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Abstract. The Cantor-Bernstein-Schröder theorem of the set theory was generalized by
Sikorski and Tarski to σ-complete boolean algebras, and recently by several authors to
other algebraic structures. In this paper we expose an abstract version which is applicable
to algebras with an underlying lattice structure and such that the central elements of this
lattice determine a direct decomposition of the algebra. Necessary and sufficient conditions
for the validity of the Cantor-Bernstein-Schröder theorem for these algebras are given.
These results are applied to obtain versions of the Cantor-Bernstein-Schröder theorem for
σ-complete orthomodular lattices, Stone algebras, BL-algebras, MV -algebras, pseudo MV -
algebras,  Lukasiewicz and Post algebras of order n.
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0. Introduction

The famous Cantor-Bernstein-Schröder theorem (CBS theorem, for short) states

that, if a set X can be embedded into a set Y and viceversa, then there is a one-to-one
function of X onto Y . At the end of the forties, Sikorski [20] (see also Tarski [21])

showed that the CBS theorem is a particular case of a statement on σ-complete
boolean algebras. Recently several authors extended Sikorski’s result to classes of

algebras more general than boolean algebras, like orthomodular lattices [9], MV -
algebras [8], pseudo MV -algebras [15].

During the preparation of this paper the author was supported by a Fellowship from the
FOMEC Program.
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The aim of this paper is to give a general algebraic frame for the validity of the

CBS theorem, from which all the versions mentioned above can be derived, as well
as versions of the CBS theorem for residuated lattices [18], Stone algebras [1], BL-
algebras [13],  Lukasiewicz and Post algebras of order n [1], [3].

The abstract frame for the CBS theorem is given by the L -varieties of algebras,

introduced in Section 1. In Section 2 we show that there are many examples of
L -varieties. Necessary and sufficient conditions for the validity of the CBS theorem

in algebras belonging to an L -variety are given in Section 3, which is the main
section of this paper. In Section 4 we look for some simple global conditions on

algebras of an L -variety that are sufficient for the validity of the CBS theorem.
Finally, in Section 5 we give a version of the CBS theorem for partially ordered sets.

1. Basic notions

We recall from [2], [19] some notions of the lattice theory that will play an impor-
tant role in what follows. Let L = 〈L,∨,∧〉 be a lattice. Given a, b, c in L, we write:

(a, b, c)D iff (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c); (a, b, c)D∗ iff (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
and (a, b, c)T iff (a, b, c)D, (a, b, c)D∗ hold for all permutations of a, b, c. In this case

we say that {a, b, c} is a distributive triple. A lattice L is called bounded provided
it has a smallest element 0 and a greatest element 1. An element z of a lattice L is

called a neutral element iff for all elements a, b ∈ L we have (a, b, z)T . An element z
of a bounded lattice is called a central element iff z is a neutral element having a

complement, which we shall denote by ¬z. The set of all central elements of L is
called the center of L and is denoted by Z(L). An interval [a, b] of a lattice A is

defined as the set {x ∈ A : a 6 x 6 b}. A sequence (an)n∈ω of elements of a lattice L
with 0 is called orthogonal iff an ∧ am = 0 whenever m, n are distinct elements.

In particular, L is called orthogonally σ-complete iff, for all orthogonal sequences
(an)n∈ω,

∨
n∈ω

an exists . A subset S of L is called a σ-sublattice of L when it contains

with any countable subset X of S also
∧
X and

∨
X .

Proposition 1.1. For each bounded lattice L, its center Z(L) is a boolean

sublattice of L.

Notation. The supremum (infimum) in Z(L) of a family (ai)i∈I of Z(L), if it

exists, will be denoted by
⊔
i∈I

ai ( �
i∈I

ai), to distinguish it from the supremum
∨
i∈I

ai

(infimum
∧
i∈I

ai ) in L, which need not belong to Z(L).

Definition 1.2. A variety V of algebras is an L -variety iff
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(1) there are terms of the language of V defining on each A ∈ V operations ∨, ∧,

0, 1 such that L(A) = 〈A,∨,∧, 0, 1〉 is a bounded lattice;
(2) for all A ∈ V and for all z ∈ Z(L(A)), the binary relation Θz on A defined by

aΘzb iff a ∧ z = b ∧ z is a congruence on A, such that A ∼= A/Θz ×A/Θ¬z.

For an algebra A in an L -variety, we will write simply Z(A) instead of Z(L(A)).
Observe that each subvariety of an L -variety is an L -variety.

