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Abstract. In this paper the tensor products of Hilbert modules over locally C∗-algebras
are defined and their properties are studied. Thus we show that most of the basic properties
of the tensor products of Hilbert C∗-modules are also valid in the context of Hilbert modules
over locally C∗-algebras.
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1. Introduction

Hilbert modules over locally C∗-algebras generalize the notion of Hilbert C∗-
modules by allowing the inner product to take values in a locally C∗-algebra. They

were first considered independently by A. Mallios in [7] and N.C. Phillips in [8],
where the latter showed that most of the basic properties of Hilbert C∗-modules

are valid for Hilbert modules over locally C∗-algebras. The Hilbert modules over
locally C∗-algebras are also studied in [4], [5] and elsewhere. Thus in [4] the present

author proved a stabilization theorem for countably generated Hilbert modules over
locally C∗-algebras and in [5] she proved a version of the classical KSGNS (Kas-

parov, Stinespring, Gel’fand, Segal, Naimark) construction in the context of Hilbert
modules over locally C∗-algebras.

In this paper we will define the exterior tensor product and the interior tensor
product of Hilbert modules over locally C∗-algebras and we will show that some

properties of the tensor products of Hilbert C∗-modules are valid in the context of
Hilbert modules over locally C∗-algebras.
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2. Preliminaries

A locally C∗-algebra is a complete Hausdorff complex topological ∗-algebra A
whose topology is determined by its continuous C∗-seminorms in the sense that the
net {ai}i∈I converges to 0 if and only if the net {p(ai)}i∈I converges to 0 for every
continuous C∗-seminorm p on A.

If A is a locally C∗-algebra and S(A) is the set of all continuous C∗-seminorms
on A, then for each p ∈ S(A), Ap = A/ ker(p) is a C∗-algebra in the norm induced
by p and A = lim←−p

Ap. The canonical map from A onto Ap, p ∈ S(A), will be denoted

by πp, and the image of a under πp will be denoted by ap. The connecting maps of

the inverse system {Ap}p∈S(A) will be denoted by πpq , q, p ∈ S(A), p > q.

A continuous ∗-morphism ϕ from A into L(H), the C∗-algebra of all bounded
linear operators on the Hilbert space H , is called a ∗-representation of A on H .
If A and B are locally C∗-algebras we will denote by A ⊗ B the injective tensor
product of A and B which is the completion of A ⊗alg B in the topology induced

by the family of C∗-seminorms {ϑ(p,q)}(p,q)∈S(A)×S(B), where ϑ(p,q)(c) = sup{‖((ϕ⊗
ψ)◦(πp⊗πq))(c)‖ ; ϕ is a ∗-representation of Ap and ψ is a ∗-representation of Bq}.
Moreover, A ⊗ B = lim←−(p,q)

Ap ⊗ Bq, where Ap ⊗ Bq is the injective tensor product

of the C∗-algebras Ap and Bq (see [1]).

Now we recall some results about Hilbert modules over locally C∗-algebras from [8].

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is
also a right A-module, compatible with the complex algebra structure, equipped with

an A-valued inner product 〈·, ·〉 : E ×E → A which is � - and A-linear in its second
variable and satisfies the following relations:

(i) 〈x, y〉∗ = 〈y, x〉 for every x, y ∈ E;
(ii) 〈x, x〉 > 0 for every x ∈ E;
(iii) 〈x, x〉 = 0 if and only if x = 0.
We say that E is a Hilbert A-module if E is complete with respect to the topology

determined by the family of seminorms ‖x‖p =
√
p(〈x, x〉), x ∈ E, p ∈ S(A).

Given a Hilbert A-module E, then for p ∈ S(A), NE
p = {x ∈ E ; p(〈x, x〉) = 0} is a

closed submodule of E and Ep = E/NE
p is a Hilbert Ap-module with (x+NE

p )πp(a) =
xa+NE

p and
〈
x +NE

p , y +NE
p

〉
= πp(〈x, y〉). The canonical map from E onto Ep,

p ∈ S(A), will be denoted by σE
p , and the image of x under σ

E
p will be denoted by xp.

