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Abstract. If G is a connected graph with distance function d, then by a step in G is meant
an ordered triple (u,z,v) of vertices of G such that d(u,z) = 1 and d(u,v) = d(z,v) + 1.
A characterization of the set of all steps in a connected graph was published by the present
author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization
is presented. A stronger result for a certain type of connected graphs is proved in Section 2.
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0. INTRODUCTION

The letters f—n will be reserved for denoting integers. All graphs considered here
are finite undirected (without loops or multiple edges). For the terminology of graph
theory, see the book [2]. Let G be a connected graph, and let d be its distance
function. If u,v € V(G), a is an u — v path of G and the length of a equals to
d(u,v), then we say that « is a geodesic in G.

By a signpost system we will mean an ordered pair (W, T), where W is a finite
nonempty set, T C W x W x W, and the following axioms hold:

(Ax. 1) if (u,x,v) € T, then (x,u,u) € T for all u,v,z € W;

(Ax. 2) if (u,x,v) € T, then (x,u,v) ¢ T for all u,v,x € W;

(Ax. 3) if u # v, then there exists z € W such that (u, z,v) € T for all u,v € T.
The notion of a signpost system was introduced in [5], but in a slightly different

sense: (W, T) is a signpost system in our terminology if and only if T is a signpost
system on W in the terminology of [5].
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Let (W,T) be a signpost system. By (Ax. 1),
(u,v,v) € T if and only if (v,u,u) € T
for all u,v € T. Combining (Ax. 1) and (Ax. 2), we see that
(1) if (u,x,v) €T, then v#u#a for all u,v,x € T.

By the wunderlying graph of (W,T) we mean the graph G defined as follows:
V(G) =W and

u and v are adjacent in G if and only if (u,v,v) € T

for all u,v € W.

Let G be a connected graph, and let d denote its distance function. Following [6],
by a step in G we mean an ordered triple (u, z,v), where u, v,z € V(G), d(u,z) =1
and d(u,v) = d(z,v) + 1. If S denotes the set of all steps in G, then the ordered pair
(V(@), S) is called the step system of G. The step system of G is a useful instrument
for studying those properties of G that depend on its distance function.

The next proposition will be used in Section 2.

Proposition 1. Let G be a connected graph. Then G is biparite if and only if
exactly one of the ordered triples (u,x,v) and (x,u,v) is a step in G

for all u, v,z € V(G) such that ux € E(G).

Proof. Let d denote the distance function of G. Consider arbitrary w,v,z €
V(G) such that uz € E(G). Then d(u,v) < d(z,v) + 1 or d(z,v) < d(u,v) + 1.
Therefore, at most one of the ordered triples (u,z,v) and (x,u,v) is a step in G.

It is easy to see that G contains an odd cycle if and only if there exist ug, vg, zg €
V(G) such that uoxo € E(G) and neither (ug, zg, vo) nor (o, uo,vo) is a step in G.

O

Moreover, by a step system we mean an ordered pair (W, T') such that (W, T) is
the step system of a connected graph. It is easy to see that every step system is a
signpost system.
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Proposition 2. Let (W, T) be the step system of a connected graph G1, and let
G2 be the underlying graph of (W, T). Then G; = Gs.

Proof is obvious. (]

Step systems were characterized by the present author in [6]. Using the notion of
a signpost system, the characterization proved there can be described as follows:
Let (W, T) be a signpost system. Then (W, T) is a step system if and only if

(2) the underlying graph of (W, T) is connected

and a set Ax of axioms hold; Ax is a finite nonempty set of axioms that—similarly
as (Ax. 1), (Ax. 2) and (Ax. 3)—can be reformulated in a language of the first-order
logic.

Similar characterization of step systems was proved in [8] but the set of axioms
was weaker there. Moreover, the correspondence between the characterization of a
step system of a connected graph G and a characterization of the set of all geodesics
of G was studied in [7].

The proofs of characterizations of step systems presented in [6] and [8] are long
and complicated. In Section 1 of the present paper, a new, shorter and simpler proof
of a characterization of step system will be given. The set of axioms used here will
be weaker than in [8] (and thus than in [6]).

In the characterizations of step systems given in [6], [8] and here, the assumption
that W be finite is combined with the assumption (2) and a finite set of axioms that
can be reformulated in a language of the first-order logic. As was shown in [6] and
[8], the assumption (2) cannot be omitted. The question whether the assumption (2)
could be replaced by a finite nonempty set of axioms formulated in a language of the
first-order logic is still open.

