hence, the category Ω-Set is the best structure for
interpretation of some logic based on the Heyting connectives, but it offers quite poor
possibilities to interpret other logical connectives, not directly based on the Heyting
connective. It seems that the principal reason for the disadvantages of the category
Ω-Set lies directly in the Heyting algebra Ω. In principle, we are able to interpret
only those logical formulas which are constructed over the connectives which can
be interpreted in Ω. In case that such connective (contained in a formula) could
not be interpreted naturally in Ω, it would be almost impossible to interpret the
formula in a reasonable way. Unfortunately, Heyting algebra structure enables the
interpretation of classical connectives but not the interpretation of the Lukasiewicz
fuzzy conjunction and implication, since these are based on the connectives which
are not present in this algebra. Hence, a method improving this situation could be
based on some modification of the underlying lattice Ω. This method could make it
possible to create a category which could be considered as a generalization of fuzzy
sets in a more convenient way.

In this paper we deal with the category Ω-FSet of Ω-fuzzy sets A = (A, δ), where
Ω = (L,∧,∨,⊗,→, 0Ω, 1Ω) is a completeMV -algebra, A is a set and δ : A×A→ Ω is
a map which satisfies the condition (1) but instead of condition (2) it satisfies some
modification of this condition. This category was (in a little more general form)
introduced by U. Höhle [5]–[9] and he also investigated a lot of important properties
of this category. Höhle also observed that this category is not a topos and that it
does not possess a subobject classifier in general. He also investigated some objects
in this category which could be used as subobjects classifiers (in some sense). Recall
that this classification problem is connected with the bijection relation

SubΩ-FSet(A) ∼= HomΩ-FSet(A,Ω0),

where Ω0 is a version of a subobject classifier (see [3], [12]). This bijection exists in
any topos, but the category Ω-FSet is not a topos in general. Hence, in the category
Ω-FSet we need to find some analogy of this bijection. In this paper we characterize
in a rather simple way subobjects B ∈ SubΩ-FSet(A) (which will be called complete
subobjects) for which a characteristic morphism χA(B) : A → Ω∗ can be found such
that the diagram

B
f−−−−→ (A, δ)

!

y
yχA(B)

Ω >−−−−→ Ω∗

is a pullback diagram. Moreover, we prove that among these characteristic mor-
phisms of complete subobjects the truth-valued morphisms ¬Ω,∩Ω,∪Ω : Ω∗ ×Ω∗ →
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Ω∗ are contained which could interprete ¬,∧,∨, respectively. The principal advan-
tage of these results is that they provide a rather simple tool for subobjects and
characteristic morphisms identification in a category Ω-FSet.

2. Subobjects in the category Ω-FSet

Let Ω = (L,∧,∨,⊗,→, 1Ω, 0Ω) be a complete MV -algebra, i.e. a complete residu-
ated lattice, where (a → b) → b = a ∨ b holds for every a, b ∈ L. By an Ω-fuzzy set
we mean (A, δ), where A is a set and δ : A×A→ Ω is a map such that
(i) (∀x, y ∈ A) δ(x, y) 6 δ(x, x) ∧ δ(y, y),
(ii) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(iii) (∀x, y, z ∈ A) δ(x, y)⊗ (δ(y, y) → δ(y, z)) 6 δ(x, z).
Moreover, a Ω-fuzzy set (A,α) is called separated if it satisfies the axiom

α(x, x) ∨ α(y, y) 6 α(x, y) ⇒ x = y.

The category Ω-FSet of Ω-fuzzy sets then consists of separated Ω-fuzzy sets as
objects and morphisms between objects (A,α), (B, β), which are maps f : A → B

such that
(1) (∀x, y ∈ A) β(f(x), f(y)) > α(x, y),
(2) (∀x ∈ A) α(x, x) = β(f(x), f(x)).
The composition of morphisms is the usual composition of maps. Höhle [5] proved
that the category Ω-FSet is complete and cocomplete. We mention here only that a
terminal object is To = (L,∧) with the unique morphism ! : (A, δ) → To such that
!(a) = δ(a, a). Moreover, a morphism f in this category is a monomorphism if and
only if f is injective. In this category a subobject classifier does not exist in general.
On the other hand, Höhle proves that there exists an object which has very similar
property and which can classify some special subobjects. This subobject is of the
form

Ω∗ = ({(α, β) ∈ L× L | α > β}, µ),

µ((α1, β1), (α2, β2)) = α1 ⊗ (β1 → β2) ∧ α2 ⊗ (β2 → β1).

