Czechoslovak Mathematical Journal

Shaofang Hong; Qi Sun

Determinants of matrices associated with incidence functions on poses

Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 2, 431-443

Persistent URL: http: //dml.cz/dmlcz/127901

Terms of use:

(C) Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

DETERMINANTS OF MATRICES ASSOCIATED WITH INCIDENCE FUNCTIONS ON POSETS

Shaofang Hong and Qi Sun, Chengdu

(Received September 19, 2001)

Abstract. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite subset of a partially ordered set P. Let f be an incidence function of P. Let $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ denote the $n \times n$ matrix having f evaluated at the meet $x_{i} \wedge x_{j}$ of x_{i} and x_{j} as its i, j-entry and $\left[f\left(x_{i} \vee x_{j}\right)\right]$ denote the $n \times n$ matrix having f evaluated at the join $x_{i} \vee x_{j}$ of x_{i} and x_{j} as its i, j-entry. The set S is said to be meet-closed if $x_{i} \wedge x_{j} \in S$ for all $1 \leqslant i, j \leqslant n$. In this paper we get explicit combinatorial formulas for the determinants of matrices $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\left[f\left(x_{i} \vee x_{j}\right)\right]$ on any meet-closed set S. We also obtain necessary and sufficient conditions for the matrices $\left.f\left(x_{i} \wedge x_{j}\right)\right]$ and [$f\left(x_{i} \vee x_{j}\right)$] on any meet-closed set S to be nonsingular. Finally, we give some numbertheoretic applications.

Keywords: meet-closed set, greatest-type lower, incidence function, determinant, nonsingularity

MSC 2000: 11C20, 15A57

1. Introduction

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. The matrix having the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its i, j-entry is called the greatest common divisor (GCD) matrix, denoted by $\left[\left(x_{i}, x_{j}\right)\right]$. The matrix having the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its i, j-entry is called the least common multiple (LCM) matrix, denoted by ($\left.\left[x_{i}, x_{j}\right]\right)$. The set S is said to be factor-closed if it contains every divisor of x for any $x \in S$. H. J. S. Smith [10] showed that the determinant of the GCD matrix $\left[\left(x_{i}, x_{j}\right)\right.$] on a factor-closed set S is the product $\prod_{i=1}^{n} \varphi\left(x_{i}\right)$, where φ is Euler's totient function. The set S is said to be $g c d$-closed if

Supported partially by the Lady Davis Fellowship at the Technion, an NNSF of China (10101015 and 10128103) and YSRF of Sichuan University.
$\left(x_{i}, x_{j}\right) \in S$ for all $1 \leqslant i, j \leqslant n$. It is clear that a factor-closed set is a gcd-closed set but not conversely.

Let f be an arithmetical function. Let $\left[f\left(x_{i}, x_{j}\right)\right]$ denote the $n \times n$ matrix having f evaluated at the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its i, j-entry. In [10], Smith also considered the determinant of the matrix $\left[f\left(x_{i}, x_{j}\right)\right.$] on a factorclosed set S. It was shown to be the product $\prod_{k=1}^{n}(f * \mu)\left(x_{k}\right)$, where $f * \mu$ is the Dirichlet product of f and μ. In [4], Bourque and Ligh obtained a generalization of Smith's result. Haukkanen [5] gave an abstract generalization of Bourque and Ligh's result.

Now let f be an incidence function and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ a meet-closed set of a finite partially ordered set (poset) P (for related definitions, see the next section). Let $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ denote the $n \times n$ matrix having f evaluated at the meet $x_{i} \wedge x_{j}$ of x_{i} and x_{j} as its i, j-entry, and let $\left[f\left(x_{i} \vee x_{j}\right)\right.$] denote the $n \times n$ matrix having f evaluated at the join $x_{i} \vee x_{j}$ of x_{i} and x_{j} as its i, j-entry. In this paper we will obtain explicit combinatorial formulas for the determinants of the matrices $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\left[f\left(x_{i} \vee x_{j}\right)\right]$ on any meet-closed set S. We will also get necessary and sufficient conditions for the matrices $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\left[f\left(x_{i} \vee x_{j}\right)\right]$ on any meet-closed set S to be nonsingular. In the last section we give some number-theoretic applications.