On the other hand, there exists a “rich” class C of connected graphs such that a
theorem of the following structure can be proved:

Let (W,T) be a sigpost system. Then (W,T) is the step system of a graph be-
longing to the class C if and only if the set Axc of axioms holds; Axc is a finite
set of axioms formulated in a language of the first-order logic.

As was shown by the present author in [9], the class of all trees has this property.
As follows from the result of Mulder and Nebesky [5], the class of median graphs
and the class of modular graphs have this property, too. (Note that every tree is
a median graph, and every median graph is a modular one). In Section 2 of the
present paper we will prove a theorem on this type for another class of graphs, a
class involving median graphs, cycles and complete graphs.
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1. A CHARACTERIZATION OF STEP SYSTEMS

Let (W, T) be a step system. It is not difficult to show that it satisfies the following

axioms:

(Ax. 4)
Ax. 5)
)
)

u,x,v), (v,y,z) € T, then (v,y,u) € T for all u,v,z,y € W;
( z)
(Ax. 6
(

if ( ) (

if (u,z,v), (v,y,x) € T, then (u,z,y) € T for all u,v,z,y € W;

if ( ), (v, u,y), (x,y,u) € T, then (y,z,v) € T for all u,v, z,y € W;
if (u,x,v), (v,y,y) € T, then (v,y,u) € T or (y,v,z) € T or (u,z,y) €T
for all u,v,z,y € W.

u,v, T

Ax. 7

Verifications of (Ax. 4)-(Ax. 6) and of a stronger version of (Ax. 7) can be found
in [6] on pages 154-155.

Remark 1. Let (W, T) be a signpost system satisfying (Ax. 6), let u,v,2 € W,
and let (u,x,v), (v,u,u) € T. By (Ax. 1), (z,u,u) € T. As follows from (Ax. 6),
(u,v,2) € T.

We will prove that if a signpost system (W,T') satisfies (Ax. 4)—(Ax. 7) and its
underlying graph is connected, then (W, T') is a step system. But first, we will need
one definition, two lemmas and three corollaries; the lemmas were proved in [7].

Let (W,T) be a signpost system. By a process in (W, T) (in short: a process) we

mean a sequence
(3) (ug, ..., uk),
where k > 1,ug,uq,...,ur € W and

(uj, uip1,ug) € T for each i, 0<i<k.

If (3) is a process, ug = v and v = uy, then we say that (3) is an u — v process. The
notion of a process was introduced in [7]. Let k£ > 2. As immediately follows from the
definition, (3) is a process in (W, T) if and only if (ug, u1,ur) € T and (uy,...,ux) a
process in (T, W). By virtue of (Ax. 1) and (1), every process in (W, T) is a walk in
the underlying graph of (W, T).

Lemma 1. Let (W, T) be a signpost system satisfying (Ax. 4) and (Ax. 5), and let
ug, ..., ux € W, where k > 1. If (ug, ..., ux) is a process in (W, T), then (ug, ..., uo)
is also a process in (W, T).

Proof. See the proof of Lemma 2 in [7]. O
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Corollary 1. Let (W, T) be a signpost system satisfying (Ax. 4) and (Ax. 5), let
(uo,...,u) be a process in (W,T), and let 0 < i < j < k. Then (ui, Uit1,--.,u;)

and (u;,u;j_1,...,u;) are also processes in (W,T').
Proof. By Lemma 1, (ug,...,u0), (uj,...,u0), (vo,...,u;5), (t,...,u;) and
(uj,...,u;) are processes in (W, T). O

Corollary 2. Let (W,T) be a signpost system satisfying (Ax. 4) and (Ax. 5),
and let G denote the underlying graph of (W, T). Then every process in (W, T) is a
nontrivial path in G.

Proof. Combining Corollary 1 and (1), we get the result. O

Corollary 3. Let (W,T) be a signpost system satisfying (Ax. 4) and (Ax. 5),
and let ug,...,ur, € W, where k > 2. If (ug,...,ux—1) is a process in (W, T) and
(ug, ug—1,u0) € T, then (ug,...,ux—1,u) is a process in (W, T).