For p, q ∈ S(A), p > q there is a canonical surjective linear map σE
pq : Ep → Eq

such that σE
pq(xp) = xq , xp ∈ Ep. Then {Ep;Ap ; σE

pq , p > q, p, q ∈ S(A)} is an inverse
system of Hilbert C∗-modules in the following sense: σE

pq(xpap) = σE
pq(xp)πpq(ap) for

every xp ∈ Ep and for every ap ∈ Ap; 〈σE
pq(xp), σE

pq(yp)〉 = πpq(〈xp, yp〉) for every
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xp, yp ∈ Ep; σE
qr ◦ σE

pq = σE
pr, p > q > r; σE

pp = idEp , and lim←−p
Ep is a Hilbert A-

module with ((xp)p)((ap)p) = (xpap)p and 〈(xp)p, (yp)p〉 = (〈xp, yp〉)p. Moreover,

lim←−p
Ep may be identified with E.

As in the case of the C∗-algebras, the set HA of all sequences (an)n with an in A
such that

∑
n
a∗nan converges in A is a Hilbert A-module with ((an)n)b = (anb)n and

〈(an)n, (bn)n〉 =
∑
n
a∗nbn. Moreover, for each p ∈ S(A), (HA)p = HAp .

Given Hilbert A-modules E and F , a map T : E → F is adjointable if there is
a map T ∗ : F → E such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ E and for all y ∈ F .
Moreover, T is a � - and A-linear continuous map. We denote by LA(E,F ) the set
of all adjointable maps from E into F and write LA(E) for LA(E,E).
For p ∈ S(A), since T

(
NE

p

)
⊆ NF

p for all T ∈ LA(E,F ), we can consider the linear
map (πp)∗ : LA(E,F )→ LAp(Ep, Fp) defined by (πp)∗(T )

(
σE

p (x)
)

= σF
p (T (x)), T ∈

L(E,F ), x ∈ E.
We topologize LA(E,F ) via the seminorms p̃(T ) = ‖(πp)∗(T )‖, T ∈ LA(E,F ),

p ∈ S(A). In this way LA(E,F ) may be identified with lim←−p
LAp(Ep, Fp) and

LA(E) becomes a locally C∗-algebra. The connecting maps of the inverse sys-
tem {LAp(Ep, Fp)}p∈S(A) will be denoted by (πpq)∗, p, q ∈ S(A), p > q and

(πpq)∗(Tp)
(
σE

q (x)
)

= σF
pq

(
Tp

(
σE

p (x)
))
, Tp ∈ LAp(Ep, Fp), x ∈ E. For x ∈

E and y ∈ F we consider the rank one homomorphism θy,x from E into F

defined by θy,x(z) = y〈x, z〉. Evidently, θy,x ∈ LA(E,F ) and θ∗y,x = θx,y.
We denote by KA(E,F ) the closed linear subspace of LA(E,F ) spanned by
{θy,x ; x ∈ E, y ∈ F}, and write KA(E) for KA(E,E). Moreover, KA(E,F ) may be
identified with lim←−p

KAp(Ep, Fp).

We say that the Hilbert A-modules E and F are unitarily equivalent if there is a
unitary element U in LA(E,F ) (namely, U∗U = idE and UU∗ = idF ).

3. Exterior tensor product

Let A and B be locally C∗-algebras, let E be a Hilbert A-module and let F be
a Hilbert B-module. The algebraic tensor product E ⊗alg F is a right-module over
A⊗alg B in the obvious way: (x ⊗ y)(a⊗ b) = xa⊗ yb, x ∈ E, y ∈ F , a ∈ A, b ∈ B.
We consider the map 〈·, ·〉 : (E ⊗alg F )× (E ⊗alg F )→ A⊗alg B defined by

〈 n∑

i=1

xi ⊗ zi,

m∑

j=1

yj ⊗ tj
〉

=
n∑

i=1

m∑

j=1

〈xi, yj〉 ⊗ 〈zi, tj〉.