Definition 1.3. Let V be an L -variety of algebras of similarity type τ . For all

A ∈ V , all z ∈ Z(A) and all operation symbols f ∈ τ , we define fz(x1, . . . , xn) = z∧
f(x1, . . . , xn), where n is the arity of f . Moreover, we define [0, z]A = 〈[0, z], (fz)f∈τ 〉.

Taking into account that for each f ∈ τ of arity n and elements x1, . . . , xn in A,
xiΘz(xi ∧ z) for i = 1 . . . n; we have f(x1, . . . , xn)Θzf(x1 ∧ z, . . . , xn ∧ z), i.e., f(x1 ∧
z, . . . , xn ∧ z) ∧ z = f(x1, . . . , xn) ∧ z. Now it is easy to prove the following result:

Proposition 1.4. The correspondence x/Θz 7→ x ∧ z defines an isomorphism

from A/Θz onto [0, z]A. Morever, the correspondence x 7→ (x ∧ z, x∧¬z) defines an

isomorphism from A onto A/θz ×A/θ¬z.

2. Examples of L -varieties

Example 2.1. The variety L01 of bounded lattices and its subvarieties. In par-

ticular, the subvarieties of modular and of distributive lattices.

Example 2.2. A lattice with involution [16] is an algebra 〈L,∨,∧,∼〉 such that

〈L,∨,∧〉 is a lattice and ∼ is a unary operation on L that fulfils the following con-
ditions:

(i) ∼∼ x = x and (ii) ∼ (x ∨ y) =∼ x∧ ∼ y.

The variety Li of bounded lattices with involution which satisfy the Kleene equation

(iii) x∧ ∼ x = (x∧ ∼ x)∧ (y ∨ ∼ y) is an L -variety. Indeed, suppose L ∈ Li and let
z ∈ Z(L). It is clear that Θz is a lattice congruence. To see that Θz also preseves
the operation ∼, observe first that ∼ z = ¬z. Indeed, we have

¬z = ¬z ∧ 1 = ¬z ∧ (∼ z∨ ∼ ¬z) = (¬z ∧ ∼ z) ∨ (¬z∧ ∼ ¬z)
6 (¬z ∧ ∼ z) ∨ (z ∨ ∼ z) = z ∨ ∼ z.

Hence ¬z = ¬z∧ (z∨∼ z) = ¬z∧∼ z, and then z∨∼ z > z∨¬z = 1. Consequently,
taking into account properties (i) and (ii), we can conclude that ∼ z is the comple-

ment of z, i.e., ∼ z = ¬z. Suppose now that x∧z = y∧z. Then ∼ x∨¬z =∼ y∨¬z,
which implies z ∧ x = z ∧ y. This shows that ∼ is preserved by Θz.
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Subvarieties of Li are the variety OL of ortholattices [2], [19], characterized by

the equation x∧ ∼ x = 0, and the variety K of Kleene algebras [1], characterized by
the distributive law. The intersection OL ∩K is the variety B of boolean algebras.
An important subvariety of OL is the variety OML of orthomodular lattices [2], [19].

Example 2.3. The variety Bω of pseudocomplemented distributive lattices [1].
We prove that the pseudo complement ∗ has Θz-compatibility. Indeed, let B ∈ Bω,

z ∈ Z(B), and a, b ∈ B. If a ∧ z = b ∧ z, then (a ∧ z) ∨ ¬z = (b ∧ z) ∨ ¬z. Hence
a ∨ ¬z = b ∨ ¬z because z ∈ Z(A). Consequently, (a ∨ ¬z)∗ = (b ∨ ¬z)∗ and

a∗ ∧ z = b∗ ∧ z.
The variety of Stone algebras S T is the subvariety of Bω characterized by the

equation (x ∧ y)∗ = x∗ ∨ y∗ [1].

Example 2.4. The variety RL of residuated lattices. A residuated lattice is an
algebra 〈A,∨,∧,�,→, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 satisfying the following axioms:

1. 〈A,�, 1〉 is an abelian monoid,
2. L(A) = 〈A,∨,∧, 0, 1〉 is a bounded lattice,

3. (x� y) → z = x→ (y → z),
4. ((x→ y)� x) ∧ y = (x→ y)� x,

5. (x ∧ y) → y = 1.

From [18, Lemma 1.4] it follows that RL is an L -variety. Subvarieties of RL are
the variety H of Heyting algebras [1] characterized by the equation x � y = x ∧ y,

and the variety BL of BL-algebras [13] characterized by the equations

(i) x ∧ y = x� (x→ y) and (ii) (x→ y) ∨ (y → x) = 1.

