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 � , Chengdu
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Abstract. Let S = {x1, . . . , xn} be a finite subset of a partially ordered set P . Let f be
an incidence function of P . Let [f(xi ∧ xj)] denote the n × n matrix having f evaluated
at the meet xi ∧ xj of xi and xj as its i, j-entry and [f(xi ∨ xj)] denote the n × n matrix
having f evaluated at the join xi ∨ xj of xi and xj as its i, j-entry. The set S is said to be
meet-closed if xi ∧ xj ∈ S for all 1 6 i, j 6 n. In this paper we get explicit combinatorial
formulas for the determinants of matrices [f(xi ∧ xj)] and [f(xi ∨ xj)] on any meet-closed
set S. We also obtain necessary and sufficient conditions for the matrices f(xi ∧ xj)] and
[f(xi ∨ xj)] on any meet-closed set S to be nonsingular. Finally, we give some number-
theoretic applications.

Keywords: meet-closed set, greatest-type lower, incidence function, determinant, nonsin-
gularity

MSC 2000 : 11C20, 15A57

1. Introduction

Let S = {x1, . . . , xn} be a set of n distinct positive integers. The matrix having
the greatest common divisor (xi, xj) of xi and xj as its i, j-entry is called the greatest

common divisor (GCD) matrix, denoted by [(xi, xj)]. The matrix having the least
common multiple [xi, xj ] of xi and xj as its i, j-entry is called the least common

multiple (LCM) matrix, denoted by ([xi, xj ]). The set S is said to be factor-closed
if it contains every divisor of x for any x ∈ S. H. J. S. Smith [10] showed that the

determinant of the GCD matrix [(xi, xj)] on a factor-closed set S is the product
n∏

i=1

ϕ(xi), where ϕ is Euler’s totient function. The set S is said to be gcd-closed if
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(xi, xj) ∈ S for all 1 6 i, j 6 n. It is clear that a factor-closed set is a gcd-closed set

but not conversely.

Let f be an arithmetical function. Let [f(xi, xj)] denote the n× n matrix having
f evaluated at the greatest common divisor (xi, xj) of xi and xj as its i, j-entry.

In [10], Smith also considered the determinant of the matrix [f(xi, xj)] on a factor-

closed set S. It was shown to be the product
n∏

k=1

(f ∗ µ)(xk), where f ∗ µ is the
Dirichlet product of f and µ. In [4], Bourque and Ligh obtained a generalization of
Smith’s result. Haukkanen [5] gave an abstract generalization of Bourque and Ligh’s

result.

Now let f be an incidence function and S = {x1, . . . , xn} a meet-closed set of a
finite partially ordered set (poset) P (for related definitions, see the next section).

Let [f(xi ∧ xj)] denote the n × n matrix having f evaluated at the meet xi ∧ xj

of xi and xj as its i, j-entry, and let [f(xi ∨ xj)] denote the n × n matrix having f

evaluated at the join xi∨xj of xi and xj as its i, j-entry. In this paper we will obtain
explicit combinatorial formulas for the determinants of the matrices [f(xi ∧ xj)] and
[f(xi ∨ xj)] on any meet-closed set S. We will also get necessary and sufficient
conditions for the matrices [f(xi ∧ xj)] and [f(xi ∨ xj)] on any meet-closed set S to
be nonsingular. In the last section we give some number-theoretic applications.

2. Preliminaries and definitions

Let (P,6) be a poset. We say that P is a meet semilattice if for any x, y ∈ P

there exists a unique z ∈ P such that
(i) z 6 x and z 6 y, and

(ii) if w 6 x and w 6 y for some w ∈ P, then w 6 z.

In such a case z is called the meet of x and y and is denoted by x ∧ y. Let S be
a subset of P . We call S lower-closed if for every x, y ∈ P with x ∈ S and y 6 x

we have y ∈ S. We call S meet-closed if for every x, y ∈ S we have x ∧ y ∈ S.
It is clear that a lower-closed set is always meet-closed but not conversely. The

concepts of “lower-closed” and “meet closed” are generalizations of “factor-closed”
and “gcd-closed” [2], [3], respectively.