Proof. By Lemma 1, (ug_1,...,ug) is a process in (W,T). Since (ug,ug—_1,
ug) € T, we see that (ug,uk—1,...,up) is a process in (W, T). Lemma 1 implies that
(ug, ..., uk—1,ug) is a process in (W, T), too. |

Lemma 2. Let (W, T) be a signpost system satisfying (Ax. 4), (Ax. 5) and (Ax. 7),
and let the underlying graph of (W, T') be connected. Then for every distinct u,v € W
there exists an u — v process in (W, T).

Proof. See the proof of Lemma 5 in [7]. O

The following theorem improves both Theorem 1 in [6] and Theorem 3 in [8]. But
the main intention for presenting it here is its new proof, which is shorter and simpler
than the proofs of the above-mentioned theorems in [6] and [8].

Let (W, R) be a signpost system, and let G denote its underlying graph. Assume
that G is connected. Let d denote the distance function of G. Then for every j > 0,
we denote

R; ={(u,z,v) € R; d(u,v) = j}.

This definition will be applied to two signpost systems considered in the proof of the
following theorem.
Theorem 1. Let (W,T) be a signpost system. Then (W,T) is a step system if

and only if its underlying graph is connected and (W, T satisfies (Ax. 4)—(Ax. 7).

Proof. Let P denote the set of all processes in (W,T), and G denote the
underlying graph of (W, T).
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Assume that (W, T) is a step system. By Proposition 2, (W, T) is the step system
of G. Thus the underlying graph of (W, T) is connected. Moreover, (W, T') satisfies
(Ax. 4)—(Ax. 7). (As was said above, verifications of (Ax. 4)—(Ax. 6) and of a stronger
version of (Ax. 7) can be found in [6]).

Conversely, let G be connected, and let (W, T') satisfy axioms (Ax. 4)-(Ax. 7). We
denote by d and S the distance function of G and the set of all steps in G respectively.
We will prove that (W, T) is the step system of G. Since V(G) = W, it is sufficient
to prove that 7' = S. Suppose, to the contrary, that T" % S. Then there exists n > 0
such that T, # S, and

(4) Tr=S8¢ forall f, 0< f<n.

Obviously, Tp = ) = Sp. Thus n > 1. We distinguish two cases.
Case 1. Let S, — T, # 0. As follows from the definition of the underlying
graph, n > 2. Then there exist u,v,2z € W such that d(u,v) = n and (u,z,v) €

S — T. Clearly, there exist vg,...,Vn_1, vy, € W such that vg = v, v,_1 = x,
Up = u and (Un,Vp—1,...,0) is & geodesic in G. Lemma 2 implies that there exist
Ug, -« Um € W osuch that m > 1, ug = u, uy, = v and (ug, ..., Uy,) is an u — v

process in (W, T). By Corollary 2, (ug,...,um) is a path in G. This means that
m > n and

(5) d(uj,v;) <n foreachj, 0<j<n
Put u_1 = v,—1. Since u_1 = x, we have (ug,u—1,v9) ¢ T. Define
a; = (Ui, ..., Um = Vp,...,v;) foreachi, 0 <i<n.

We see that d(ug,v9) = n and oy € P. Since (ug,...,uy) € P and m > n, we
have, by Corollary 1, (uy,...,up) € P. Hence (up,un—1,v,) € T. Recall that
(up,u—1,v9) ¢ T. There exists h, 0 < h < n — 1, such that

(6) d(up,vn) =n,ap € P and  (up,up—1,vs) ¢ T,
and
(7) d(upy1,vpe1) #n or apy1 € P or (upy1,un,vpt1) €T.

Since ay, € P,

(8) (uh,uh+1,vh) eT.
Since d(up,vr) = n, (Up, ..., U = VUn,...,Vn+1,0p) is & geodesic in G. Thus
(9) d(up,vp41) =n—1
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and (up,up—1,vp+1) € S. As follows from (4) and (9), (up,up—1,vp41) € T. If
(Vh,Vp+1,up) € T, then, by (Ax. 4), (up,up—1,vy) € T, which contradicts (6).
Hence

(10) (vh,vh+1,uh) ¢ T.

Let (up,upt1,vp41) € T. By (4) and (9), (up,upt1,0p+1) € S. Thus d(upi1,
Upt1) = n — 2. By (6), d(up,vp) = n. This implies that d(upy1,vn) = n— 1 and
(Vh,Vht1, Unt1) € S. By (4), (v, Vht1,unt1) € T. Combining (8) with (Ax. 4), we
get (v, Upt1, un) € T, which contradicts (10). Thus (up, up+1,vn+1) ¢ T. Obviously,
(Vh,Vht1, Vht1) € T. Combining (8) and (10) with (Ax. 7), we get

(11) (’Uh-‘rlavhauh—‘rl) € T

Let d(up+1,vn+1) < n. By (4) and (11), (vpt1,vn,upt1) € S. Therefore,
d(up+1,vn) < n— 1. This means that d(up,vy) < n, which contradicts (6). Thus,
by virtue (5), we get d(upt1,0p41) = n.