Important subvarieties of BL are the variety MV of MV -algebras [6], character-
ized by the equation ¬¬x = x (see [13]), the variety PL of PL-algebras, character-
ized by the equations (¬¬z�((x�z) → (y�z))) → (x→ y) = 1 and x∧¬x = 0 [13],

[7], and the variety H L of linear Heyting algebras, i.e., Heyting algebras satisfying
the equation (x→ y) ∨ (y → x) = 1 (also known as Gödel algebras [13]).

Example 2.5. Ln, the varieties of  Lukasiewicz and of Post algebras of order

n > 2 [1], as well as the various types of  Lukasiewicz-Moisil algebras which are

considered in [3].

Example 2.6. PMV , the variety of pseudo MV -algebras. A pseudo MV -
algebra [15] is an algebra 〈A,⊕,− ,∼ , 0, 1〉 of type 〈2, 1, 1, 0, 0〉 such that when defining

the derived operations by y�x := (x−⊕y−)∼, x∨y = x⊕(x∼�y), x∧y := x�(x−⊕y)
the following axioms are satisfied:

1. x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
2. x⊕ 0 = 0⊕ x = x and x⊕ 1 = 1⊕ x = 1,
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3. 1∼ = 0 and 1− = 0,

4. (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,
5. x⊕ (x∼ � y) = y ⊕ (y∼ � x) = (x� y−)⊕ y = (y � x−)⊕ x,
6. x� (x− ⊕ y) = (x ⊕ y∼)� y,

7. (x−)∼ = x.
PMV is categorically equivalent to lattice ordered (not necessarily abelian)

groups with a strong unit [10]. From this result it is not very hard to prove that
PMV is an L -variety.

3. The CBS property

The aim of this section is to give a formulation of the CBS theorem for algebras

in L -varieties. We begin by proving some technical results.

Proposition 3.1. Let L be a bounded lattice. Then following assertions hold

for all z ∈ Z(L):
1. Z([0, z]) = Z(L) ∩ [0, z].
2. If x ∈ Z([0, z]) then the complement of x relative to [0, z] is ¬zx = z ∧ ¬x.

��������

. Let x ∈ Z([0, z]). We first prove that, if x is a neutral element in [0, z],
then x is a neutral element in L. Let a, b ∈ L.

a (a, b, x)D: x∧(a∨b) = (x∧(a∨b))∧(z∨¬z) = (x∧(a∨b)∧z)∨(x∧(a∨b)∧¬z) =
(x∧(a∨b)∧z)∨0 = x∧((a∧z)∨(b∧z)) = (x∧(a∧z))∨(x∧(b∧z)) = (x∧a)∨(x∧b).
By the same argument it is possible to check (b, a, x)D.

b (x, b, a)D: a∧(x∨b) = (a∧(x∨b))∧(z∨¬z) = (a∧(x∨b)∧z)∨(a∧(x∨b)∧¬z) =
((a∧z)∧((x∨b)∧z))∨(a∧((x∧¬z)∨(b∧¬z))) = ((a∧z)∧((x∧z)∨(b∧z)))∨(a∧(0∨
(b∧¬z))) = ((a∧z)∧(x∨(b∧z)))∨(a∧b¬z) = ((a∧z∧x)∨(a∧b∧z))∨(a∧b¬z) =
(a∧x)∨((a∧b∧z)∨(a∧b¬z)) = (a∧x)∨((a∧b)∨(z∨¬z)) = (a∧x)∨(a∧b). By
the same argument it is possible to check (b, x, a)D, (x, a, b)D and (a, x, b)D.

c (a, b, x)D∗: x∨(a∧b) = (x∨(a∧b))∧(z∨¬z) = ((x∨(a∧b))∧z)∨((x∨(a∧b))∧
¬z) = ((x∧z)∨(a∧b∧z))∨((x∧¬z)∨(a∧b∧¬z)) = (x∨(a∧b∧z))∨(0∨(a∧b∧
¬z)) = (x∨((a∧z)∧(b∧z)))∨(a∧b∧¬z) = ((x∨(a∧z))∧(x∨(b∧z)))∨(a∧b∧¬z) =
((x∨a)∧(x∨z)∧(x∨b)∧(x∨z))∨(a∧b∧¬z) = ((x∨a)∧(x∨b)∧z)∨(a∧b∧¬z) =
((x∨a)∧(x∨b))∨(a∧b∧¬z))∧(z∨(a∧b∧¬z)) = (x∨a)∧(x∨b)∧(z∨(a∧b)) =
(x ∨ a) ∧ (x ∨ b)∧ (z ∨ a) ∧ (z ∨ b) = (x ∨ a) ∧ (x ∨ b). By the same argument it

is possible to check that (b, a, x)D∗.
d (x, b, a)D∗: a∨(x∧b) = (a∨(x∧b))∧(z∨¬z) = ((a∨(x∧b)∧z)∨((a∨(x∧b)∧¬z) =

