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Abstract. We prove that two Toeplitz operators acting on the pluriharmonic Bergman
space with radial symbol and pluriharmonic symbol respectively commute only in an obvious
case.
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1. Introduction

Let B be the open unit ball of the complex n-space  n . The pluriharmonic

Bergman space b2 is the subspace of the Lebesgue space L2 = L2(B, V ) consisting
of all pluriharmonic functions on B where the notation V denotes the normalized

Lebesgue volume measure on B. It is known that b2 is a closed subspace of L2 and
hence is a Hilbert space. We let Q be the Hilbert space orthogonal projection from L2

onto b2. It can easily be seen that the domain of Q can be extended to L1(B, V ) via
an integral formula; see Section 2.

For a function u ∈ L2, the Toeplitz operator Tu : b2 → b2 with symbol u is the
linear operator defined by

Tuf = Q(uf), f ∈ b2.

Clearly, Tu is densely defined. In fact, for any bounded holomorphic function f on B
we have Q(uf) ∈ b2.
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In this paper, we study the problem of when two Toeplitz operators commute

each other on b2. Originally, this problem was first considered and solved on Hardy
space of the unit disk [1]. Later, the same problem has been studied in the context
of holomorphic Bergman space by several authors [3], [4], [5], [6], [10] and has been

completely solved in case of holomorphic or pluriharmonic symbols.

Recently, the present pluriharmonic case was also studied in [2], [7] and [8] and

holomorphic symbols for commuting Toeplitz operators were completely character-
ized. In particular, the author and K. Zhu [7] proved the following: For nonconstant

holomorphic symbols f , g, Tf and Tg commute on b2 if and only if a nontrivial linear

combination of f and g is constant on B. So far, we believe nothing else is known

for this problem in the nonholomorphic symbols case.

In this paper, we would like to offer a partial result on this problem with non-
holomorphic symbols. We consider general radial symbol and pluriharmonic symbol

and then characterize the symbols for which the corresponding Toeplitz operators
are commuting. Our result shows that the Toeplitz operators under consideration

commute only in the obvious case. The following is the main result.

Main theorem. Let u ∈ L2 be radial and v ∈ b2. Then TuTv = TvTu on b2 if

and only if either v or u is constant on B.

In the next section we first collect some properties on the holomorphic Bergman
projection. Our main theorem above will be restated and proved in Theorem 3.

2. Proof

For each z ∈ B we let Kz denote the Bergman kernel at z. Thus

Kz(w) =
1

(1− 〈w, z〉)n+1
, w ∈ B

where the notation 〈w, z〉 = w1z1 + . . .+wnzn denotes the Hermitian inner product
on  n . The well known Bergman projection P is then the integral operator

Pψ(z) =
∫

B

ψKz dV, z ∈ B

for functions ψ ∈ L2. See Chapter 3 of [9] for more information about the Bergman
kernel and the Bergman projection.
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For any multi-index α = (α1, . . . , αn), where each αk is a nonnegative integer, we

will write

|α| = α1 + . . .+ αn

and

α! = α1! . . . αn!.

We will also write zα = zα1
1 . . . zαn

n for z = (z1, . . . , zn) ∈ B.
We first need the following calculation.

Lemma 1. For every multi-index α, we have

∫

B

|wα|2 dV (w) =
n!α!

(n+ |α|)! .

���������
. See Proposition 1.4.9 of [9]. �

For two multi-indices α = (α1, . . . , αn) and β = (β1, . . . , βn), the notation β � α

means that

βk 6 αk, k = 1, . . . , n,

and for β � α we define

α− β = (α1 − β1, . . . , αn − βn).

Note that |α− β| = |α| − |β| for β � α.

Before preceding to the proof of the main theorem, we have some properties of
the Bergman projection which will be useful in the proof.

Lemma 1. Let f ∈ L2 be holomorphic and u ∈ L2 be radial. Suppose

f(z) =
∑

β

fβz
β

is the power series representation of f . Then the following statements hold for each

multi-index α and point z ∈ B.
(a) P (fwα)(z) =

∑

β�α

fβ
(n+ |α| − |β|)!α!
(α− β)!(n + |α|)!z

α−β.