Let f be a complex-valued function on P × P such that f(x, y) = 0 whenever
x 66 y. Then we say that f is an incidence function of P . If f and g are incidence
functions of P , their sum f + g is defined by (f + g)(x, y) = f(x, y) + g(x, y) and
their convolution f ∗ g is defined by(f ∗ g)(x, y) =

∑
x6z6y

f(x, z)g(z, y). The set of

all incidence functions of P under addition and convolution forms a ring with unity,
where the unity δ is defined by δ(x, y) = 1 if x = y, and δ(x, y) = 0 otherwise. The
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incidence function ζ is defined by ζ(x, y) = 1 if x 6 y, and ζ(x, y) = 0 otherwise.
The Möbius function µ of P is the inverse of ζ.

In what follows, let (P,6) = (P,∧,∨) be a finite meet semilattice. Let S be
a subset of P and denote S = {x1, x2, . . . , xn} with xi < xj ⇒ i < j. For any
incidence function f of P we denote f(0, x) = f(x), where 0 = minP . For example,
let (P,6) = (Z+, |). Then µ(1, n) is the usual number-theoretic function µ(n).

Proposition 2.1 ([5]). Let S = {x1, . . . , xn} be a meet-closed set. Then the
determinant of the matrix [f(xi ∧ xj)] defined on S = {x1, . . . , xn} is equal to the
product

n∏
k=1

ψf (xk), where

(1) ψf (xk) =
∑

d6xk
d66xt, t<k

(f ∗ µ)(d).

Note that Haukkanen [5] writes this formula without using convolution of incidence

functions.

Definition 2.2. Let T be a given subset of P . For any a, b ∈ T and a < b, we

say that a is a greatest-type lower of b in T , if a 6 c, c < b and c ∈ T implies c = a.

If (P,6) = (Z+, |), then the concept of greatest-type lower reduces to that of
greatest-type divisor introduced in [7].

Definition 2.3. Let f be a complex-valued function on P . Then f is said to be
semi-multiplicative if for any x, y ∈ P , one has f(x)f(y) = f(x ∧ y)f(x ∨ y).

The above concept of a semi-multiplicative function on P is a generalization of

the known concept of a semi-multiplicative arithmetical function [9, p. 49].

Definition 2.4. For any incidence function f , we define for any x ∈ P the

function 1/f to be 0 if f(x) = 0; 1/f(x) if f(x) 6= 0.

It is easy to check that the following is true.

Proposition 2.5. Let f be an incidence function. Then f is semi-multiplicative
if and only if 1/f is semi multiplicative.
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3. Combinatorial formulas for det[f(xi ∧ xj)] and det(f [xi ∨ xj ])

Throughout this paper, denote by |A| the cardinality of any finite set A. In
the present section we give reductions for ψf (xk) using the ideas in [6], [7]. First
one needs a generalization of the principle of cross-classification in [6] to give a

preliminary reduction for the formula of ψf (xk). For an alternative proof using
induction, see [8].

Lemma 3.1 ([6, Lemma 1]). Let R be a given finite set and f any complex-valued
function defined on R. For a subset T of R, we denote by T the set of those elements

of R which are not in T , i.e., T = R \ T . If R1, . . . , Rm are given m distinct subsets

of R, then

∑

x∈ � m
i=1 Ri

f(x) =
∑

x∈R

f(x) +
m∑

t=1

(−1)t
∑

16i1<...<it6m

∑

x∈ � t
j=1 Rij

f(x).