((a ∧ z)∨ (x ∧ b∧ z)) ∨ ((a ∧ ¬z) ∨ (x ∧ b ∧ ¬z)) = ((a ∧ z)∨ x) ∧ ((a ∧ z)∨ (b ∧
z))) ∨ ((a ∧ ¬z) ∨ 0) = ((a ∨ x) ∧ (a ∨ b) ∧ z) ∨ (a ∧ ¬z) = (((a ∨ x) ∧ (a ∨ b)) ∨
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(a∧¬z))∧ (z ∨ (a∧¬z)) = (a∨ x) ∧ (a∨ b)∧ (z ∨ a) = (a∨ x)∧ (a∨ b). By the

same argument it is possible to check (b, x, a)D∗, (x, a, b)D∗ and (a, x, b)D∗.

Thus x is neutral in L. We proceed now to prove that if x is complemented in
[0, z] then x is also complemented in L. In fact, let ¬zx be the complement of x in

[0, z] and define x1 by x1 = ¬zx ∨ ¬z. Hence x ∨ x1 = x ∨ (¬zx ∨ ¬z) = z ∨ ¬z = 1
and since x is a neutral element, x ∧ x1 = 0. Thus x1 is the complement of x in L.

From the two preceding results, it follows that x ∈ Z(L).
On the other hand, it is easy to verify that if x is a neutral element in L then

x is a neutral element in [0, z]. Moreover, if x has a complement ¬x in L, then

¬zx = ¬x ∧ z is the complement of x in [0, z]. Therefore if x ∈ [0, z] is a central
element in the lattice L, then x is a central element in the lattice [0, z]. �

Proposition 3.2. Let V be an L -variety, A,B ∈ V , α : A → B an isomor-

phism. Then

(1) for all z ∈ Z(A), α(z) ∈ Z(B), and the restriction of α to Z(A) is a boolean

algebra isomorphism from Z(A) onto Z(B);
(2) for all z ∈ Z(A), the restriction of α to [0, z]A is an isomorphim from [0, z]A

onto [0, α(z)]B .

Definition 3.3. Let V be an L -variety. We say that A ∈ V possesses the

CBS property iff the following holds: Given B ∈ V and b ∈ Z(B) such that there is
a ∈ Z(A) with A ∼= [0, b]B and B ∼= [0, a]A, it follows that A ∼= B.

Proposition 3.4. Let V be an L -variety. The following conditions are equiva-

lent for each A ∈ V :

(1) A possesses the CBS property.

(2) For all b ∈ Z(A), if A ∼= [0, b]A, then for all z ∈ Z(A) such that z > b we have

A ∼= [0, z]A.


��������
. We suppose that A possesses the CBS property. Let z, b ∈ Z(A)

be such that z > b and A ∼= [0, b]A. We denote by B the V -algebra [0, z]A. By
Proposition 3.1, b ∈ Z(B). Now we have A ∼= [0, b]B and B ∼= [0, z]A (for this we

use the identity id[0,z]), and we conclude that A ∼= [0, z]A. For the converse, suppose
that B ∈ V , a ∈ Z(A), b ∈ Z(B) and that there are morphisms α : A→ [0, b]B and

β : B → [0, a]A. If z = β(b), then A ∼= [0, z]A and a > z. Now by the hypothesis
A ∼= [0, a]A. This proves that A ∼= B. �

Let V be an L -variety, A ∈ V , b ∈ Z(A) and let α : A → [0, b]A be an isomor-

phism. If we consider z ∈ Z(A) such that z > b and the V -algebra B = [0, z]A, then
there is an isomorphism β : B → [0, a]A (for instance we can take β = id[0,z]). We
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define recursively two sequences, (an)n∈ω in A, (bn)n∈ω in B, called respectively the

A-sequence and the B-sequence as follows:

a0 = 1A, b0 = 1B = z,

a1 = β(z) = a, b1 = α(a0) = b,

an+1 = β(bn), bn+1 = α(an).