(b) P (fwα)(z) =
∑

α�β

fβ
(n+ |β| − |α|)!β!
(β − α)!(n + |β|)!z

β−α.
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(c) P (uwα)(z) =
(n+ |α|)!
n!α!

zα

∫

B

u(w)|wα|2 dV (w).

(d) In addition, if α 6= 0, then P (uwα) = 0.
���������

. Write

Kz(w) =
∑

γ

(n+ |γ|)!
n! γ!

wγ zγ , z, w ∈ B.

Since holomorphic monomials are orthogonal to each other in L2, Lemma 1 gives

P (wαwβ)(z) =
∫

B

wαwβ Kz(w) dV (w)

=
(n+ |α| − |β|)!α!
(α− β)!(n+ |α|)!z

α−β, β � α,

and P (wαwβ) = 0 if α � β and α 6= β. Then (a) follows from the power series

expansion of f and term-by-term integration. Also, by the similar argument, we also
have (b).

Since u is radial, an application of integration in polar coordinates gives

∫

B

u(w)wαwγ dV (w) = 0, α 6= γ.

It follows that

P (uwα)(z) =
∫

B

u(w)wαKz(w) dV (w)

=
∑

γ

(n+ |γ|)!
n!γ!

zγ

∫

B

u(w)wαwγ dV (w)

=
(n+ |α|)!
n!α!

zα

∫

B

u(w)|wα|2 dV (w),

so we have (c). The similar argument can be applied to prove (d). This completes
the proof. �

Each point evaluation is easily verified to be a bounded linear functional on b2.

Hence, for each z ∈ B, there exists a unique function Rz ∈ b2 which has the following
reproducing property

u(z) =
∫

B

uRz dV

for every u ∈ b2.
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As is well known, a function v in B is pluriharmonic if and only if it admits a

decomposition v = f+g, where the functions f and g are holomorphic. Furthermore,
if v is in L2, then the holomorphic functions f and g are all in L2. This immediately
follows from the boundedness of the Bergman projection P . As a result of this

observation we see that there is a simple relation between Rz and the Bergman
kernel Kz:

Rz = Kz +Kz − 1.

More specifically,

Rz(w) =
1

(1− 〈w, z〉)n+1
+

1
(1− 〈z, w〉)n+1

− 1, w ∈ B,

and the orthogonal projection Q : L2 → b2 admits the integral representation

Qϕ(z) =
∫

B

( 1
(1− 〈w, z〉)n+1

+
1

(1− 〈z, w〉)n+1
− 1

)
ϕ(w) dV (w)

for functions ϕ ∈ L2. This integral formula shows that the domain of Q can be
naturally extended to L1(B, V ). Since

Pϕ(0) =
∫

B

ϕ dV,

the projection Q can be rewritten as

(1) Qϕ = P (ϕ) + P (ϕ)− P (ϕ)(0)

for functions ϕ ∈ L2.
Now, we are ready to prove the main theorem.

Theorem 3. Let u ∈ L2 be nonconstant radial and v ∈ b2. Then Tu and Tv

commute on b2 if and only if v is constant on B.
���������

. Assume TuTv = TvTu. Write v = f + g where the functions f , g are
holomorphic in L2. Suppose

f(z) =
∑

β

fβz
β, g(z) =

∑

β

gβz
β

are their power series representations of f and g, respectively. Fix a multi-index α

with |α| > 1. Note that u is still radial. By (1) and Lemma 2, we have

Tu(wα)(z) = Q(uwα)(z)

= P (uwα)(z) + P (uwα)(z)− P (uwα)(0)

=
(n+ |α|)!
n!α!

zα

∫

B

u(w)|wα|2 dV (w), z ∈ B.

539



For any multi-index γ, letting

ũ(γ) =
(n+ |γ|)!
n!γ!