Assume that (up41,up,vh+1) € T. Combining (8), (11) and (Ax. 6), we get
(Vh,Vpt1,up) € T, which contradicts (10). Thus (up41,un, Vat1) € T.

By (6), an € P. Hence (upy1,...,Un = vo,...,v,) € P. Combining (11) with
Corollary 3, we get apt1 = (Uht1,- -5 Um = Voy ..., U, Vp+1) € P. Thus (7) does
not hold, which is a contradiction.

Case 2. Let S, C T,. Then T, — S, # 0. There exist u,v,z € W such that
d(u,v) = n and (u,z,v) € T —S. If x = v, then n = 1 and (u,z,v) € S; a
contradiction. Thus x # v. Since G is connected, Lemma 2 implies that there exist
Uty ..., Uy € W such that m > 2, u; = @, uy, = v and (ug,...,uy,) € P. Put
ug = u. Since (ug,u1,um) € T, we get (ug,uy,...,u,) € P. Clearly, there exist
Vg, . - ., Up, such that vg = v, v, = u and (v,,...,v0) is a geodesic in G. Thus

(12) d(vg,vj) =7 foreachj, 0<j<n.

It is obvious that (5) holds. Clearly, m > n. If m = n, then (ug,u1,...,un) is a
geodesic in G and thus (u,z,v) € S; a contradiction. Hence, m > n.

Define a;, 0 < i < n, in the same way as in Case 1. Assume that «,, € P. Then
(Uny Unt1,vn) € T. Recall that ug = v,. By Corollary 1, (ty41,Un,...,ug) € P. We
get (Unt1,Un,vn) € T, which contradicts (Ax. 2). Thus a,, ¢ P. Simultaneously we
see that d(ug,vo) = n and oy € P. There exists h, 0 < h < n — 1, such that

(13) d(up,vp) =n and ap €P,
and
(14) d(upt1,Vh4+1) #n or apy1 € P.

Similarly as in Case 1, we can show that (8) and (9) hold.
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Obviously, h < m — 2. Consider an arbitrary f, h < f < m — 2. Assume that
d(uss1,vn) < n— (f —h). As follows from (13), (usy1,uss2,v,) € T. By (4),
(wps1,upra,vp) € S and thus d(usi2,vn) < n— (f +1 — h). This means that if
d(up+1,vn) < n, then d(tm,vp) <n—((m—1)—h)=(n—(m—1)) +h < h. Since
Um = Vg, we have d(vg, vp) < h, which contradicts (12). Thus

(15) d(ups1,v0) Zn

Let d(up+1,vn41) <n. If n =1, then h = 0 and therefore, x = u; a contradiction.
Thus n > 2. It follows from (15) that d(upy1,vn) =n and

d(upt1,Vp41) =n— 1.

Thus (vp, Vht1,Unt1) € S. Since S, C T, we get (v, Vpt1,upr1) € T. Combin-
ing (8) and (Ax. 5), we get (up,Unt1,vp+1) € T. Combining (4) and (9), we get
(wh, Upt1,Vp+1) € S; therefore d(up+1,vn+1) = n — 2; a contradiction. As follows
from (5), d(upt1,Vn+1) = N

By virtue of (13), d(up,vn) = n and therefore, (vp,vpy1,up) € S. Since
d(up+1,V4+1) = n, we have (upt1,un,vp+1) € S. Since S, C T,, we have
(Vh, V41, Un), (Wht1, Uh,Vht1) € T. Combining (8) with (Ax. 6), we see that
(11) holds (cf. Remark 1 if n =1).

Using (11), similarly as in Case 1 we obtain that ap41 € P, which contradicts (14).

Thus T' = S, which completes the proof. O

2. GEODETICALLY SMOOTH GRAPHS

We will say that a graph G is geodetically smooth—or, in short, smooth—if G is
connected and

if (u,z,v) and (v,y, z) are steps in G and (u, z,y) is not a step in G,

then (u,z, z) is not a step in G

for all u,v, z,y,z € V(G).

