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ON HARPERS’ RESULT CONCERNING
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Abstract. In this paper, we improve the result by Harper on the lower bound of the band-
width of connected graphs. In addition, we prove that considerating the interior boundary
and the exterior boundary when estimating the bandwidth of connected graphs gives the
same results.
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1. Introduction

A classical optimization problem is to label the vertices of a graph with distinct
integers so that the maximum difference between labels on adjacent vertices is mini-

mized. In other words, the bandwidth problem for a graph G = (V, E) is to label its
n vertices vi with distinct integers f(vi) so that the quantity max{|f(vi) − f(vj)| :
vivj ∈ E} is minimized. The corresponding problem for its adjacent matrix M =
(mij) is to find a permutation of vertices such that the quantitymax{|i−j| : mij 6= 0}
is minimized. These considerations arise from computations with sparse symmetric
matrices, where operations run faster when the matrix is permuted so that all non-

zero entries lie near the diagonal.
The matrix bandwidth problem seems to originate in the 1950s when structural

engineers first analyzed steel frameworks by computer manipulation of their struc-
tural matrices, while the bandwidth problem for graphs originated independently

by L.H. Harper and A.W. Hales at the Jet Propulsion Laboratory in Pasadena
in 1962. It minimized the maximum absolute error and the average absolute error

in a 6-bit picture code represented by edge differences in a hypercube whose vertices
were words of the code. Afterwards, R.R. Korfhage [9] began to work on the graph
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bandwidth problems and F. Harary [6] announced the problem at a conference in

Prague. Early results on the bandwidth are surveyed in [2] and [4].
Since the mid-sixties, there has been strong interest in the bandwidth problem for

graphs, with a steady growth of the theory developing alongside with the continuing

search for a better bandwidth minimization algorithm. See, for example, [3], [5], [8]
and [11] for details.

2. Basic terminology

Given a graph G = (V, E), the bandwidth of G is defined by

B(G) = min
f

max
uv∈E

|f(u)− f(v)|

where f : V → {1, 2, . . . , |V |} is a bijection, which is called a labeling of G. A labeling
attaining this minimum value is called an optimal labeling.
For a subset S ⊂ V , the interior and exterior boundaries of S are defined respec-

tively as

∂(S) = {u ∈ S : ∃v ∈ V \ S such that uv ∈ E}

and

N(S) = {u ∈ V \ S : ∃v ∈ S such that uv ∈ E}.

Suppose a labeling f is given. Let ui = f−1(i), 1 6 i 6 n, and define

Sk(f) = {u1, u2, . . . , uk} = f−1({1, 2, . . . , k}).

3. Results and theorems

Harper [7] proved the following theorem:

Theorem A. For any connected graph G of order n,

B(G) > max
16k6n

min{|∂(S)| : S ⊂ V (G) and |S| = k}.

We improve the above result to the following theorem:
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Theorem 1. For any connected graph G of order n,

B(G) > min
f

max
16k6n

|∂(Sk(f))|

where the minimum is taken over all labelings.

Consideration the exterior boundary of a graph, we have the following theorem:

Theorem 2. Suppose G = (V, E) is a connected graph of order n. Then

min
f

max
16k6n

|N(Sk(f))| = min
f

max
16k6n

|∂(Sk(f))|.

Based on Theorem 1 and Theorem 2, we have the following corollary:

Corollary 1. For any connected graph G of order n,

B(G) > min
f

max
16k6n

|N(Sk(f))|

where the minimum is taken over all labelings.

4. Proofs of the theorems

��������
of Theorem 1. Given a labeling f and a fixed integer k < n. Denote

Sk(f) = {v ∈ V : f(v) 6 k}

and choose a vertex x ∈ ∂(Sk(f)) such that

f(x) = min{f(v) : v ∈ ∂(Sk(f))}.

Then

1 6 f(x) 6 k − |∂(Sk(f))|+ 1.

The inequality f(y) > k + 1 holds for any y ∈ N(Sk(f)). Therefore for k < n and

arbitrary y ∈ N(Sk(f)) we obtain

B(G, f) = max{|f(vi)− f(vj)| : (vi, vj) ∈ E} > |f(y)− f(x)|
> |k + 1− (k − |∂(Sk(f))|+ 1)| > |∂(Sk(f))|.

For k = n, |∂(Sk(f))| = 0. Hence B(G, f) > max
16k6n

|∂(Sk(f))|. In conclusion,

B(G) > min
f

max
16k6n

|∂(Sk(f))|.

�
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��������
of Theorem 2. Arbitrarily choose a labeling f of G and consider the

sets S∗k(f) which are defined by

S∗k(f) = V \ Sk(f) for k = 1, . . . , n.

It is easy to check that

∂(Sk(f)) = N(S∗k(f)) for k = 1, . . . , n.

We define a labeling g on G by

Sk(g) = S∗n−k(f) for k = 1, . . . , n− 1

and

Sn(g) = V.

Since g depends uniquely on f and the labeling runs over all possible choices, we

have

max
16k6n

|∂(Sk(f))| = max
16k6n

|N(S∗k(f))| = max
16k6n

|N(Sk(g))|

and hence

min
f

max
16k6n

|N(Sk(f))| = min
f

max
16k6n

|∂(Sk(f))|.

The proof is completed. �

Remark. Corollary 1 follows directly from Theorem 1 and Theorem 2.
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