∫

B

u(w)|wγ |2 dV (w)

for notational simplicity, we have

(2) Tu(wα)(z) = ũ(α)zα,

and hence

(3) TfTu(wα)(z) = ũ(α)zαf(z), z ∈ B.

On the other hand, by (1) and Lemma 2 again, we see

Tg(wα)(z) = Q(gwα)(z)(4)

= P (gwα)(z) + P (gwα)(z)− P (gwα)(0)

=
∑

β�α

gβ
(n+ |α| − |β|)!α!
(α− β)!(n+ |α|)!z

α−β

+
∑

α�β

gβ
(n+ |β| − |α|)!β!
(β − α)!(n + |β|)!z

β−α − gα
n!α!

(n+ |α|)!

and hence by (2)

TgTu(wα)(z) = ũ(α)Tg(wα)(z)

= ũ(α)
(∑

β�α

gβ
(n+ |α| − |β|)!α!
(α− β)!(n+ |α|)!z

α−β

+
∑

α�β

gβ
(n+ |β| − |α|)!β!
(β − α)!(n+ |β|)!z

β−α − gα
n!α!

(n+ |α|)!

)

for every z ∈ B. It follows from (3) that

Tf+gTu(wα)(z) = TfTu(wα)(z) + TgTu(wα)(z)(5)

= ũ(α)
(∑

β

fβz
α+β +

∑

β�α

gβ
(n+ |α| − |β|)!α!
(α− β)!(n+ |α|)!z

α−β

+
∑

α�β

gβ
(n+ |β| − |α|)!β!
(β − α)!(n+ |β|)!z

β−α − gα
n!α!

(n+ |α|)!

)

for every z ∈ B.
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On the other hand, by (2)

TuTf (wα)(z) = Tu(fwα)(z) =
∑

β

fβũ(α+ β)zα+β , z ∈ B.

Also, using (4), (2) and Lemma 2, we can see

TuTg(wα)(z) =
∑

β�α

gβ

(n+ |α| − |β|)!α!
(α− β)!(n+ |α|)! ũ(α− β)zα−β

+
∑

α�β

gβ

(n+ |β| − |α|)!β!
(β − α)!(n+ |β|)! ũ(β − α)zβ−α

− gα
n!α!

(n+ |α|)!

∫

B

u dV, z ∈ B.

It follows that

TuTf+g(wα)(z)(6)

= TuTf (wα)(z) + TuTg(wα)(z)

=
∑

β

fβũ(α+ β)zα+β +
∑

β�α

gβ
(n+ |α| − |β|)!α!
(α − β)!(n+ |α|)! ũ(α− β)zα−β

+
∑

α�β

gβ
(n+ |β| − |α|)!β!
(β − α)!(n+ |β|)! ũ(β − α)zβ−α − gα

n!α!
(n+ |α|)!

∫

B

u dV

for z ∈ B. Since Tf+gTu = TuTf+g by the assumption, we have, in particular,

Tf+gTu(wα) = TuTf+g(wα)

for every multi-index α. Hence, by (5) and (6), we have in particular

(7) fβũ(α) = fβũ(α+ β)

for every multi-index β.

For any multi-index γ, we recall

ũ(γ) =
(n+ |γ|)!
n!γ!

∫

B

u(w)|wγ |2 dV (w).

Since u is radial, abusing the notation u(|z|) = u(z) and using the integration in
polar coordinates together with Proposition 1.4.9 of [9], one can see

ũ(γ) = (2n+ 2|γ|)
∫ 1

0

u(r)r2|γ|+2n−1 dr.
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It follows from (7) that

fβ(2n+ 2|α|)
∫ 1

0

u(r)r2|α|+2n−1 dr(8)

= fβ(2n+ 2|α|+ 2|β|)
∫ 1

0

u(r)r2|α|+2|β|+2n−1 dr

for every multi-index β.
Now, assume v is not constant. Then, we have either f or g is not constant. First,

assume f is not constant and further fβ0 6= 0 for some β0 with |β0| > 1. Then,
(8) yields