Lemma 3.2. Let f be an incidence function of P . Then

∑

x6z6y

(f ∗ µ)(x, z) = f(x, y)

for all x, y ∈ P . In particular, one has

∑

z6y

(f ∗ µ)(z) = f(y)

for all y ∈ P .
��������

. Let x, y ∈ P be given. Note that f ∗ δ = f and µ ∗ ζ = δ. Then

f(x, y) = (f ∗ δ)(x, y) = (f ∗ (µ ∗ ζ))(x, y) = ((f ∗ µ) ∗ ζ)(x, y)
=

∑

x6z6y

(f ∗ µ)(x, z)ζ(z, y) =
∑

x6z6y

(f ∗ µ)(x, z).

The first assertion is proved. For the other assertion, one needs only to pick x =
minP . The proof is complete. �
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Lemma 3.3. Let n be an integer. Let S = {x1, . . . , xn} be a meet-closed set with
xi < xj ⇒ i < j. If ψf (xk) is defined as in (1), then

(2) ψf (xk) = f(xk) +
k−1∑

t=1

(−1)t
∑

16i1<...<it6k−1

f(xk ∧ xi1 ∧ . . . ∧ xit),

where f(xk ∧ xi1 ∧ . . . ∧ xit ) denotes f evaluated at the meet of xk, xi1 , . . . , xit .
��������

. In Lemma 3.1, let m = k − 1 and R = {d : d 6 xk , xk ∈ S}. For 1 6
i 6 k − 1, let Ri = {d ∈ R : d 6 xi, xi ∈ S}. Then one has Ri = {d : d 6 xk ∧ xi}.
By Lemma 3.1, one has

(3) ψf (xk) =
∑

d6xk

(f ∗ µ)(d) +
k−1∑

t=1

(−1)t
∑

16i1<...<it6k−1

∑

d6xk∧xi1∧...∧xit

(f ∗ µ)(d).

By Lemma 3.2, one has
∑

d6xk

(f ∗ µ)(d) = f(xk) and for 1 6 i1 < . . . < it 6 k − 1

(1 6 t 6 k − 1), one has

(4)
∑

d6xk∧xi1∧...∧xit

(f ∗ µ)(d) = f(xk ∧ xi1 ∧ . . . ∧ xit ).

It then follows from Equations (3) and (4) that (2) holds. This completes the proof

of Lemma 3.3. �

Now, we give further reduction for the formula of ψf (xk). The ideas of the proofs
of the following two lemmas are due to our article [7].

Lemma 3.4. Let S = {x1, . . . , xn} be a meet-closed set with xi < xj ⇒ i < j.

For 1 6 k 6 n, let Ik = {i : 1 6 i 6 k−1 and xi 66 xk} and Jk = {1, 2, . . . , k−1}\Ik.
Then

(5) ψf (xk) = f(xk) +
|Jk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Jk

f(xk ∧ xi1 ∧ . . . ∧ xir ).

��������
. If |Ik| = 0, then it follows from Lemma 3.3 that Lemma 3.4 holds.

In what follows let |Ik | > 1. Note that for i ∈ Jk one has xi 6 xk. Since S is
meet-closed, x1 6 xk . Thus one has |Jk| > 1. Note also that |Ik|+ |Jk| = k − 1. By
Lemma 3.3, one has

(6) ψf (xk) = f(xk) + ∆′ + ∆,
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where

∆′ =
|Jk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Jk

f(xk ∧ xi1 ∧ . . . ∧ xir )

and

(7) ∆ =
|Jk|∑

r=1

∑

i1<...<ir
ij∈Jk

|Ik |∑

s=1

(−1)r+s
∑

t1<...<ts
tu∈Ik

f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts).