2. Preliminaries and definitions

Let (P, \leqslant) be a poset. We say that P is a meet semilattice if for any $x, y \in P$ there exists a unique $z \in P$ such that
(i) $z \leqslant x$ and $z \leqslant y$, and
(ii) if $w \leqslant x$ and $w \leqslant y$ for some $w \in P$, then $w \leqslant z$.

In such a case z is called the meet of x and y and is denoted by $x \wedge y$. Let S be a subset of P. We call S lower-closed if for every $x, y \in P$ with $x \in S$ and $y \leqslant x$ we have $y \in S$. We call S meet-closed if for every $x, y \in S$ we have $x \wedge y \in S$. It is clear that a lower-closed set is always meet-closed but not conversely. The concepts of "lower-closed" and "meet closed" are generalizations of "factor-closed" and "gcd-closed" [2], [3], respectively.

Let f be a complex-valued function on $P \times P$ such that $f(x, y)=0$ whenever $x \nless y$. Then we say that f is an incidence function of P. If f and g are incidence functions of P, their sum $f+g$ is defined by $(f+g)(x, y)=f(x, y)+g(x, y)$ and their convolution $f * g$ is defined $\operatorname{by}(f * g)(x, y)=\sum_{x \leqslant z \leqslant y} f(x, z) g(z, y)$. The set of all incidence functions of P under addition and convolution forms a ring with unity, where the unity δ is defined by $\delta(x, y)=1$ if $x=y$, and $\delta(x, y)=0$ otherwise. The
incidence function ζ is defined by $\zeta(x, y)=1$ if $x \leqslant y$, and $\zeta(x, y)=0$ otherwise. The Möbius function μ of P is the inverse of ζ.

In what follows, let $(P, \leqslant)=(P, \wedge, \vee)$ be a finite meet semilattice. Let S be a subset of P and denote $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $x_{i}<x_{j} \Rightarrow i<j$. For any incidence function f of P we denote $f(0, x)=f(x)$, where $0=\min P$. For example, let $(P, \leqslant)=\left(\mathbf{Z}^{+}, \mid\right)$. Then $\mu(1, n)$ is the usual number-theoretic function $\mu(n)$.

Proposition 2.1 ([5]). Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set. Then the determinant of the matrix $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ defined on $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is equal to the product $\prod_{k=1}^{n} \psi_{f}\left(x_{k}\right)$, where

$$
\begin{equation*}
\psi_{f}\left(x_{k}\right)=\sum_{\substack{d \leqslant x_{k} \\ d \not 又 x_{t}, t<k}}(f * \mu)(d) \tag{1}
\end{equation*}
$$

Note that Haukkanen [5] writes this formula without using convolution of incidence functions.

Definition 2.2. Let T be a given subset of P. For any $a, b \in T$ and $a<b$, we say that a is a greatest-type lower of b in T, if $a \leqslant c, c<b$ and $c \in T$ implies $c=a$.

If $(P, \leqslant)=\left(\mathbf{Z}^{+}, \mid\right)$, then the concept of greatest-type lower reduces to that of greatest-type divisor introduced in [7].

Definition 2.3. Let f be a complex-valued function on P. Then f is said to be semi-multiplicative if for any $x, y \in P$, one has $f(x) f(y)=f(x \wedge y) f(x \vee y)$.

The above concept of a semi-multiplicative function on P is a generalization of the known concept of a semi-multiplicative arithmetical function [9, p. 49].

Definition 2.4. For any incidence function f, we define for any $x \in P$ the function $1 / f$ to be 0 if $f(x)=0 ; 1 / f(x)$ if $f(x) \neq 0$.

It is easy to check that the following is true.

Proposition 2.5. Let f be an incidence function. Then f is semi-multiplicative if and only if $1 / f$ is semi multiplicative.
3. Combinatorial formulas For $\operatorname{det}\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\operatorname{det}\left(f\left[x_{i} \vee x_{j}\right]\right)$

Throughout this paper, denote by $|A|$ the cardinality of any finite set A. In the present section we give reductions for $\psi_{f}\left(x_{k}\right)$ using the ideas in [6], [7]. First one needs a generalization of the principle of cross-classification in [6] to give a preliminary reduction for the formula of $\psi_{f}\left(x_{k}\right)$. For an alternative proof using induction, see [8].