It is easy to see that all cycles and all complete graphs are smooth.
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Proposition 3. Let G be a connected graph. Then G is smooth if and only if
each block of G is smooth.

Proof. Obviously, if G is smooth, then each block of G is also smooth.

Conversely, let each block of G be smooth. Let i denote the number of blocks
of G. We will prove that G is smooth. We proceed by induction on 7. The case when
i =1 is obvious. Let i > 2. Then there exist induced subgraphs G; and G> of G and
a cut-vertex t of G such that V(G1)UV(G2) = V(G) and V(G1) NV (G2) = {t}. By
the induction hypothesis, G; and G5 are smooth.

Consider arbitrary u,v,z,y,z € V(G) such that (u,z,v) and (v,y,z) are steps
in G and (u,z,y) is not a step in G. It is sufficient to prove that (u,z,z) is not a
step in G.

Clearly, uz,vy € E(G). Assume that there exists distinct f,g € {1,2} such that
ux € E(Gy) and vy € E(Gy). Since (u,x,v) is a step in G, we see that (u,z,t) is
also a step in G. This implies that (u,z,y) is a step in G; a contradiction. Thus
there exists h € {1,2} such that uz,vy € E(Gp). Without loss of generality, let
h = 1. Then (u,z,v) is a step in G; and (u,x,y) is not a step in G;. Recall that
(1 is smooth.

First, let z € V(G1). Then (u,x,z) is a step in G;. Since G is smooth, we see
that (u,z,z) is not a step in G;1. This implies that (u,z, z) is not a step in G. Now,
let z ¢ V(G1). Then (v,y,t) is a step in G and, therefore, in G7. This implies that
(u,z,t) is not a step in G1. Therefore, (u,z, z) is not a step in G.

Thus G is smooth. O

We will show that the class of smooth graphs involves an interesting subclass: the
class of median graphs. We say that a graph G is a median graph if it is connected
and for every ordered triple (u, v, w) of vertices of G there exists exactly one vertex z
of G such that

and

d(u,w) = d(u, z) + d(z,w),

where d denotes the distance function of G. All trees and all n-cubes (n > 0) are
median graphs. Median graphs and also the connections between them and other
mathematial structures have been intensively studied; see the survey [3].
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Proposition 4. Every median graph is smooth.

Proof. We use a result proved in the book [4]. In Section 3.2 of that book,
16 facts on median graphs are proved. Fact (8) stated on p. 80 of [4] can be refor-
mulated as follows: Let G be a median graph, let r,7/,s,s" € V(G), let (r,7’',s") and
(r',r,s) be steps in G, and let ss’ € E(G). Then

(16) (s,8',t) is a step in G if and only if (r,r’,t) is a step in G
for every t € V(G).

Let G be a median graph. It is easy to see that G is bipartite. Consider arbitrary
u,v,x,y,z € G such that (u,x,v) and (v,y, z) are steps in G and (u,z,y) is not a
step in G. Since (v,y, z) is a step in G, we get {v,y} € E(G). Since (u,z,y) is not a
step in G, Proposition 1 implies that (z,w,y) is a step in G. Since (v,y, 2) is a step
in G, (16) implies that (z,u, 2) is also a step in G. By Proposition 1, (u, z, ) is not
a step in G.

Thus G is smooth. O

Let (W, T) be the step system of a smooth graph. It is obvious that (W, T') satisfies
the following axiom:
(Ax. 8) if (u,z,v),(v,y,2) € T and (u,z,y) ¢ T, then (u,z,z) ¢ T for all
u, v, ,Y,2 € W.

The next theorem is the main result of this section.

Theorem 2. Let (W, T) be a signpost system, and let G denote its underlying
graph. Then G is a smooth graph and (W, T) is the step system of G if and only if
(W, T) satisfies (Ax. 4)—(Ax. 8).

Proof. If G is smooth and (W, T) is the step system of G, then (W, T) satis-
fies (Ax. 8) and, by Theorem 1, also (Ax. 4)—(Ax. 7).

Conversely, let (W, T') satisfy (Ax. 4)—(Ax. 8). Let F' be an arbitrary component
of G. Define

R={(u,z,v) €T; u,v,x € V(H)}.