In the same way as in the case of the Hilbert C∗-modules (see, for example, [6,
Chapter 4]), using [4, Theorem 6], we show that this map defines an inner product
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on E ⊗alg F . Since A ⊗alg B is dense in A ⊗ B, E ⊗alg F becomes a pre-Hilbert

A⊗B-module. We denote by E ⊗F the completion of E ⊗alg F . We call E ⊗F the
exterior tensor product of E and F .

Remark 3.1. If B is a locally C∗-algebra andH is a separable infinite dimensional
Hilbert space, then exactly as in the case of the Hilbert C∗-modules we deduce that
the Hilbert B-modules H ⊗B and HB are unitarily equivalent.

For p ∈ S(A) and q ∈ S(B) we denote by Ep ⊗ Fq the exterior tensor product of
the Hilbert C∗-modules Ep and Fq .

Let p1, p2 ∈ S(A), p1 > p2 and q1, q2 ∈ S(B), q1 > q2. Then the linear map
σE

p1p2
⊗ σF

q1q2
: Ep1 ⊗alg Fq1 → Ep2 ⊗alg Fq2 defined by

(
σE

p1p2
⊗ σF

q1q2

)
(xp1 ⊗ yq1) =

σE
p1p2

(xp1)⊗ σF
q1q2

(yq1) may be extended by continuity to a linear map σE
p1p2
⊗ σF

q1q2

from Ep1 ⊗Fq1 into Ep2 ⊗ Fq2 . It is easy to verify that {Ep ⊗Fq ; Ap ⊗Bq ; σE
p1p2
⊗

σF
q1q2

, p1, p2 ∈ S(A), p1 > p2, q1, q2 ∈ S(B), q1 > q2} is an inverse system of
Hilbert C∗-modules. We will show that the Hilbert A ⊗ B-modules E ⊗ F and

lim←−(p,q)
(Ep ⊗ Fq) are unitarily equivalent.

Proposition 3.2. Let A, B, E and F be as above. Then the Hilbert A ⊗ B-
modules E ⊗ F and lim←−(p,q)

(Ep ⊗ Fq) are unitarily equivalent.

��������
. First we will show that for each p ∈ S(A) and q ∈ S(B) the Hilbert

Ap ⊗Bq-modules (E ⊗ F )(p,q) and Ep ⊗ Fq are unitarily equivalent.

Let p ∈ S(A) and q ∈ S(B). Since

ϑ(p,q)(〈x ⊗ y, x⊗ y〉) = ‖πp(〈x, x〉) ⊗ πq(〈y, y〉)‖Ap⊗Bq

=
∥∥〈
σE

p (x), σE
p (x)

〉
⊗

〈
σF

q (y), σF
q (y)

〉∥∥
Ap⊗Bq

=
∥∥〈
σE

p (x) ⊗ σF
q (y), σE

p (x)⊗ σF
q (y)

〉∥∥
Ap⊗Bq

for all x ∈ E and y ∈ F , we can define a linear map U(p,q) : (E ⊗alg F )/NE⊗F
(p,q) →

Ep ⊗alg Fq by

U(p,q)

(
x⊗ y +NE⊗F

(p,q)

)
= σE

p (x)⊗ σF
q (y).

Evidently U(p,q) is a surjective Ap ⊗alg Bq-linear map and

∥∥∥∥U(p,q)

( n∑

i=1

xi ⊗ yi +NE⊗F
(p,q)

)∥∥∥∥
Ep⊗Fq

=
∥∥∥∥

n∑

i=1

xi ⊗ yi +NE⊗F
(p,q)

∥∥∥∥
(E⊗F )(p,q)

for all
n∑

i=1

xi⊗yi ∈ E⊗algF . From these facts, taking into account that Ap⊗algBq is

dense in Ap⊗Bq ; (E ⊗alg F )/NE⊗F
(p,q) is dense in (E ⊗F )(p,q) and Ep ⊗alg Fq is dense
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in Ep ⊗ Fq , we conclude that U(p,q) may be extended by continuity to an isometric

surjective Ap ⊗ Bq-linear map U(p,q) from (E ⊗ F )(p,q) onto Ep ⊗ Fq . According to
[6, Theorem 3.5], U(p,q) is a unitary element in LAp⊗Bq ((E ⊗ F )(p,q), Ep ⊗ Fq).
It is easy to verify that