Lemma 3.1 ([6, Lemma 1]). Let R be a given finite set and f any complex-valued function defined on R. For a subset T of R, we denote by \bar{T} the set of those elements of R which are not in T, i.e., $\bar{T}=R \backslash T$. If R_{1}, \ldots, R_{m} are given m distinct subsets of R, then

$$
\sum_{x \in \bigcap_{i=1}^{m} \bar{R}_{i}} f(x)=\sum_{x \in R} f(x)+\sum_{t=1}^{m}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant m} \sum_{x \in \bigcap_{j=1}^{t} R_{i_{j}}} f(x) .
$$

Lemma 3.2. Let f be an incidence function of P. Then

$$
\sum_{x \leqslant z \leqslant y}(f * \mu)(x, z)=f(x, y)
$$

for all $x, y \in P$. In particular, one has

$$
\sum_{z \leqslant y}(f * \mu)(z)=f(y)
$$

for all $y \in P$.
Proof. Let $x, y \in P$ be given. Note that $f * \delta=f$ and $\mu * \zeta=\delta$. Then

$$
\begin{aligned}
f(x, y) & =(f * \delta)(x, y)=(f *(\mu * \zeta))(x, y)=((f * \mu) * \zeta)(x, y) \\
& =\sum_{x \leqslant z \leqslant y}(f * \mu)(x, z) \zeta(z, y)=\sum_{x \leqslant z \leqslant y}(f * \mu)(x, z) .
\end{aligned}
$$

The first assertion is proved. For the other assertion, one needs only to pick $x=$ $\min P$. The proof is complete.

Lemma 3.3. Let n be an integer. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set with $x_{i}<x_{j} \Rightarrow i<j$. If $\psi_{f}\left(x_{k}\right)$ is defined as in (1), then

$$
\begin{equation*}
\psi_{f}\left(x_{k}\right)=f\left(x_{k}\right)+\sum_{t=1}^{k-1}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant k-1} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{t}}\right) \tag{2}
\end{equation*}
$$

where $f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{t}}\right)$ denotes f evaluated at the meet of $x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}$.
Proof. In Lemma 3.1, let $m=k-1$ and $R=\left\{d: d \leqslant x_{k}, x_{k} \in S\right\}$. For $1 \leqslant$ $i \leqslant k-1$, let $R_{i}=\left\{d \in R: d \leqslant x_{i}, x_{i} \in S\right\}$. Then one has $R_{i}=\left\{d: d \leqslant x_{k} \wedge x_{i}\right\}$. By Lemma 3.1, one has

$$
\begin{equation*}
\psi_{f}\left(x_{k}\right)=\sum_{d \leqslant x_{k}}(f * \mu)(d)+\sum_{t=1}^{k-1}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant k-1} \sum_{d \leqslant x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{t}}}(f * \mu)(d) . \tag{3}
\end{equation*}
$$

By Lemma 3.2, one has $\sum_{d \leqslant x_{k}}(f * \mu)(d)=f\left(x_{k}\right)$ and for $1 \leqslant i_{1}<\ldots<i_{t} \leqslant k-1$ $(1 \leqslant t \leqslant k-1)$, one has

$$
\begin{equation*}
\sum_{d \leqslant x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{t}}}(f * \mu)(d)=f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{t}}\right) . \tag{4}
\end{equation*}
$$

It then follows from Equations (3) and (4) that (2) holds. This completes the proof of Lemma 3.3.

Now, we give further reduction for the formula of $\psi_{f}\left(x_{k}\right)$. The ideas of the proofs of the following two lemmas are due to our article [7].

Lemma 3.4. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set with $x_{i}<x_{j} \Rightarrow i<j$. For $1 \leqslant k \leqslant n$, let $I_{k}=\left\{i: 1 \leqslant i \leqslant k-1\right.$ and $\left.x_{i} \nless x_{k}\right\}$ and $J_{k}=\{1,2, \ldots, k-1\} \backslash I_{k}$. Then

$$
\begin{equation*}
\psi_{f}\left(x_{k}\right)=f\left(x_{k}\right)+\sum_{r=1}^{\left|J_{k}\right|}(-1)^{r} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in J_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}}\right) \tag{5}
\end{equation*}
$$