Then the sequence

(a2 ∧ ¬a3, a4 ∧ ¬a5, . . .) = (a2n ∧ ¬a2n+1)n∈ω, n>1

is called a CBS sequence. Fixing b, z as above, then for each pair of isomorphisms

α : A → [0, b]B , β : B → [0, a]A we have a CBS sequence, which we will denote by
〈b, z, α, β〉.

Proposition 3.5. Let V be an L -variety, A ∈ V , and let 〈b, z, α, β〉 be a

CBS sequence. Then

(1) the A-, B-sequences are strictly decreasing in Z(A),
(2) 〈b, z, α, β〉 is an orthogonal sequence in Z(A), and βα(a2n ∧¬a2n+1) = a2n+2 ∧

¬a2n+3 for n > 0.

��������

. By Proposition 3.2 it is easy to see that a1 = a, b1 = b, and that

all an, bn are central elements. Hence 〈b, z, α, β〉 is in Z(A). By the injectivity of α
and β, (an)n∈ω, (bn)n∈ω are strictly decreasing. Let m,n ∈ ω such that m < n.

Since (an)n∈ω is strictly decreasing, (a2m ∧ ¬a2m+1) ∧ (a2n ∧ ¬a2n+1) 6 (a2m ∧
¬a2m+1)∧(a2m+1∧¬a2n+1) = 0. Finally, βα(a2n∧¬a2n+1) = β(α(a2n)∧α(a2n+1)) =
β(α(a2n) ∧ b ∧ ¬α(a2n+1)) = β(b2n+1 ∧ ¬b2n+2) = β(b2n+1) ∧ a ∧ ¬β(b2n+2) =
a2n+2 ∧ ¬a2n+3. �

Definition 3.6. Let V be an L -variety and A ∈ V . Then A is called CBS

complete iff for all b ∈ Z(A) such that A ∼=V [0, b]A and for all z ∈ Z(A) such that

z > b there exists a CBS sequence 〈b, z, α, β〉 which has the (boolean) supremum⊔
n>1

(a2n ∧ ¬a2n+1).

Theorem 3.7. Let V be an L -variety. Then the following conditions are

equivalent for each A ∈ V :

(1) A is CBS complete.

(2) A possesses the CBS property.

��������

. Suppose that A is CBS complete. Let z, b ∈ Z(A) be such that z > b,
A ∼= [0, b]A and B = [0, z]A. We want to prove that A ∼= [0, z]A = B. By the
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hypothesis there are isomorphisms, α : A → [0, b]B, β : B → [0, a]A defining A-,

B-sequences

a0 =1A, b0 = 1B = z,

a1 =a, b1 = b,

an+1 =β(bn), bn+1 = α(an)

and the CBS sequence 〈b, z, α, β〉 = (a2n ∧ ¬a2n+1)n∈ω, n>1 with y =
⊔

n>1

(a2n ∧

¬a2n+1). Let x = y ∨ ¬a. By Proposition 1.4 we have

(1) A ∼= [0,¬x]× [0, x].

Since y ∈ Z([0, a]) by Proposition 3.1, we have

(2) [0, a]A ∼= [0,¬ay]× [0, y] = [0, a ∧ ¬y]× [0, y].

But ¬x = a ∧ ¬y, hence

(3) [0,¬x] = [0, a ∧ ¬y].

By Proposition 3.2,

[0, x] ∼= [0, βα(x)] =
[
0, βα

( ⊔

n∈ω

a2n ∧ ¬a2n+1

)]
=

[
0,

⊔

n∈ω

βα(a2n ∧ ¬a2n+1)
]
,

and by Proposition 3.5, βα(a2n ∧ ¬a2n+1) = (a2n+2 ∧ ¬a2n+3). Thus we have

(4) [0, x] ∼=
[
0,

⊔

n>1

(a2n ∧ ¬a2n+1)
]

= [0, y].

From (1), (2), (3) and (4) we obtain that A ∼= [0, a], hence A ∼=V B.
Suppose now that A possesses the CBS property. Let b ∈ Z(A) be such that we can

find an isomorphism α : A→ [0, b]A and a z ∈ Z(A) such that z > b. By hypothesis
there is an isomorphim β : [0, z]A → A. The corresponding A, [0, z]A-sequences have

the form

a0 = 1A, b0 = z,

a1 = β(b0) = 1, b1 = α(a0) = z,

a2 = β(b1) = β(z), b2 = α(a1) = z,

a3 = β(b2) = β(z), b3 = α(a2) = αβ(z),
...