The principal aim of this paper is to show that among objects which could be clas-
sified by this object Ω∗ are the so called complete subobjects of any Ω-fuzzy set.
Recall that a map s : A→ L is an Ω-subset of Ω-fuzzy set A = (A, δ) (abbreviated

as s ⊆ A), if
(i) (∀x, y ∈ A) s(x) ⊗ (δ(x, x) → δ(x, y)) 6 s(y),
(ii) (∀x ∈ A) s(x) 6 δ(x, x).
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(In [7] this map is called δ-extensional and δ-strict.) Moreover, let > : (To,∧) →
(Ω∗, µ) be defined such that >(ω) = (ω, ω). Then we have µ(>(x),>(y)) = x ∧ y
and it follows that > is a morphism.
The following proposition then extends Theorem 3.7 in [7].

Proposition 2.1. Let A = (A, δ) be an Ω-fuzzy set and let S(A) = {s | s ⊆
A be an Ω-subset}. Then S is a functor Ω-FSetop → Set and there exists a natural
isomorphism

ζ : S(−) ∼= HomΩ-FSet(−,Ω∗).
�
�������

. Let A = (A, δ) ∈ Ω-FSet. For a morphism (A, δ)
f→ (B, β) and for

s ∈ S(B) we set S(f)(s) = s · f ∈ S(A). This definition is correct since

S(f)(s)(a) ⊗ (δ(a, a) → δ(a, b))

6 s(f(a))⊗ (β(f(a), f(a)) → β(f(a), f(b))) 6 S(f)(s)(b).

Hence, S is a functor. We define a map ζA such that for s ∈ S(A) we set

(∀a ∈ A) ζA(s)(a) = (δ(a, a), s(a)) ∈ Ω∗.

Then ζA(s) : A → Ω∗ is a morphism in Ω-FSet. In fact, for a, b ∈ A we have
δ(a, a) → δ(a, b) 6 s(a) → s(b) and it follows that

µ(ζA(s)(a), ζA(s)(b)) = (δ(a, a)⊗ (s(a) → s(b))) ∧ (δ(b, b)⊗ (s(b) → s(a)))

> δ(a, a)⊗ (δ(a, a) → δ(a, b)) ∧ δ(b, b)⊗ (δ(b, b) → δ(a, b)))

= δ(a, a) ∧ δ(b, b) ∧ δ(a, b) = δ(a, b).

Moreover, we have further µ(ζA(s)(a), ζA(s)(a)) = δ(a, a) and it follows that ζA(s)
is a morphism.
Conversely, for a morphism f : (A, δ) → Ω∗ we define a map s such that ζ−1

A (f) =
s = pr2 ◦ f , where pr2 : Ω∗ → L is the second projection map. Then s ⊆ A. In fact,
let a ∈ A, f(a) = (f1, f2). Then we have δ(a, a) = f1 and s(a) = f2 6 f1 = δ(a, a).
Moreover, for a, b ∈ A we have

δ(a, b) 6 µ(f(a), f(b)) 6 δ(a, a)⊗ (s(a) → s(b)),

and it then follows that

s(a)⊗ (δ(a, a) → δ(a, b))

6 s(a)⊗ (δ(a, a) → (δ(a, a)⊗ (s(a) → s(b))))

= s(a)⊗ ((s(a) → s(b)) ∨ ¬δ(a, a))
= (s(a)⊗ (s(a) → s(b))) ∨ (s(a)⊗ ¬δ(a, a))

6 s(b) ∨ (δ(a, a)⊗ ¬δ(a, a)) = s(b).
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Then s ∈ S. Let a ∈ A. Since δ(a, a) = µ(f(a), f(a)), we have

ζA ◦ ζ−1
A (f)(a) = (δ(a, a), ζ−1

A (f)(a)) = (δ(a, a), pr2 ◦ f(a)) = f(a).

Analogously, we have ζ−1
A ◦ ζA(s)(a) = pr2(δ(a, a), s(a)) = s(a). Hence, ζA, ζ−1

A are

mutually inverse. Finally, for any morphism (A, δ)
f→ (B, β) the following diagram

commutes.

S(B)
ζB−−−−→ HomΩ-FSet(B,Ω∗)

S(f)

y
yHomΩ-FSet(f,Ω

∗)

S(A)
ζA−−−−→ HomΩ-FSet(A,Ω∗)

It is simple to prove that the corresponding diagram for ζ−1
A commutes as well. �

Let A = (A, δ) be an Ω-fuzzy set. Then a set S ⊆ A is called complete (in A) if

S =
{
a ∈ A :

∨

x∈S
δ(a, x) = δ(a, a)

}
.