Proof. If $\left|I_{k}\right|=0$, then it follows from Lemma 3.3 that Lemma 3.4 holds. In what follows let $\left|I_{k}\right| \geqslant 1$. Note that for $i \in J_{k}$ one has $x_{i} \leqslant x_{k}$. Since S is meet-closed, $x_{1} \leqslant x_{k}$. Thus one has $\left|J_{k}\right| \geqslant 1$. Note also that $\left|I_{k}\right|+\left|J_{k}\right|=k-1$. By Lemma 3.3, one has

$$
\begin{equation*}
\psi_{f}\left(x_{k}\right)=f\left(x_{k}\right)+\Delta^{\prime}+\Delta \tag{6}
\end{equation*}
$$

where

$$
\Delta^{\prime}=\sum_{r=1}^{\left|J_{k}\right|}(-1)^{r} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in J_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}}\right)
$$

and

$$
\begin{equation*}
\Delta=\sum_{r=1}^{\left|J_{k}\right|} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in J_{k}}} \sum_{s=1}^{\left|I_{k}\right|}(-1)^{r+s} \sum_{\substack{t_{1}<\ldots<t_{s} \\ t_{u} \in I_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) . \tag{7}
\end{equation*}
$$

For any given $t_{1}<\ldots<t_{s}, t_{u} \in I_{k}(1 \leqslant u \leqslant s)$, it follows from the fact that S is meet-closed that $x_{k} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}} \in S$. Let $x_{l}=x_{k} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}$. Then $x_{l} \leqslant x_{k}$ and $x_{l} \leqslant x_{t_{u}}$ for $1 \leqslant u \leqslant s$. So one has $l \in J_{k}$. Then by (7), one has
(8) $\Delta=\sum_{s=1}^{\left|I_{k}\right|} \sum_{\substack{t_{1}<\ldots<t_{s} \\ t_{u} \in I_{k}}} \sum_{r=1}^{\left|J_{k}\right|}(-1)^{r+s} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in J_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right)$

$$
\begin{array}{r}
=\sum_{s=1}^{\left|I_{k}\right|} \sum_{\substack{t_{1}<\ldots<t_{s} \\
t_{u} \in I_{k}}} \sum_{r=0}^{\left|J_{k}\right|-1} \sum_{\substack{i_{1}<\ldots<i_{r} \\
i_{j} \in J_{k}, i_{j} \neq l}}\left((-1)^{r+s} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right)\right. \\
\left.+(-1)^{r+s+1} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{l} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right)\right) \\
=\sum_{s=1}^{\left|I_{k}\right|} \sum_{\substack{t_{1}<\ldots<t_{s} \\
t_{u} \in I_{k}}} \sum_{r=0}^{\left|J_{k}\right|-1} \sum_{\substack{i_{1}<\ldots<i_{r} \\
i_{j} \in J_{k}, i_{j} \neq l}}\left((-1)^{r+s} \cdot f\left(x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{l}\right)\right. \\
\left.+(-1)^{r+s+1} \cdot f\left(x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{l}\right)\right)=0 .
\end{array}
$$

Therefore it follows from Equations (6) and (8) that (5) holds. The proof of Lemma 3.4 is complete.

Now we can use the concept of greatest-type lower to give a further reduction for $\psi_{f}\left(x_{k}\right)$.

Lemma 3.5. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set. For $1 \leqslant k \leqslant n$, let $R_{k}=\left\{i: 1 \leqslant i \leqslant k-1, x_{i}\right.$ is the greatest-type lower of x_{k} in $\left.S\right\}$. Then

$$
\psi_{f}\left(x_{k}\right)=f\left(x_{k}\right)+\sum_{r=1}^{\left|R_{k}\right|}(1)^{r} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in R_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}}\right) .
$$

Proof. For the case $k \leqslant 2$, the lemma is clearly true. In what follows let $k \geqslant 3$. Let $J_{k}=\left\{i: 1 \leqslant i \leqslant k-1\right.$ and $\left.x_{i} \leqslant x_{k}\right\}$. Then $\left|J_{k}\right| \geqslant 1$. It is clear that $R_{k} \subseteq J_{k}$.