...
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It is easy to show (by induction) that a2n = a2n+1 for all n > 1. Thus we have

〈b, z, α, β〉 = (0, 0, 0, . . .) and the boolean supremum is 0. Therefore there exists at
least one CBS sequence associated with z > b admitting the boolean supremum.
Therefore A is CBS complete. �

Corollary 3.8. Let V be an L -variety and A ∈ V . If Z(A) is an orthogonally

σ-complete lattice, then A possesses the CBS property.

Corollary 3.9 (Sikorski). The σ-complete Boolean algebras possesses the CBS
property.

Corollary 3.10. Let A be a CBS complete algebra in an L -variety V . Then

A ∼= A2 iff A ∼= An for all n > 2.


��������
. It is an easy adaptation of the proof of Proposition 3.2 in [9]. �

Remark 3.11. It is worth noting that the σ-completenees condition for Boolean

algebras is not necessary for the CBS property, as is shown by the Boolean alge-
bra B � of finite and cofinite subsets of � . B � is not even orthogonally σ-complete.

Indeed, {2n}n∈ � is an orthogonal sequence in B � , but
∨

n∈ � {2n} is not in B � . By

cardinality arguments it is very easy to see that B � ∼= [∅, X ]B � iff X is a cofinite

set. Thus B � possesses the CBS property. On the other hand, there are Boolean
algebras which do not possesses the CBS property. For instance, Hanf constructed

a Boolean algebra B such that B ∼= B3 but B 6∼= B2 [17, §6.2]. This means that
B ∼= [(0, 0, 0), (0, 0, 1)]B3 but B 6∼= [(0, 0, 0), (0, 1, 1)]B3.

4. Centers and σ-completeness

In general, the σ-completeness of an algebra A in an L -variety does not imply
that Z(A) is an orthogonally σ-complete lattice, as the following example shows:

Example 4.1. Let B � be as in Remark 3.11 and let H � be the Heyting algebra of

all ideals of B � . We observe that H � is a complete Heyting algebra such that Z(H � ),
which is formed by the principal ideals generated by the elements of B � , is not

orthogonally σ-complete. Indeed, the principal ideals (〈2n〉)n∈ � form an orthogonal
sequence in Z(H � ), but obviously this sequence does not have a central supremum. It

is worth noting that H � possesses the CBS property, as can be shown by cardinality
arguments similar to those used in Remark 3.11.
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In what follows we give examples of L -varieties V with the property that

σ-completeness conditions on the algebras in V guarantee the corresponding σ-com-
pleteness of their centers, and then, in the light of Corollary 3.8, the CBS property
of these algebras.

4.1. Orthomodular lattices.

Proposition 4.2. Let L be a σ-complete orthomodular lattice and (an)n∈ω a

sequence in Z(L). Then
∨

n∈ω
an ∈ Z(L), i.e.,

⊔
n∈ω

an =
∨

n∈ω
an.


��������
. The proof is an easy adaptation of the proof of (5.14) and (29.16)

in [19]. �

4.2. Stone algebras.

Proposition 4.3. Let S be a Stone algebra and (ai)i∈I a family of central

elements such that there exist
∧
i∈I

ai and
∨
i∈I

ai. Then �
i∈I

ai =
∧
i∈I

ai (i.e.
∧
i∈I

ai ∈
Z(S)) and

⊔
i∈I

ai = ¬¬ ∨
i∈I

ai. Thus if S is a σ-complete, (orthogonally σ-complete)

Stone algebra then Z(S) is a σ-complete (orthogonally σ-complete) lattice.

��������

. It is well known that Z(S) = {x ∈ S : ¬¬x = x} (see [1]). Let a =
∧
i∈I

ai.

For all i ∈ I , if a 6 ai, then ¬¬a 6 ¬¬ai = ai. Thus ¬¬a 6
∧
i∈I

ai = a, and since

a 6 ¬¬a, we have a ∈ Z(S). From the basic properties of the pseudocomplement it

follows that ¬¬ ∨
i∈I

ai ∈ Z(S) and it is easy to see that ¬¬ ∨
i∈I

ai is the least boolean

upper bound of (ai)i∈I . �

4.3. BL-algebras.

Lemma 4.4 [5]. For each A ∈ BL , let Idp(A) = {x ∈ A : x�x = x} be the set

of all idempotent elements of A. Idp(A) is a Heyting algebra, Z(A) is a subalgebra

of Idp(A) and z ∈ Idp(A) iff z � a = z ∧ a for all a ∈ A.