Let SubΩ-FSet(A) be the set of all subobjects of A which are of the form (S, δ) where
S ⊆ A and let Subc

Ω-FSet(A) be the set of all complete subobjects, i.e. subobjects
(S, δ) such that S is complete in A. Then we obtain two functors Sub(−), Subc(−) :

Ω-FSetop → Set such that for a morphism (A, δ)
f→ (B, β) and (S, β) ∈ Sub(B)

we have Sub(f)(S, β) = (f−1(S), δ) and analogously for Subc(f). This definition is
correct since if (S, β) is complete in (B, β) then (f−1(S), δ) is complete in (A, δ) as
well. In fact, let a ∈ A be such that ∨

x∈f−1(S)

δ(a, x) = δ(a, a). Then we have

β(f(a), f(a)) >
∨

y∈S
β(f(a), y) >

∨

x∈f−1(S)

β(f(a), f(x))

>
∨

x∈f−1(S)

δ(a, x) = δ(a, a) = β(f(a), f(a)),

and it follows that a ∈ f−1(S).
Complete subsets of A define a closure system in A. Namely, for any S ⊆ A we

set

S =
{
a ∈ A :

∨

x∈S
δ(a, x) = δ(a, a)

}
.
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Lemma 2.2. For any subset S ⊆ A, S is a complete set such that S ⊆ S and
S = S. Moreover, any intersection of complete sets is a complete set.
�
�������

. Let a ∈ A be such that ∨
x∈S

δ(a, x) = δ(a, a). Then we have

δ(a, a) =
∨

x∈S

δ(a, x) =
∨

x∈S

(δ(a, x) ∧ δ(x, x))

=
∨

x∈S
(δ(a, x) ∧

∨

y∈S
δ(x, y)) =

∨

x∈S

∨

y∈S
δ(a, x) ∧ δ(x, y)

6
∨

x∈S

∨

y∈S
δ(a, x)⊗ (δ(x, x) → δ(x, y))

6
∨

y∈S
δ(a, y) 6 δ(a, a).

Hence, a ∈ S. �

Proposition 2.3. Let Ω-FSet1 be a subcategory of the category Ω-FSet with
the same objects and with morphisms f : (A, δ) → (B, β) such that f is surjective
and β(f(x), f(y)) = δ(x, y) for all x, y ∈ A. Let S1, Sub1 : Ω-FSet1 → Set be the
restrictions of functors S, SubΩ-FSet, respectively.
(1) There exists a natural transformation

σ : S → SubΩ-FSet .

(2) For any A ∈ Ω-FSet there exists a map

ψA : SubΩ-FSet(A) → S(A).

Moreover, ψ = {ψA : A ∈ Ω-FSet} : Sub1 → S1 is a natural transformation.
(3) For any S ∈ SubΩ-FSet(A), the following diagram commutes.

S −−−−→ A

!

y
yζAψA(S)

To >−−−−→ (Ω∗, µ)

This diagram is a pullback if and only if S is a complete subobject.
(4) For any s ∈ S(A), the following diagram commutes.

σA(s) ↪→−−−−→ A

!

y
yζA(s)

To >−−−−→ (Ω∗, µ)
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(5) For any s ∈ S(A) we have ψAσA(s) 6 s.
(6) For any (S, δ) ∈ SubΩ-FSet(A, δ) we have σAψA(S, δ) = (S, δ).
�
�������

. For (S, δ) ∈ Sub(A) we define s = ψA(S, δ) by

(∀a ∈ A) s(a) =
∨

x∈S
δ(a, x).

Then s ⊆ A. In fact, we have

s(a)⊗ (δ(a, a) → δ(a, b)) =
∨

x∈S
(δ(a, x)⊗ (δ(a, a) → δ(a, b))

6
∨

x∈S
δ(x, b) = s(b).

The map σA is defined so that for any s ∈ S(A),

σA(s) = ({a ∈ A : s(a) = δ(a, a)}, δ) ↪→ A.

Then for a morphism (A, δ)
f→ (Bβ) in the category Ω-FSet the diagram

S(A) σA−−−−→ SubΩ-FSet(A)

S(f)

x
xSub(f)

S(B) σB−−−−→ SubΩ-FSet(B)

commutes since for any s ⊆ (B, β) we have (σB · S(f))(s) = ({a ∈ A : s(f(a)) =
1}, δ) = (f−1({b ∈ B : s(b) = 1}), δ) = Sub(f) · σB(s). Moreover, if f is a morphism
in the category SubΩ-FSet1 then the following diagram commutes.