If $\left|J_{k}\right|=1$, then $J_{k}=\{1\}$. Note that $\left|R_{k}\right| \geqslant 1$. So one has $R_{k}=\{1\}=J_{k}$. Thus by Lemma 3.4, the result is true. In the following let $\left|J_{k}\right| \geqslant 2$. Let $L_{k}=J_{k} \backslash R_{k}$. We claim that $L_{k} \neq \emptyset$. Assuming otherwise implies that $R_{k}=J_{k}$. But $1 \in J_{k}$, hence $1 \in R_{k}$. From $\left|J_{k}\right| \geqslant 2$ one deduces that there is an $i \in J_{k}, i \neq 1$, such that $i \in J_{k}=R_{k}$. Since S is meet-closed, one has $x_{1}<x_{i}$. This is impossible since x_{1} and x_{i} cannot both be greatest-type lowers of x_{k} in S. Therefore the claim is true. In a similar way to that in (6), one has by Lemma 3.4 that

$$
\psi_{f}\left(x_{k}\right)=f\left(x_{k}\right)+\bar{\Delta}^{\prime}+\bar{\Delta},
$$

where

$$
\bar{\Delta}^{\prime}=\sum_{r=1}^{\left|R_{k}\right|}(-1)^{r} \sum_{\substack{i_{1}<\ldots<i_{r} \\ i_{j} \in R_{k}}} f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}}\right)
$$

and

$$
\begin{align*}
\Delta & =\sum_{r=0}^{\left|R_{k}\right|} \sum_{\substack{i_{1}<\ldots<i_{r} \\
i_{j} \in R_{k}}} \sum_{\substack{\left|L_{k}\right|}} \sum_{\substack{t_{1}<\ldots<t_{s} \\
t_{u} \in L_{k}}}(-1)^{r+s} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) \tag{9}\\
& =\sum_{s=1}^{\left|L_{k}\right|} \sum_{\substack{t_{1}<\ldots<t_{s} \\
t_{u} \in L_{k}}}(-1)^{s} \sum_{r=0}^{\left|R_{k}\right|} \sum_{\substack{i_{1}<\ldots<i_{r} \\
i_{j} \in R_{k}}}(-1)^{r} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) .
\end{align*}
$$

To prove the lemma, one needs only to show that $\bar{\Delta}=0$, which we will do in the following.

For any given $t_{1}<\ldots<t_{s}\left(1 \leqslant s \leqslant\left|L_{k}\right|\right), t_{u} \in L_{k}, 1 \leqslant u \leqslant s$, let $T=\left\{i: i \in R_{k}\right.$, and $x_{t_{u}} \leqslant x_{i}$ for some $\left.t_{u}, 1 \leqslant u \leqslant s\right\}$ and $Q=R_{k} \backslash T$. Let $|T|=h$ and $|Q|=h^{\prime}$. Clearly one has that $1 \leqslant h \leqslant\left|R_{k}\right|$ and $0 \leqslant h^{\prime} \leqslant\left|R_{k}\right|-1$. Then one has
(10) $\sum_{r=0}^{\left|R_{k}\right|} \sum_{\substack{1_{1}<\ldots<i_{r} \\ i_{j} \in R_{k}}}(-1)^{r} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right)$

$$
\begin{aligned}
& =\sum_{\substack{r^{\prime}=0}}^{h^{\prime}} \sum_{i_{1}<\ldots<i_{r^{\prime}}} \sum_{r=0}^{h} \sum_{\substack{i_{u} \in Q}}(-1)^{r+r^{\prime}} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r^{\prime}}} \wedge x_{j_{1}} \wedge \ldots\right. \\
& \wedge j_{v} \in T \\
& \left.=\sum_{r^{\prime}=0} \sum_{\substack{ \\
j_{r}}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) \\
& \sum_{\substack{ \\
i_{1}<\ldots<i_{r^{\prime}} \\
i_{u} \in Q}} \sum_{\substack{ }}^{h} \sum_{\substack{j_{1}<\ldots<j_{r} \\
j_{v} \in T}}(-1)^{r+r^{\prime}} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r^{\prime}}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right)
\end{aligned}
$$