(
σE

p1p2
⊗ σF

q1q2

)
◦ U(p1,q1) = U(p2,q2) ◦ σE⊗F

(p1,q1)(p2,q2)
and

(U(p2,q2))
∗ ◦ (σE

p1p2
⊗ σF

q1q2
) = σE⊗F

(p1,q1)(p2,q2) ◦ (U(p1,q1))
∗ for all p1, p2 ∈ S(A), p1 > p2

and q1, q2 ∈ S(B), q1 > q2. Therefore (U(p,q))(p,q)∈S(A)×S(B) is an inverse system of

adjointable maps of Hilbert C∗-modules.
Let U = lim←−(p,q)

U(p,q). It is easy to see that U is an adjointable map from

lim←−(p,q)
(E ⊗ F )(p,q) into lim←−(p,q)

(Ep ⊗Fq) and U∗ = lim←−(p,q)
(U(p,q))∗. Therefore U is

a unitary element in LA⊗B

(
lim←−(p,q)

(E⊗F )(p,q), lim←−(p,q)
(Ep⊗Fq)

)
and Proposition 3.2

is proved. �

Using the above and [8, Theorem 4.2], we obtain:

Corollary 3.3. Let A and B be locally C∗-algebras, let E be a Hilbert A-module
and let F be a Hilbert B-module. Then the locally C∗-algebras LA⊗B(E ⊗ F ) and
lim←−(p,q)

LAp⊗Bq (Ep⊗Fq) as well as KA⊗B(E⊗F ) and lim←−(p,q)
KAp⊗Bq (Ep⊗Fq) are

isomorphic.

Proposition 3.4. Let A and B be locally C∗-algebras, let E be a Hilbert

A-module and let F be a Hilbert B-module. Then there is a continuous ∗-morphism j
from LA(E)⊗ LB(F ) into LA⊗B(E ⊗ F ) such that

j(T ⊗ S)(x⊗ y) = Tx⊗ Sy, T ∈ LA(E), S ∈ LB(F ), x ∈ E, y ∈ F.

Moreover, j is injective and j(KA(E)⊗KB(F )) = KA⊗B(E ⊗ F ).
��������

. Let p ∈ S(A) and q ∈ S(B). Then, since Ap and Bq are C∗-algebras,
Ep is a Hilbert Ap-module and Fq is a Hilbert Bq-module, there is an injective

morphism of C∗-algebras j(p,q) from LAp(Ep)⊗LBq (Fq) into LAp⊗Bq (Ep ⊗Fq) such
that

j(p,q)(Tp ⊗ Sq)(xp ⊗ yq) = Tpxp ⊗ Sqyq

for all Tp ∈ LAp(Ep), Sq ∈ LBq (Fq), xp ∈ Ep, yq ∈ Fq and

j(p,q)(KAp(Ep)⊗KBq (Fq)) = KAp⊗Bq (Ep ⊗ Fq)

(see, for instance, [6, pp. 35–37]).
It is easy to verify that

j(p2,q2) ◦ ((πp1p2)∗ ⊗ (πq1q2)∗) = (π(p1,q1)(p2,q2))∗ ◦ j(p1,q1)
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for all p1, p2 ∈ S(A), p1 > p2 and q1, q2 ∈ S(B), q1 > q2. Then (j(p,q))(p,q)∈S(A)×S(B)

is an inverse system of morphisms of C∗-algebras. Let j = lim←−(p,q)
j(p,q). Evidently

j is an injective continuous ∗-morphism from LA(E)⊗LB(F ) into LA⊗B(E⊗F ) and

j(T ⊗ S)(x⊗ y) = Tx⊗ Sy, T ∈ LA(E), S ∈ LB(F ), x ∈ E, y ∈ F.