Sub(A)
ψA−−−−→ S(A)

Sub(f)

x
xS(f)

Sub(B)
ψB−−−−→ S(B).

It is simple to prove that both diagrams from (3) and (4) then commute. Let (S, δ) be
a complete subobject ofA. We show that the diagram from (3) is then a pullback. In
fact, let (B, β) be an Ω-fuzzy set with a morphism u such that the following diagram
commutes.

(B, β) u−−−−→ (A, δ)

!

y
yζAψA(S)

To >−−−−→ (Ω∗, µ)
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Then for b ∈ B we obtain δ(u(b), u(b)) = β(b, b) =
∨
x∈S

δ(u(b), x) and since S is

complete, it follows that u(b) ∈ S. Hence, u : (B, β) → (S, δ) is a morphism and
it follows that the diagram is a pullback. Conversely, let the diagram from (3) be
a pullback for X = (S, δ). Let us assume that there exists a ∈ A \ S such that
δ(a, a) =

∨
x∈S

δ(a, x). Then the following diagram commutes

(S ∪ {a}, δ) ↪→−−−−→ (A, δ)

!

y
yζAψA(S)

To >−−−−→ (Ω∗, µ)

and there exists a morphism r : S∪{a} → S such that a = r(a) ∈ S, a contradiction.
Finally, let s ∈ S(A) and a ∈ A. Then we have

ψAσA(s)(a) =
∨

x∈A
s(x)=δ(x,x)

δ(a, x) =
∨

x∈A
s(x)=δ(x,x)

δ(a, x) ∧ s(x)

=
∨

x∈A
s(x)=δ(x,x)

s(x)⊗ (δ(x, x) → δ(a, x)) 6 s(a).

Analogously, for (S, δ) ↪→ (A, δ) and for a ∈ σAψA(S) we have
∨
x∈S

δ(a, x) = δ(a, a)

and a ∈ S. �

Proposition 2.4.
(1) For any A ∈ Ω-FSet we have σA(s) ∈ Subc

Ω-FSet(A). Hence, σ : S →
Subc

Ω-FSet is a natural transformation.

(2) For any A ∈ Ω-FSet we have σA · ψ′A = id, where ψ′A is a restriction of ψA

onto Subc
Ω-FSet.

(3) For any (S, δ) ∈ Subc
Ω-FSet(A), the diagram

(S, δ) ↪→−−−−→ A

!

y
yζA·ψ′A(S)

To >−−−−→ (Ω∗, µ)

is a pullback.

�
�������
. We show first that for any s ∈ S(A), the subobject σA(s) is complete.

From the proof of 2.3, it follows that σA(s) = {a ∈ A : s(a) = δ(a, a)}. Thus we
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have to prove that

σA(a) =
{
a ∈ A :

∨

x∈σA(s)

δ(a, x) = δ(a, a)
}
.

Let a be an element of the set on the right side. Since ζA(s) : A → (Ω∗, µ) is a
morphism in the category Ω-FSet, for any x ∈ σA(s) we then have

δ(a, x) 6 µ(ζA(s)(x), ζA(s)(a)) = µ((δ(a, a), s(a)), (δ(x, x), s(x)))

= µ((δ(a, a), s(a)), (s(x), s(x)))

6 (δ(a, a)⊗ (s(a) → s(x))) ∧ s(a) 6 s(a).

Hence, we have
δ(a, a) > s(a) >

∨

x∈σA(s)

δ(a, x) = δ(a, a),

and it follows that a ∈ σA(s). Thus, σA(s) is complete.
Further, for any (S, δ) ∈ Subc(A) we have σA · ψ′A(S, δ) = {a ∈ A : δ(a, a) =∨

x∈S
δ(a, x)} = S = S, according to Lemma 2.2. Hence, σA · ψ′A = id. The rest

follows directly from 2.3. �

The following Theorem summarizes all the previous results. Let Subc
1 be the

restriction of Subc onto the category Ω-FSet1.

Theorem 2.5.
(1) There exists a natural transformation

χ−1 : HomΩ-FSet(−,Ω∗) → Subc
Ω-FSet(−).