(since by the definition of T one has $x_{j_{1}} \wedge \ldots \wedge x_{j_{r}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}=$ $x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}$ for any $\left.j_{1}<\ldots<j_{r}, j_{v} \in T\right)$

$$
\begin{aligned}
& =\sum_{r^{\prime}=0}^{h^{\prime}} \sum_{\substack{i_{1}<\ldots<i_{r^{\prime}} \\
i_{u} \in Q}}(-1)^{r^{\prime}} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r^{\prime}}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) \\
& \cdot\left(1+\sum_{r=1}^{h}(-1)^{r} \sum_{\substack{j_{1}<\ldots<j_{r} \\
j_{v} \in T}} 1\right) \\
& =\sum_{r^{\prime}=0}^{h^{\prime}} \sum_{\substack{i_{1}<\ldots<i_{r^{\prime}} \\
i_{u} \in Q}}(-1)^{r^{\prime}} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r^{\prime}}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) \\
& \cdot\left(1+\sum_{r=1}^{h}(-1)^{r} \cdot\binom{h}{r}\right) \\
& =\sum_{r^{\prime}=0}^{h^{\prime}} \sum_{\substack{i_{1}<\ldots<i_{r^{\prime}} \\
i_{u} \in Q}}(-1)^{r^{\prime}} \cdot f\left(x_{k} \wedge x_{i_{1}} \wedge \ldots \wedge x_{i_{r^{\prime}}} \wedge x_{t_{1}} \wedge \ldots \wedge x_{t_{s}}\right) \cdot(1-1)^{h}=0 .
\end{aligned}
$$

It now follows from Equations (9) and (10) that $\bar{\Delta}=0$. This completes the proof of Lemma 3.5.

Theorem 3.6. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set and f an incidence function. Then

$$
\operatorname{det}\left[f\left(x_{i} \wedge x_{j}\right)\right]=\prod_{i=1}^{n}\left(f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)\right),
$$

where $f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)$ denotes f evaluated at the meet of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}$, $n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type lowers of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type lowers of x_{i} in S.

Proof. This theorem follows from Proposition 2.1 and Lemma 3.5.

Lemma 3.7. Let f be a semi-multiplicative function and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ a meet-closed set. If $f\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$, then

$$
\left[f\left(x_{i} \vee x_{j}\right)\right]=\operatorname{diag}\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\} \cdot\left[\frac{1}{f}\left(x_{i} \wedge x_{j}\right)\right] \cdot \operatorname{diag}\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}
$$

Proof. It follows from definition of a semi-multiplicative function that this lemma is true.

Theorem 3.8. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a meet-closed set. If f is a semimultiplicative function satisfying $f\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$, then

$$
\begin{aligned}
\operatorname{det} & {\left[f\left(x_{i} \vee x_{j}\right)\right] } \\
= & \prod_{i=1}^{n}\left[f\left(x_{i}\right)\right]^{2}\left(\frac{1}{f\left(x_{i}\right)}+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} \frac{1}{f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)}\right),
\end{aligned}
$$

where $f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)$ denotes f evaluated at the meet of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}$, $n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type lowers of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type lowers of x_{i} in S.

Proof. This theorem follows from Lemma 3.7 and Theorem 3.6 applied to the function $1 / f$. The proof is complete.

It follows from Theorems 3.6 and 3.8 that the following two corollaries are true.

Corollary 3.9. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be lower-closed and let f be an incidence function. Then each of the following is true:
(i) One has $\operatorname{det}\left[f\left(x_{i} \wedge x_{j}\right)\right]=\prod_{i=1}^{n}(f * \mu)\left(x_{i}\right)$;
(ii) If f is semi-multiplicative and $f\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$, then $\operatorname{det}\left[f\left(x_{i} \vee x_{j}\right)\right]=$ $\prod_{i=1}^{n}\left[f\left(x_{i}\right)\right]^{2}((1 / f) * \mu)(x)$.

Corollary 3.10. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a chain with $x_{1}<x_{2}<\ldots<$ $x_{n-1}<x_{n}$ and f an incidence function. Then each of the following is true:
(i) One has det $\left[f\left(x_{i} \wedge x_{j}\right)\right]=f\left(x_{1}\right) \prod_{i=2}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]$;
(ii) If f is semi-multiplicative and $f\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$, then $\operatorname{det}\left[f\left(x_{i} \vee x_{j}\right)\right]=$ $f\left(x_{n}\right) \prod_{i=2}^{n}\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right]$.

Proof. For $k, 1 \leqslant k \leqslant n$, since $x_{1}<x_{2}<\ldots<x_{n}$, one has that x_{k-1} is the only greatest-type lower of x_{k} in S. It then follows from Theorems 3.6 and 3.8 that this corollary is true.