For any given t1 < . . . < ts, tu ∈ Ik (1 6 u 6 s), it follows from the fact that S is
meet-closed that xk ∧ xt1 ∧ . . .∧ xts ∈ S. Let xl = xk ∧ xt1 ∧ . . .∧ xts . Then xl 6 xk

and xl 6 xtu for 1 6 u 6 s. So one has l ∈ Jk. Then by (7), one has

∆ =
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|∑

r=1

(−1)r+s
∑

i1<...<ir
ij∈Jk

f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts)(8)

=
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|−1∑

r=0

∑

i1<...<ir
ij∈Jk, ij 6=l

(
(−1)r+s · f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts)

+ (−1)r+s+1 · f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xl ∧ xt1 ∧ . . . ∧ xts)
)

=
|Ik|∑

s=1

∑

t1<...<ts
tu∈Ik

|Jk|−1∑

r=0

∑

i1<...<ir
ij∈Jk, ij 6=l

(
(−1)r+s · f(xi1 ∧ . . . ∧ xir ∧ xl)

+ (−1)r+s+1 · f(xi1 ∧ . . . ∧ xir ∧ xl)
)

= 0.

Therefore it follows from Equations (6) and (8) that (5) holds. The proof of

Lemma 3.4 is complete. �

Now we can use the concept of greatest-type lower to give a further reduction
for ψf (xk).

Lemma 3.5. Let S = {x1, . . . , xn} be a meet-closed set. For 1 6 k 6 n, let

Rk = {i : 1 6 i 6 k − 1, xi is the greatest-type lower of xk in S}. Then

ψf (xk) = f(xk) +
|Rk|∑

r=1

(1)r
∑

i1<...<ir
ij∈Rk

f(xk ∧ xi1 ∧ . . . ∧ xir ).

��������
. For the case k 6 2, the lemma is clearly true. In what follows let k > 3.

Let Jk = {i : 1 6 i 6 k − 1 and xi 6 xk}. Then |Jk| > 1. It is clear that Rk ⊆ Jk.
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If |Jk| = 1, then Jk = {1}. Note that |Rk| > 1. So one has Rk = {1} = Jk. Thus

by Lemma 3.4, the result is true. In the following let |Jk| > 2. Let Lk = Jk \ Rk.
We claim that Lk 6= ∅. Assuming otherwise implies that Rk = Jk. But 1 ∈ Jk,
hence 1 ∈ Rk. From |Jk| > 2 one deduces that there is an i ∈ Jk, i 6= 1, such that
i ∈ Jk = Rk. Since S is meet-closed, one has x1 < xi. This is impossible since x1

and xi cannot both be greatest-type lowers of xk in S. Therefore the claim is true.

In a similar way to that in (6), one has by Lemma 3.4 that

ψf (xk) = f(xk) + ∆′ + ∆,

where

∆′ =
|Rk|∑

r=1

(−1)r
∑

i1<...<ir
ij∈Rk

f(xk ∧ xi1 ∧ . . . ∧ xir )

and

∆ =
|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

|Lk|∑

s=1

∑

t1<...<ts
tu∈Lk

(−1)r+s · f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts)(9)

=
|Lk|∑

s=1

∑

t1<...<ts
tu∈Lk

(−1)s

|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

(−1)r · f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts).

To prove the lemma, one needs only to show that ∆ = 0, which we will do in the
following.
For any given t1 < . . . < ts (1 6 s 6 |Lk|), tu ∈ Lk, 1 6 u 6 s, let

T = {i : i ∈ Rk, and xtu 6 xi for some tu, 1 6 u 6 s} and Q = Rk \ T . Let
|T | = h and |Q| = h′. Clearly one has that 1 6 h 6 |Rk| and 0 6 h′ 6 |Rk| − 1.
Then one has

|Rk|∑

r=0

∑

i1<...<ir
ij∈Rk

(−1)r · f(xk ∧ xi1 ∧ . . . ∧ xir ∧ xt1 ∧ . . . ∧ xts)(10)

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

h∑

r=0

∑

j1<...<jr

jv∈T

(−1)r+r′ · f(xk ∧ xi1 ∧ . . . ∧ xir′ ∧ xj1 ∧ . . .
∧ xjr ∧ xt1 ∧ . . . ∧ xts)