(2) For any A ∈ Ω-FSet there exists a map

χA : Subc
Ω-FSet(A) → HomΩ-FSet(A,Ω∗),

such that χ = {χA : A ∈ Ω-FSet1} : Subc
1(−) → HomΩ-FSet1(−,Ω∗) is a natu-

ral transformation.
(3) For any (S, δ) ∈ Subc

Ω-FSet(A), the following diagram is a pullback:

(S, δ) ↪→−−−−→ (A, δ)

!

y
yχA(S,δ)

To >−−−−→ (Ω, µ).
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(4) χ−1 · χ = id.
�
�������

. Let χA, χ
−1
A be the compositions of the following maps from 2.1, 2.4:

χA : Subc(A)
ψA

′
−→ S(A)

ζA−→ Hom(A,Ω∗),

χ−1
A : Hom(A,Ω∗)

ζ−1
A−→ S(A) σA−→ Subc(A).

Then the proposition follows from 2.1 and 2.4. �

It should be noted that χA · χ−1
A is not the identity in general. In fact, let L be

a complete MV -algebra such that ⊗ 6= ∧ in general. Recall that the product (Ω∗ ×
Ω∗, γ) in Ω-FSet is defined such that

Ω∗ × Ω∗ = {((α1, β1), (α2, β2)) | (αi, βi) ∈ Ω∗, µ((α1, β1), (α1, β1))

= µ((α2, β2), (α2, β2))} = {((α, β1), (α, β2)) | α > β1, β2},

and

γ(((α, β1), (α, β2)), ((%, τ1), (%, τ2))) = µ((α, β1), (%, τ1)) ∧ µ((α, β2), (%, τ2)).

Let us define a map ⊗Ω : Ω∗ × Ω∗ → Ω∗ by

⊗Ω((α, β1), (α, β2)) = (α, β1 ⊗ β2).

Then ⊗Ω is a morphism in Ω-FSet. Indeed, for a = ((α, β1), (α, β2)) ∈ Ω∗ × Ω∗ we
have

µ(⊗Ω∗(a),⊗Ω∗(a)) = α = σ(a, a).

Furthermore, for a = ((α, β1), (α, β2)) and b = ((%, τ1), (%, τ2)) we have

γ(a,b) = (α⊗ (β1 → τ1)) ∧ (α⊗ (β2 → τ2)) ∧ (%⊗ (τ1 → β1)) ∧ (%⊗ (τ2 → β2))

= α⊗ ((β1 → τ1) ∧ (β2 → τ2)) ∧ %⊗ ((τ1 → β1) ∧ (τ2 → β2))

6 α⊗ (β1 ⊗ β2 → τ1 ∧ τ2) ∧ %⊗ (τ1 ⊗ τ2 → β1 ∧ β2)

6 α⊗ (β1 ⊗ β2 → τ1 ⊗ τ2) ∧ %⊗ (τ1 ⊗ τ2 → β1 ⊗ β2)

= µ(⊗Ω∗(a),⊗Ω∗(b)).

We show that χΩ · χ−1
Ω (⊗Ω) 6= ⊗Ω in general. In fact, we have

S = χ−1
Ω (⊗Ω) = σΩ∗×Ω∗ · ζ−1

Ω∗×Ω∗(⊗Ω)

= {((α, β1), (α, β2)) : α, βi ∈ L, β1 ⊗ β2 = α, βi 6 α}
= {((α, α), (α, α)) : α⊗ α = α}.
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Further, we have χΩ∗×Ω∗(S) = ζΩ∗×Ω∗ · ψ′Ω∗×Ω∗(S), where s = ψ′Ω∗×Ω∗(S) : Ω∗ ×
Ω∗ → L is such that for a = ((α, β1), (α, β2)) we have

s(a) =
∨

x∈S
γ(a,x) =

∨

%∈L
γ((α, β1), (α, β2), (%, %), (%, %))

= α ∧ β1 ∧ β2 = β1 ∧ β2.

Hence, for β1, β2 such that β1 ⊗ β2 < β1 ∧ β2 we have

χΩ · χ−1
Ω (⊗Ω)(a) = (γ(a, a), s(a)) 6= (α, β1 ⊗ β2) = ⊗Ω(a).

3. Examples of complete subobjects in Ω-FSet

Since the category Ω-FSet seems to be a well-defined basis for investigation of
fuzzy sets, it could also be used for interpretation of formulas. The interpretation of
a formula Φ of any logic in a category K, where Φ has its free variables contained
in a set X of free variables, is based on a construction of a characteristic morphism
‖Φ‖ : M(X) → Ω, where Ω is an analogy of a subobject classifier and M(X) =∏
x∈X

M(ιx) is the product in K of interpretations of the types ιx corresponding to
the variables x ∈ X . If a binary logical connective 5 appears in a formula Φ, then
some interpretation of 5 has to be defined first, which is a morphism Ω× Ω

4−→ Ω.
In this part we want to show how the logical connectives ∧,∨,¬ can be interpreted

in the category Ω-FSet by using results from the previous sections.