4. Nonsingularity of matrices $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\left[f\left(x_{i} \vee x_{j}\right)\right]$

We can now use the results of the preceding section to give a characterization for nonsingularity of matrices $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ and $\left[f\left(x_{i} \vee x_{j}\right)\right]$ as follows.

Theorem 4.1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a meet-closed set and let f be an incidence function. Then the matrix $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ defined on S is nonsingular if and only if for all $1 \leqslant i \leqslant n$, one has

$$
f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right) \neq 0
$$

where $f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)$ denotes f evaluated at the meet of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}$, $n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type lowers of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type lowers of x_{i} in S.

Proof. First, one has that the matrix $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ on S is nonsingular if and only if $\operatorname{det}\left(\left[f\left(x_{i} \wedge x_{j}\right)\right]\right) \neq 0$. From Theorem 3.6 one knows that

$$
\operatorname{det}\left[f\left(x_{i} \wedge x_{j}\right)\right]=\prod_{i=1}^{n}\left(f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)\right),
$$

where $f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)$ denotes f evaluated at the meet of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}$, $n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type lowers of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type lowers of x_{i} in S. So $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ is nonsingular if and only if for all $1 \leqslant i \leqslant n$, one has

$$
f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right) \neq 0
$$

as desired.

Theorem 4.2. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a meet-closed set and let f be a semimultiplicative function. Then the matrix $\left[f\left(x_{i} \vee x_{j}\right)\right]$ defined on S is nonsingular if and only if for all $1 \leqslant i \leqslant n$ one has $f\left(x_{i}\right) \neq 0$ and

$$
\frac{1}{f\left(x_{i}\right)}+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} \frac{1}{f\left(x \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)} \neq 0
$$

where $f\left(x_{i} \wedge y_{i_{1}} \wedge \ldots \wedge y_{i_{t}}\right)$ denotes f evaluated at the meet of $x, y_{i_{1}}, \ldots, y_{i_{t}}$, $n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type lowers of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type divisors of x_{i} in S.

Proof. This theorem follows immediately from Theorem 3.8.

Corollary 4.3. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be lower-closed. Then each of the following is true:
(i) The matrix $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ defined on S is nonsingular if and only if $(f * \mu)\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$;
(ii) The matrix $\left(f\left(x_{i} \vee x_{j}\right)\right)$ defined on S is nonsingular if and only if $f\left(x_{i}\right) \neq 0$ and $((1 / f) * \mu)\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$.

Corollary 4.4. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a chain with $x_{1}<x_{2}<\ldots<x_{n-1}<$ x_{n}. Then each of the following is true:
(i) The matrix $\left[f\left(x_{i} \wedge x_{j}\right)\right]$ defined on S is nonsingular if and only if $f\left(x_{1}\right) \neq 0$ and for all $k, 2 \leqslant k \leqslant n$, one has $f\left(x_{k-1}\right) \neq f\left(x_{k}\right)$;
(ii) The matrix $\left[f\left(x_{i} \vee x_{j}\right)\right]$ defined on S is nonsingular if and only if $f\left(x_{1}\right) \neq 0$, and for all $k, 2 \leqslant k \leqslant n$, one has $f\left(x_{k}\right) \neq 0$ and $f\left(x_{k-1}\right) \neq f\left(x_{k}\right)$.

5. Applications to matrices $\left[f\left(x_{i}, x_{j}\right)\right]$ and $\left(f\left[x_{i}, x_{j}\right]\right)$

In the present section, we give number-theoretic applications of the results presented in Sections 3 and 4.

Theorem 5.1. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a gcd-closed set and let f be an arithmetical function. Then

$$
\operatorname{det}\left[f\left(x_{i}, x_{j}\right)\right]=\prod_{i=1}^{n}\left(f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)\right)
$$

where $f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)$ denotes f evaluated at the greatest common divisor (x_{i}, $\left.y_{i_{1}}, \ldots, y_{i_{t}}\right)$ of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}, n\left(x_{i}\right)$ equals the cardinality of the set of the greatesttype divisors of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type divisors of x_{i} in S.

Proof. Let $(P, \leqslant)=\left(\mathbb{Z}^{+}, \mid\right)$. Then this theorem follows from Theorem 3.6.