Now, since
• for each p ∈ S(A) and for each q ∈ S(B),

j(p,q)|KAp (Ep)⊗KBq (Fq) : KAp(Ep)⊗KBq (Fq)→ KAp⊗Bq (Ep ⊗ Fq)

is an isomorphism of C∗-algebras;

• KA(E)⊗KB(F ) = lim←−(p,q)
KAp(Ep)⊗KBq (Fq)

and
• KA⊗B(E ⊗ F ) = lim←−(p,q)

KAp⊗Bq (Ep ⊗ Fq),

we deduce that j(KA(E)⊗KB(F )) = KA⊗B(E ⊗ F ). �

4. Interior tensor product

Let A and B be locally C∗-algebras, let E be a Hilbert A-module, let F be a
Hilbert B-module and let Φ: A → LB(F ) be a continuous ∗-morphism. We can
regard F as a left A-module, the action being given by (a, y)→ Φ(a)y, a ∈ A, y ∈ F ,
and we can form the algebraic tensor product of E and F over A, E ⊗A F . It is

the quotient of the vector space tensor product E ⊗alg F by the vector subspace NΦ

generated by elements of the form xa⊗ y − x ⊗ Φ(a)y, a ∈ A, x ∈ E, y ∈ F . Now,
E ⊗A F is a right B-module in the obvious way, the action of B being given by
(x⊗ y +NΦ, b)→ x⊗ yb+NΦ, b ∈ B, x ∈ E, y ∈ F .
Exactly as in the case of the Hilbert C∗-modules, we show:

Proposition 4.1. Let A, B, E, F and Φ be as above. Then E ⊗A F is a pre-

Hilbert B-module with the inner product given by

〈x⊗ y, z ⊗ t〉 = 〈y,Φ(〈x, z〉)t〉, x ∈ E, y ∈ F.

In the particular case when F = B, this proposition was proved in [8, pp. 181].
We denote by E ⊗Φ F the completion of E ⊗A F . We call E ⊗Φ F the interior

tensor product of E and F using Φ. For the element x⊗ y+NΦ we use the notation
x⊗̇y.
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For each q ∈ S(B), the map Φq : A → LBq (Fq) defined by Φq = (πq)∗ ◦ Φ is a
continuous ∗-morphism.
Let q1, q2 ∈ S(B), q1 > q2. Define a linear map ψq1q2 : E⊗alg Fq1 → E⊗alg Fq2 by

ψq1q2(x ⊗ yq1) = x⊗ σF
q1q2

(yq1).

Since

〈ψq1q2(x⊗ yq1), ψq1q2(x⊗ yq1)〉 =
〈
σF

q1q2
(yq1),Φq2(〈x, x〉)σF

q1q2
(yq1)

〉

=
〈
σF

q1q2
(yq1), (πq2 )∗(Φ(〈x, x〉))σF

q1q2
(yq1)

〉

=
〈
σF

q1q2
(yq1), σ

F
q1q2

((πq1 )∗(Φ(〈x, x〉))yq1 )
〉

= πq1q2(〈yq1 ,Φq1(〈x, x〉)yq1 〉)
= πq1q2(〈x⊗ yq1 , x⊗ yq1〉)

for all x ∈ E and yq1 ∈ Fq1 , ψq1q2 may be extended to a linear map ψq1q2 : E ⊗Φq1

Fq1 → E ⊗Φq2
Fq2 such that

ψq1q2(x⊗̇yq1) = x⊗̇σF
q1q2

(yq1).

Proposition 4.2. Let A, B, E, F and Φ be as above. Then

{E ⊗Φq Fq ; Bq ; ψq1q2 , q1 > q2, q1, q2 ∈ S(B)}

is an inverse system of Hilbert C∗-modules, and the Hilbert B-modules E ⊗Φ F and

lim←−q
(E ⊗Φq Fq)are unitarily equivalent.
��������

. The fact that {E ⊗Φq Fq ; Bqψq1q2 , q1 > q2, q1, q2 ∈ S(B)} is an
inverse system of Hilbert C∗-modules is a simple verification.