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

h∑

r=0

∑

j1<...<jr

jv∈T

(−1)r+r′ · f(xk ∧ xi1 ∧ . . . ∧ xir′ ∧ xt1 ∧ . . . ∧ xts)

(since by the definition of T one has xj1 ∧ . . . ∧ xjr ∧ xt1 ∧ . . . ∧ xts =

xt1 ∧ . . . ∧ xts for any j1 < . . . < jr, jv ∈ T )
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=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r′ · f(xk ∧ xi1 ∧ . . . ∧ xir′ ∧ xt1 ∧ . . . ∧ xts)

·
(

1 +
h∑

r=1

(−1)r
∑

j1<...<jr

jv∈T

1
)

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r′ · f(xk ∧ xi1 ∧ . . . ∧ xir′ ∧ xt1 ∧ . . . ∧ xts)

·
(

1 +
h∑

r=1

(−1)r ·
(
h

r

))

=
h′∑

r′=0

∑

i1<...<ir′
iu∈Q

(−1)r′ · f(xk ∧ xi1 ∧ . . . ∧ xir′ ∧ xt1 ∧ . . . ∧ xts) · (1− 1)h = 0.

It now follows from Equations (9) and (10) that ∆ = 0. This completes the proof of
Lemma 3.5. �

Theorem 3.6. Let S = {x1, . . . , xn} be a meet-closed set and f an incidence
function. Then

det[f(xi ∧ xj)] =
n∏

i=1

(
f(xi) +

n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi ∧ yi1 ∧ . . . ∧ yit)
)
,

where f(xi ∧ yi1 ∧ . . . ∧ yit) denotes f evaluated at the meet of xi, yi1 , . . . , yit ,

n(xi) equals the cardinality of the set of the greatest-type lowers of xi in S, and

{y1, y2, . . . , yn(xi)} equals the set of the greatest-type lowers of xi in S.

��������
. This theorem follows from Proposition 2.1 and Lemma 3.5. �

Lemma 3.7. Let f be a semi-multiplicative function and S = {x1, . . . , xn}
a meet-closed set. If f(xi) 6= 0 for all 1 6 i 6 n, then

[f(xi ∨ xj)] = diag{f(x1), . . . , f(xn)} ·
[ 1
f

(xi ∧ xj)
]
· diag{f(x1), . . . , f(xn)}.

��������
. It follows from definition of a semi-multiplicative function that this

lemma is true. �
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Theorem 3.8. Let S = {x1, . . . , xn} be a meet-closed set. If f is a semi-
multiplicative function satisfying f(xi) 6= 0 for all 1 6 i 6 n, then

det [f(xi ∨ xj)]

=
n∏

i=1

[f(xi)]2
(

1
f(xi)

+
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

1
f(xi ∧ yi1 ∧ . . . ∧ yit)

)
,

where f(xi ∧ yi1 ∧ . . . ∧ yit) denotes f evaluated at the meet of xi, yi1 , . . . , yit ,

n(xi) equals the cardinality of the set of the greatest-type lowers of xi in S, and

{y1, y2, . . . , yn(xi)} equals the set of the greatest-type lowers of xi in S.
��������

. This theorem follows from Lemma 3.7 and Theorem 3.6 applied to the

function 1/f . The proof is complete. �

It follows from Theorems 3.6 and 3.8 that the following two corollaries are true.

Corollary 3.9. Let S = {x1, x2, . . . , xn} be lower-closed and let f be an incidence
function. Then each of the following is true:

(i) One has det[f(xi ∧ xj)] =
n∏

i=1

(f ∗ µ)(xi);

(ii) If f is semi-multiplicative and f(xi) 6= 0 for all 1 6 i 6 n, then det[f(xi∨xj)] =
n∏

i=1

[f(xi)]2
(
(1/f) ∗ µ

)
(x).