It is obvious that (V(F), R) satisfies (Ax. 1) and (Ax. 2). The definition of the
underlying graph of a signpost system implies that (V(F'), R) satisfies also (Ax. 3).
Thus (V(F), R) is a signpost system. Clearly, F' is its underlying graph. Moreover, it
is obvious that (V' (F'), R) satisfies (Ax. 4)—(Ax. 8). Since F is connected, Theorem 1
implies that (V(F), R) is the step system of F. Since (V(F'), R) satisfies (Ax. 8), we
see that F' is smooth.
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We wish to prove that F' is identical with G. Suppose, to the contrary, that
there exists z € V(G) such that z ¢ V(F'). Consider a vertex u € V(F). Combin-
ing (Ax. 3), (1) and the definition of the underlying graph, we see that there exists
an infinite sequence

ug, U1, Uz, . .. of vertices in G

such that ug = u and
(ui,uit1,2) € T for each i > 0.

Clearly,
UQU1, UL U2, U2U3, . . . are edges of F.

Since z ¢ V(F'), (Ax. 2) implies that

Uy #£ Ug £ Uy F ...
and
Uy £ us £ us #£ . ...
Since V(F') is finite, there exist f and h, 0 < f < h — 3, such that uj, = uy and the
vertices uyf, ufy1,...,Uqg—1 are pairwise distinct. We see that the edges
UFUf41, Ufr1UF42, - - - Uh—1UR

form a cycle of length h — f in F.

Recall that u, = wuy. Clearly, (uy,upy1,upy1) € T and (uyp,upyi,un) ¢ T.
This means that there exists g, f +1 < g < h, such that (uf,upy1,u9) € T and
(ug,upy1,uge1) ¢ T. Simultaneously, (uf,uri1, 2), (ug, ugt1,2) € T. This implies
that (W, T) does not satisfy (Ax. 8), which is a contradiction.

Thus F is identical with G. We have R = T'. This means that G is smooth and
(W, T) is the step system of G. O

Corollary 4. A signpost system (W, T) is the step system of a smooth graph if
and only if it safisfies (Ax. 4)—(Ax. 8).

Corollary 5. A graph G is smooth if and only if G is the underlying graph of a
signpost system that satisfies (Ax. 4)—(Ax. 8).

Remark 2. If we replace “exacly one vertex z” by “at least one vertex z” in our
definition of median graphs, we obtain a definition of modular graphs (but similarly as
median graphs, modular graphs can be defined with the help of the interval function
of a graph; see [1]). Results structurally similar to Theorem 2 were proved for median
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graphs and modular graphs in [5]. Three axioms were found there, say (Ax. a),

(Ax. b) and (Ax. ¢), and the following results are proved: Let (W,T) be a signpost

system, and let G be its underlying graph. Then (1) G is a modular graph and
(W, T) is the step system of G if and only if (W, T) satisfies (Ax. 5), (Ax. a), and
(Ax. b); and (2) G is a median graph and (W, T') is the step system of G if and only
if (W, T) satisfies (Ax. 5), (Ax. a), (Ax. b) and (Ax. c). Note that (Ax. a), (Ax. b)
and (Ax. ¢) can be—similarly as (Ax. 1)—(Ax. 8)—formulated in a language of the

first-order logic.

1]

116

456

References

H.-J. Bandelt and H. M. Mulder: Pseudo-modular graphs. Discrete Math. 62 (1986),
245-260.

G. Chartrand and L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall,
London, 1996.

S. Klavzar and H. M. Mulder: Median graphs: characterizations, location theory and
related structures. J. Combin. Math. Combin. Comput. 30 (1999), 103-127.

H. M. Mulder: The interval function of a graph. Math. Centre Tracts 132. Math. Centre,
Amsterdam, 1980.

H. M. Mulder and L. Nebesky: Modular and median signpost systems and their under-
lying graphs. Discuss. Math. Graph Theory 23 (2003), 309-32444.

L. Nebesky: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (122)
(1997), 149-161.

L. Nebesky: An axiomatic approach to metric properties of connected graphs. Czecho-
slovak Math. J. 50 (125) (2000), 3-14.

L. Nebesky: A theorem for an axiomatic approach to metric properties of graphs. Cze-
choslovak Math. J. 50 (125) (2000), 121-133.

L. Nebesky: A tree as a finite nonempty set with a binary operation. Math. Bohem. 125
(2000), 455—458.

Author’s address: Univerzita Karlova v Praze, Filozofickd fakulta, nam J. Palacha 2,
38 Praha 1, Czech Republic, e-mail: Ladislav.Nebesky@ff.cuni.cz.



		webmaster@dml.cz
	2020-07-03T14:45:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