(2n+ 2|α|)
∫ 1

0

u(r)r2|α|+2n−1 dr = (2n+ 2|α|+ 2|β0|)
∫ 1

0

u(r)r2|α|+2|β0|+2n−1 dr

for every multi-index α with |α| > 1. In other words, there exists a positive integer
m (= |β0|) such that

(9) (2n+ 2k)
∫ 1

0

u(r)r2k+2n−1 dr = (2n+ 2k + 2m)
∫ 1

0

u(r)r2k+2m+2n−1 dr

for every k = 1, 2, . . ..
Let H = {ξ ∈  : Re ξ > 1}. Consider the Mellin transform Mu of u defined by

Mu(ξ) =
∫ 1

0

u(r)rξ−1 dr, ξ ∈ H.

It is known thatMu is analytic on H . Moreover, by the Cauchy-Schwarz inequality,

we see

|Mu(ξ)|2 6
(∫ 1

0

|u|2 dr
)(∫ 1

0

r2(Re ξ−1) dr
)

6
(∫ 1

0

|u|2 dr
)

for every ξ ∈ H . It follows that Mu is bounded on H .
Define a function U on H by

U(ξ) = Mu(ξ + 2m)− ξ

ξ + 2m
Mu(ξ).

The observations above show U is also analytic and bounded onH . Moreover, by (9),

U(2n+ 2k) = 0, k = 1, 2, . . . .

Hence, U must be constant, with value 0 (see the proof of Theorem 2 of [4]), so

ξMu(ξ) = (ξ + 2m)Mu(ξ + 2m), ξ ∈ H.
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Hence, the analytic function ξ 7→ ξMu(ξ) is periodic with period 2m on H . Thus,
the function ξMu can be extended to whole plane  , so we can think of the function
ξ 7→ ξMu(ξ) as an entire function. Note that

ξMu(ξ) = O(|ξ|).

Hence ξMu(ξ) = λξ + δ for some constants λ, δ. On the other hand, since ξMu is

periodic, we must have λ = 0. Hence ξMu = δ and then clearly u is constant, which
is a contradiction.

Next, assume g is not constant. Taking the adjoint to TuTf+g = Tf+gTu, we see

Tg+fTu = TuTg+f .

Note that u is a still radial function. According to the case proved above, u must be
constant, which is also a contradiction.

Therefore v is constant, as desired.
The converse implication is clear. The proof is complete. �

In view of main theorem proved in this paper, one may naturally ask a question.
What is the situation without the radial condition on u ∈ L2 in Theorem 3? Specially,

for nonconstant f, g ∈ b2, we don’t know whether TfTg = TgTf implies f = αg + β

for some constants α, β.
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[4] Z̆. C̆uc̆ković and N.V. Rao: Mellin transform, monomial symbols, and commuting
Toeplitz operators. J. Funct. Anal. 154 (1998), 195–214.

[5] Y.J. Lee: Pluriharmonic symbols of commuting Toeplitz type operators. Bull. Austral.
Math. Soc. 54 (1996), 67–77.

[6] Y.J. Lee: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted
Bergman spaces. Canad. Math. Bull. 41 (1998), 129–136.

[7] Y.J. Lee and K. Zhu: Some differential and integral equations with applications to
Toeplitz operators. Integral Equation Operator Theory 44 (2002), 466–479.

[8] S. Ohno: Toeplitz and Hankel operators on harmonic Bergman spaces. Preprint.

543



[9] W. Rudin: Function Theory in the Unit Ball of � n . Springer-Verlag, Berlin-Heidelberg-
New York, 1980.

[10] D. Zheng: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Amer.
Math. Soc. 350 (1998), 1595–1618.

Author’s address: � ����� ��� ���  !�! , Department of Mathematics, Mokpo National
University, Chonnam 534-729, Korea, e-mail: yjlee@mokpo.ac.kr.

544


		webmaster@dml.cz
	2020-07-03T14:48:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