Theorem 5.2. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a gcd-closed set. If f is a semimultiplicative arithmetical function satisfying $f\left(x_{i}\right) \neq 0$ for all $1 \leqslant i \leqslant n$, then

$$
\operatorname{det}\left(f\left[x_{i}, x_{j}\right]\right)=\prod_{i=1}^{n}\left[f\left(x_{i}\right)\right]^{2}\left(\frac{1}{f\left(x_{i}\right)}+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} \frac{1}{f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)}\right),
$$

where $f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)$ denotes f evaluated at the greatest common divisor (x_{i}, $y_{i_{1}}, \ldots, y_{i_{t}}$) of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}, n\left(x_{i}\right)$ equals the cardinality of the set of the greatesttype divisors of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type divisors of x_{i} in S.

Proof. Let $(P, \leqslant)=\left(\mathbb{Z}^{+}, \mid\right)$. Then this theorem follows from Theorem 3.8.

Theorem 5.3. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers and f an arithmetical function. If S is gcd-closed, then the matrix $\left[f\left(x_{i}, x_{j}\right)\right]$ defined on S is nonsingular if and only if for all $1 \leqslant i \leqslant n$ one has

$$
f\left(x_{i}\right)+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right) \neq 0
$$

where $f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)$ denotes f evaluated at the greatest common divisor of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}, n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type divisors of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type divisors of x_{i} in S.

Proof. Let $(P, \leqslant)=\left(\mathbb{Z}^{+}, \mid\right)$. Then this theorem follows immediately from Theorem 4.1.

Note that Theorem 5.3 gives an answer to the problem raised by Bourque and Ligh in [4].

Theorem 5.4. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers and f a semi-multiplicative arithmetical function. If S is gcd-closed, then the matrix $\left(f\left[x_{i}, x_{j}\right]\right)$ defined on S is nonsingular if and only if for all $1 \leqslant i \leqslant n$ one has $f\left(x_{i}\right) \neq 0$ and

$$
\frac{1}{f\left(x_{i}\right)}+\sum_{t=1}^{n\left(x_{i}\right)}(-1)^{t} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant n\left(x_{i}\right)} \frac{1}{f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)} \neq 0
$$

where $f\left(x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}\right)$ denotes f evaluated at the greatest common divisor of $x_{i}, y_{i_{1}}, \ldots, y_{i_{t}}, n\left(x_{i}\right)$ equals the cardinality of the set of the greatest-type divisors of x_{i} in S, and $\left\{y_{1}, y_{2}, \ldots, y_{n\left(x_{i}\right)}\right\}$ equals the set of the greatest-type divisors of x_{i} in S.

Proof. Let $(P, \leqslant)=\left(\mathbb{Z}^{+}, \mid\right)$. Then this theorem follows immediately from Theorem 4.2.

References

[1] M. Aigner: Combinatorial Theory. Springer-Verlag, New York, 1979.
[2] S. Beslin, S. Ligh: Greatest common divisor matrices. Linear Algebra Appl. 118 (1989), 69-76.
[3] S. Beslin, S. Ligh: Another generalization of Smith's determinant. Bull. Austral. Math. Soc. 40 (1989), 413-415.
[4] K. Bourque, S. Ligh: Matrices associated with arithmetical functions. Linear and Multilinear Algebra 34 (1993), 261-267.
[5] P. Haukkanen: On meet matrices on posets. Linear Algebra Appl. 249 (1996), 111-123.
[6] S. Hong: LCM matrix on an r-fold gcd-closed set. J. Sichuan Univ., Nat. Sci. Ed. 33 (1996), 650-657.
[7] S. Hong: On the Bourque-Ligh conjecture of least common multiple matrices. J. Algebra 218 (1999), 216-228.
[8] S. Hong: On the factorization of LCM matrices on gcd-closed sets. Linear Algebra Appl. 345 (2002), 225-233.
[9] D. Rearick: Semi-multiplicative functions. Duke Math. J. 33 (1966), 49-53.
[10] H. J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math. Soc. 7 (1875-1876), 208-212.

Authors' address: Mathematical College, Sichuan University, Chengdu 610064, P.R. China, e-mails: s-f.hong@tom.com, hongsf02@yahoo.com.