Example [construction of ∩Ω]. Recall that the interpretation ∩Ω of ∧ is (classi-
cally) the characteristic morphism of the subobject >×> : To → Ω∗ × Ω∗. In the
category Ω-FSet this construction can be used if this subobject is complete.

Hence, we have S∧ = > × >(To) = {((ω, ω), (ω, ω)) : ω ∈ Ω} and let a =
((α, β1), (α, β2)) ∈ Ω∗ × Ω∗ be such that

γ(a, a) =
∨

x∈S∧
γ(a,x).

Then we have

γ(a, a) =
∨

ω∈Ω

(α ⊗ (β1 → ω) ∧ ω ⊗ (ω → β1) ∧ α⊗ (β2 → ω) ∧ ω ⊗ (ω → β2))

= β1 ∧ β2 ∧
∨

ω∈Ω

(α⊗ (β1 → ω) ∧ ⊗(β2 → ω) ∧ ω)

= β1 ∧ β2 ∧ α = β1 ∧ β2,

α = γ(a, a).
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Hence, we have α = β1 = β2 and it follows that a ∈ S∧. Then according to 2.5,
the interpretation ∩Ω of ∧ is the characteristic morphism Ω∗ ×Ω∗ ∩Ω−→ Ω∗ such that
∩Ω = χ(S∧), i.e. for a = ((α, β1), (α, β2)) ∈ Ω∗ × Ω∗ we have

∩Ω(a) = ζA · ψA(S∧)(a) =
(
γ(a, a),

∨

x∈S∧
γ(a,x)

)
= (α, β1 ∧ β2),

which can be shown easily.

Example [construction of ∪Ω]. Let us consider the following subobject S∨ of the
object Ω∗ × Ω∗,

S∨ = {((β1 ∨ β2, β1), (β1 ∨ β2, β2)) : β1, β2 ∈ Ω}.

Then S∨ is complete. In fact, let a = ((α, β1), (α, β2)) ∈ Ω∗ × Ω∗ be such that

β1 ∨ β2 6 α = γ(a, a) =
∨

x∈S∨
γ(a,x).

Then we have

β1 ∨ β2 6
∨

τ1,τ2∈Ω

µ((α, β1), (τ1 ∨ τ2, τ1)) ∧ µ((α, β2), (τ1 ∨ τ2, τ2))

=
∨

τ1,τ2∈Ω

α⊗ ((β1 → τ1) ∧ (β2 → τ2)) ∧ (τ1 ∨ τ2)

⊗ ((τ1 → β1) ∧ (τ2 → τ2))

6
∨

τ1,τ1∈Ω

α⊗ ((β1 ∨ β2) → (τ1 ∨ τ2)) ∧ (τ1 ∨ τ2)

⊗ ((τ1 ∨ τ2) → (β1 ∨ β2))

= α⊗ (β1 ∨ β2 → 1) ∧ (β1 ∨ β2) = β1 ∨ β2.

Hence, α = β1 ∨β2 and a ∈ S∨. Then the characteristic morphism ∪Ω of a complete
object S∨ is χ(S∨) and we have

∪Ω(a) =
(
γ(a, a),

∨

x∈S∨
γ(a,x)

)
= (α, β1 ∨ β2).

Example [construction of ¬Ω]. Recall that the interpretation ¬Ω of ¬ is defined
in a category as a characteristic morphism of ⊥ : To → Ω∗, where ⊥ is defined by
⊥(α) = (α, 0). This construction can be used in the category Ω-FSet if the subobject
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corresponding to ⊥ is complete, i.e. in case that the set S = {(α, 0) : α ∈ L} is
complete. But we have

S =
{

(α, β) ∈ Ω∗ :
∨

%∈L
α⊗ (β → 0) ∧ %⊗ (0 → β) = α

}

= {(α, β) ∈ Ω∗ : α = α⊗ (β → 0)}

and it follows that S 6= S, in general. The interpretation ¬Ω can then be defined as
the characteristic morphism of a complete subobject S. Hence, we have ¬Ω(α, β) =
ζΩ∗ · ψ′Ω∗(S)(α, β) = (α, α ⊗ (β → 0)).
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