Lemma 4.5. Let B be a BL-algebra and (ai)i∈I a sequence in B such that
∨
i∈I

ai

exists. Then we have

1. a� ∨
i∈I

ai =
∨
i∈I

(a� ai),
( ∨

i∈I

ai

)
→ b =

∧
i∈I

(ai → b), a ∧ ∨
i∈I

ai =
∨
i∈I

(a ∧ ai) and

¬
( ∨

i∈I

ai

)
=

∧
i∈I

¬ai;

2. if (ai)i∈I is a family in Idp(B) then
∨
i∈I

ai ∈ Idp(B).
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��������
. Item 1) follows from basic the properties of residuated lattices [14]. To

prove 2), let a =
∨
i∈I

ai. By item 1), we have a � a = a � ∨
i∈I

ai =
∨
i∈I

(a � ai) =
∨
i∈I

(a ∧ ai) =
∨
i∈I

ai = a. �

Lemma 4.6 [5]. Let B be a BL-algebra. The following conditions are equivalent:

1. z ∈ Z(B),
2. z ∨ ¬z = 1,

3. there is v ∈ Idp(b) such that z = ¬v.

Proposition 4.7. Let B be a BL-algebra and (ai)i∈I a sequence in Z(B) such

that there exist
∨
i∈I

ai and
∧
i∈I

ai. Then
⊔
i∈I

ai = ¬¬ ∨
i∈I

ai and �
i∈I

ai =
∧
i∈I

ai.


��������
. If (ai)n∈I is a sequence in Z(B) with a =

∧
i∈I

ai, by Lemma 4.6 it

suffices to show that a ∨ ¬a = 1. According to Lemma 4.5 we have a ∨ ¬a =( ∧
i∈I

ai

)
∨¬a = ¬

( ∨
n∈I

¬ai

)
∨¬a = ¬

(( ∨
i∈I

¬ai

)
∧ a

)
= ¬ ∨

i∈I

(¬ai ∧ a) = 1, therefore

�
i∈I

ai =
∧
i∈I

ai. According to Lemmas 4.6.2, 4.5.3, we have ¬¬ ∨
i∈I

ai ∈ Z(B) and

¬¬ ∨
i∈I

ai is a boolean upper bound of (ai)i∈I . Moreover, if b is a boolean upper

bound of (ai)i∈I then
∨
i∈I

ai 6 b hence, ¬¬ ∨
i∈I

ai 6 b, thus
⊔
i∈I

ai = ¬¬ ∨
i∈I

ai. �

Corollary 4.8. If B is a σ-complete (orthogonally σ-complete) BL-algebra then

Z(B) is a σ-complete (orthogonally σ-complete) lattice.

Proposition 4.9. If B is a σ-complete (orthogonally σ-complete) PL-algebra

or MV-algebra then Z(B) is a σ-sublattice (orthogonal σ-sublattice) of L(B).

��������

. If B is a PL-algebra then according to Proposition 3.1 in [7], Idp(B) =
Z(B). Thus by Lemma 4.5.2,

⊔
n∈ω

an =
∨

n∈ω
an for (an)n∈ω in Z(B). If B is an

MV -algebra then using Lemma 4.5.2 and ¬¬x = x we have the same result. �

4.4.  Lukasiewicz and Post algebras of order n.

Proposition 4.10 [4, Lemma 3.1]. Let A be a  Lukasiewicz algebra of order

n > 2. If A is σ-complete, then Z(A) is a σ-sublattice of L(A).

4.5. Pseudo MV -algebra.
Let A be a pseudo MV -algebra. If A is σ-complete, then A is an MV -algebra

(see [10, Theorem 4.2] and [11, Proposition 2.8]). Thus by Proposition 4.7, Z(A) is a
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σ-sublattice of L(A) and if A is orthogonally σ-complete then Z(A) is an orthogonally

σ-complete lattice (see Proposition 3.4 in [15]).

5. CBS-type theorem for posets

The category of posets and monotonic functions will be denoted by Pos. Let

A be a poset and X ⊆ A. X is decreasing (increasing) iff for all x ∈ X , if a 6 x

(a > x), then a ∈ X . The set of all decreasing sets in A is denoted by O(A), and

it is well known that O(A) has the structure of a complete Heyting algebra. For
every a ∈ A we denote by ↓ a the decreasing set {x ∈ A : x 6 a}, and it is easy

to show that ↓ a is compact in O(A). Moreover, X ∈ O(A) is compact iff there
exist a1, . . . , an in A such that X = (↓ a1) ∪ . . . ∪ (↓ an). It is easy to show that

Z(O(A)) = {B ∈ O(A) : B is an increasing set} and that Z(O(A)) is a complete
lattice.