Corollary 3.10. Let S = {x1, x2, . . . , xn} be a chain with x1 < x2 < . . . <

xn−1 < xn and f an incidence function. Then each of the following is true:

(i) One has det[f(xi ∧ xj)] = f(x1)
n∏

i=2

[f(xi)− f(xi−1)];

(ii) If f is semi-multiplicative and f(xi) 6= 0 for all 1 6 i 6 n, then det[f(xi∨xj)] =

f(xn)
n∏

i=2

[f(xi−1)− f(xi)].

��������
. For k, 1 6 k 6 n, since x1 < x2 < . . . < xn, one has that xk−1 is the

only greatest-type lower of xk in S. It then follows from Theorems 3.6 and 3.8 that

this corollary is true. �

4. Nonsingularity of matrices [f(xi ∧ xj)] and [f(xi ∨ xj)]

We can now use the results of the preceding section to give a characterization for

nonsingularity of matrices [f(xi ∧ xj)] and [f(xi ∨ xj)] as follows.
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Theorem 4.1. Let S = {x1, x2, . . . , xn} be a meet-closed set and let f be an
incidence function. Then the matrix [f(xi ∧ xj)] defined on S is nonsingular if and
only if for all 1 6 i 6 n, one has

f(xi) +
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi ∧ yi1 ∧ . . . ∧ yit) 6= 0,

where f(xi ∧ yi1 ∧ . . . ∧ yit) denotes f evaluated at the meet of xi, yi1 , . . . , yit ,

n(xi) equals the cardinality of the set of the greatest-type lowers of xi in S, and

{y1, y2, . . . , yn(xi)} equals the set of the greatest-type lowers of xi in S.
��������

. First, one has that the matrix [f(xi ∧ xj)] on S is nonsingular if and
only if det ([f(xi ∧ xj)]) 6= 0. From Theorem 3.6 one knows that

det[f(xi ∧ xj)] =
n∏

i=1

(
f(xi) +

n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi ∧ yi1 ∧ . . . ∧ yit)
)
,

where f(xi ∧ yi1 ∧ . . . ∧ yit) denotes f evaluated at the meet of xi, yi1 , . . . , yit ,
n(xi) equals the cardinality of the set of the greatest-type lowers of xi in S, and

{y1, y2, . . . , yn(xi)} equals the set of the greatest-type lowers of xi in S. So [f(xi∧xj)]
is nonsingular if and only if for all 1 6 i 6 n, one has

f(xi) +
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi ∧ yi1 ∧ . . . ∧ yit) 6= 0,

as desired. �

Theorem 4.2. Let S = {x1, x2, . . . , xn} be a meet-closed set and let f be a semi-
multiplicative function. Then the matrix [f(xi ∨ xj)] defined on S is nonsingular if
and only if for all 1 6 i 6 n one has f(xi) 6= 0 and

1
f(xi)

+
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

1
f(x ∧ yi1 ∧ . . . ∧ yit)

6= 0,

where f(xi ∧ yi1 ∧ . . . ∧ yit) denotes f evaluated at the meet of x, yi1 , . . . , yit ,

n(xi) equals the cardinality of the set of the greatest-type lowers of xi in S, and

{y1, y2, . . . , yn(xi)} equals the set of the greatest-type divisors of xi in S.
��������

. This theorem follows immediately from Theorem 3.8. �
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Corollary 4.3. Let S = {x1, x2, . . . , xn} be lower-closed. Then each of the
following is true:

(i) The matrix [f(xi ∧xj)] defined on S is nonsingular if and only if (f ∗µ)(xi) 6= 0
for all 1 6 i 6 n;

(ii) The matrix (f(xi ∨xj)) defined on S is nonsingular if and only if f(xi) 6= 0 and
((1/f) ∗ µ)(xi) 6= 0 for all 1 6 i 6 n.

Corollary 4.4. Let S = {x1, x2, . . . , xn} be a chain with x1 < x2 < . . . < xn−1 <

xn. Then each of the following is true:

(i) The matrix [f(xi ∧xj)] defined on S is nonsingular if and only if f(x1) 6= 0 and
for all k, 2 6 k 6 n, one has f(xk−1) 6= f(xk);

(ii) The matrix [f(xi∨xj)] defined on S is nonsingular if and only if f(x1) 6= 0, and
for all k, 2 6 k 6 n, one has f(xk) 6= 0 and f(xk−1) 6= f(xk).

5. Applications to matrices [f(xi, xj)] and (f [xi, xj ])

In the present section, we give number-theoretic applications of the results pre-
sented in Sections 3 and 4.

Theorem 5.1. Let S = {x1, . . . , xn} be a gcd-closed set and let f be an arith-
metical function. Then

det[f(xi, xj)] =
n∏

i=1

(
f(xi) +

n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi, yi1 , . . . , yit)
)
,

where f(xi, yi1 , . . . , yit) denotes f evaluated at the greatest common divisor (xi,

yi1 , . . . , yit) of xi, yi1 , . . . , yit , n(xi) equals the cardinality of the set of the greatest-
type divisors of xi in S, and {y1, y2, . . . , yn(xi)} equals the set of the greatest-type
divisors of xi in S.

��������
. Let (P,6) = ( � +, |). Then this theorem follows from Theorem 3.6. �

Theorem 5.2. Let S = {x1, . . . , xn} be a gcd-closed set. If f is a semi-
multiplicative arithmetical function satisfying f(xi) 6= 0 for all 1 6 i 6 n, then

det(f [xi, xj ]) =
n∏

i=1

[f(xi)]2
(

1
f(xi)

+
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

1
f(xi, yi1 , . . . , yit)

)
,
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where f(xi, yi1 , . . . , yit) denotes f evaluated at the greatest common divisor (xi,

yi1 , . . . , yit) of xi, yi1 , . . . , yit , n(xi) equals the cardinality of the set of the greatest-
type divisors of xi in S, and {y1, y2, . . . , yn(xi)} equals the set of the greatest-type
divisors of xi in S.

��������
. Let (P,6) = ( � +, |). Then this theorem follows from Theorem 3.8. �

Theorem 5.3. Let S = {x1, x2, . . . , xn} be a set of n distinct positive integers
and f an arithmetical function. If S is gcd-closed, then the matrix [f(xi, xj)] defined
on S is nonsingular if and only if for all 1 6 i 6 n one has

f(xi) +
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

f(xi, yi1 , . . . , yit) 6= 0,

where f(xi, yi1 , . . . , yit) denotes f evaluated at the greatest common divisor of
xi, yi1 , . . . , yit , n(xi) equals the cardinality of the set of the greatest-type divisors
of xi in S, and {y1, y2, . . . , yn(xi)} equals the set of the greatest-type divisors of xi

in S.

��������
. Let (P,6) = ( � +, |). Then this theorem follows immediately from

Theorem 4.1. �

Note that Theorem 5.3 gives an answer to the problem raised by Bourque and
Ligh in [4].

Theorem 5.4. Let S = {x1, x2, . . . , xn} be a set of n distinct positive integers
and f a semi-multiplicative arithmetical function. If S is gcd-closed, then the matrix

(f [xi, xj ]) defined on S is nonsingular if and only if for all 1 6 i 6 n one has f(xi) 6= 0
and

1
f(xi)

+
n(xi)∑

t=1

(−1)t
∑

16i1<...<it6n(xi)

1
f(xi, yi1 , . . . , yit)

6= 0,

where f(xi, yi1 , . . . , yit) denotes f evaluated at the greatest common divisor of
xi, yi1 , . . . , yit , n(xi) equals the cardinality of the set of the greatest-type divisors
of xi in S, and {y1, y2, . . . , yn(xi)} equals the set of the greatest-type divisors of xi

in S.

��������
. Let (P,6) = ( � +, |). Then this theorem follows immediately from

Theorem 4.2. �
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