Lemma 5.1. Let A, B be posets. If O(A) and O(B) are isomorphic then A and

B are isomorphic.

Theorem 5.2. Let A, B be posets and let X ⊆ A and Y ⊆ B be simultaneously

increasing and decreasing sets. If there are isomorphisms α : A→ Y and β : B → X ,

then A ∼=Pos B.


��������
. We first prove that O(A) ∼=Pos [∅, Y ]. For all S ∈ O(A) we have

S =
⋃

a∈S

(↓ a) and ↓ α(a) ⊆ Y , since Y is decreasing. Consequently, if ψ : O(A) →
[∅, Y ] is such that S =

⋃
a∈S

(↓ a) 7→ ⋃
a∈S

(↓ α(a)), then it is easy to show that ψ is

an order isomorphism under ⊆. Analogously, we can obtain that O(B) ∼=Pos [∅, X ].
But these Pos-isomorphisms are also Heyting isomorphisms. Then by Theorem 3.7,
O(A) ∼= O(B) as Heyting algebras. Finally, in view of Lemma 5.1 we have A ∼=Pos B.

�

Acknowledgement. The author expreses his gratitude to Roberto Cignoli for
his advice during the preparation of this paper, and to Daniele Mundici and Mirko

Navara for their comments which improved its final version.

620



References

[1] R. Balbes and Ph. Dwinger: Distributive Lattices. University of Missouri Press, Colum-
bia, 1974.

[2] G. Birkhoff: Lattice Theory, Third Edition. AMS, Providence, 1967.
[3] V. Boicescu, A, Filipoiu, G. Georgescu and S. Rudeanu:  Lukasiewicz-Moisil Algebras.

North-Holland, Amsterdam, 1991.
[4] R. Cignoli: Representation of  Lukasiewicz and Post algebras by continuous functions.

Colloq. Math. 24 (1972), 127–138.
[5] R. Cignoli: Lectures at Buenos Aires University. 2000.
[6] R. Cignoli, M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued

Reasoning. Kluwer, Dordrecht, 2000.
[7] R. Cignoli and A. Torrens: An algebraic analysis of product logic. Multiple Valued Logic
5 (2000), 45–65.

[8] A. De Simone, D. Mundici and M. Navara: A Cantor-Bernstein Theorem for complete
MV -algebras. Czechoslovak Math. J 53 (2003), 437–447.

[9] A. De Simone, M. Navara and P. Pták: On interval homogeneous orthomodular lattices.
Comment. Math. Univ. Carolin. 42 (2001), 23–30.

[10] A. Dvurečenskij: Pseudo MV -algebras are intervals in l-groups. J. Austral. Math. Soc.
(Ser. A) 72 (2002), 427–445.

[11] A. Dvurečenskij: On pseudo MV -algebras. Soft Computing 5 (2001), 347–354.
[12] G. Georgescu and A. Iorgulescu: Pseudo MV -algebras.
[13] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[14] U. Höhle: Commutative, residuated l-monoids. In: Non-Classical Logics and their Ap-

plications to Fuzzy Subset. A Handbook on the Mathematical Foundations of Fuzzy Set
Theory (U. Höhle, E. P. Klement, eds.). Kluwer, Dordrecht, 1995.

[15] J. Jakubík: A theorem of Cantor-Bernstein type for orthogonally σ-complete pseudo
MV -algebras. Czechoslovak Math. J. To appear.

[16] J.A. Kalman: Lattices with involution. Trans. Amer. Math. Soc. 87 (1958), 485–491.
[17] S. Koppelberg: Handbook of Boolean Algebras, Vol. 1 (J. Donald Monk, ed.). North

Holland, Amsterdam, 1989.
[18] T. Kowalski and H. Ono: Residuated Lattices: An algebraic glimpse at logics without

contraction. Preliminary report. 2000.
[19] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Springer-Verlag, Berlin, 1970.
[20] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math.

1 (1948), 140–144.
[21] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.

Author’s address: Departamento de Matemática, Facultad de Ciencias Exactas y Na-
turales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina,
e-mail: hfreytes@dm.uba.ar.

621


		webmaster@dml.cz
	2020-07-03T14:51:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