To show that the Hilbert B-modules E ⊗Φ F and lim←−q
(E ⊗Φq Fq) are unitarily

equivalent, first we will show that for each q ∈ S(B) the Hilbert Bq-modules (E ⊗Φ

F )q and E ⊗Φq Fq are unitarily equivalent.
Let q ∈ S(B). Define a linear map Uq : E ⊗alg F → E ⊗alg Fq by

Uq(x ⊗ y) = x⊗ σF
q (y), x ∈ E, y ∈ F.

Since

〈Uq(x ⊗ y), Uq(x⊗ y)〉 =
〈
σF

q (y),Φq(〈x, x〉)σF
q (y)

〉

=
〈
σF

q (y), (πq)∗(Φ(〈x, x〉))σF
q (y)

〉

=
〈
σF

q (y), σF
q (Φ(〈x, x〉)y)

〉

= πq(〈x ⊗ y, x⊗ y〉)
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for all x ∈ E and y ∈ F , Uq may be extended by continuity to an isometric Bq-linear

map Uq : (E ⊗Φ F )q → E ⊗Φq Fq such that

Uq(x⊗̇y) = x⊗̇σF
q (y), x ∈ E, y ∈ F

and, moreover, it is surjective. Then according to [6, Theorem 3.5], Uq is a unitary
element in LBq ((E ⊗Φ F )q , E ⊗Φq Fq). It is easy to verify that (Uq)q∈S(B) is an

inverse system of adjointable maps of Hilbert C∗-modules.
Let U = lim←−q

Uq. A simple calculation shows that U is a unitary element in

LB

(
lim←−q

(E ⊗Φ F )q, lim←−q
(E ⊗Φq Fq)

)
. Therefore the Hilbert B-modules E⊗Φ F and

lim←−q
(E ⊗Φq Fq) are unitarily equivalent. �

Corollary 4.3. Let A, B, E, F and Φ be as above. Then the locally C∗-algebras
LB(E⊗ΦF ) and lim←−q

LBq (E⊗Φq Fq) as well as KB(E⊗ΦF ) and lim←−q
KBq (E⊗Φq Fq)

are isomorphic.

Proposition 4.4. Let A and B be locally C∗-algebras, let E be a Hilbert

A-module, let F be a Hilbert B-module and let Φ: A → LB(F ) be a continuous
∗-morphism.
1. Then there is a continuous ∗-morphism Φ∗ : LA(E)→ LB(E ⊗Φ F ) such that

Φ∗(T )(x ⊗̇ y) = T (x) ⊗̇ y, x ∈ E, y ∈ F, T ∈ LA(E).

Moreover, if Φ is injective, then Φ∗ is injective.
2. If Φ(A) ⊆ KB(F ), then Φ∗(KA(E)) ⊆ KB(E⊗ΦF ). Moreover, if Φ(A) is dense
in KA(F ), then Φ∗(KA(E)) is dense in KB(E ⊗Φ F ).

��������
. First we suppose that B is a C∗-algebra.

(1) The continuity of Φ implies that there is a continuous ∗-morphism Ψp : Ap →
LB(F ) such that Ψp ◦ πp = Φ. Then, since Ap and B are C∗-algebras and Ψp :
Ap → LB(F ) is a morphism of C∗-algebras, there is a morphism of C∗-algebras
(Ψp)∗ : LAp(Ep)→ LB(Ep⊗Ψp F ) such that (Ψp)∗(Tp)

(
σE

p (x) ⊗̇ y
)

= Tp

(
σE

p (x)
)
⊗̇y

(see, for instance, [6, pp. 42–43]). It is easy to verify that the linear map U : E⊗ΦF →
Ep⊗ΨpF defined by U(x⊗̇y) = σE

p (x)⊗̇y is a unitary element in LB(E⊗ΦF,Ep⊗ΨpF )
and the map Φ∗ : LA(E)→ LB(E⊗ΦF ) defined by Φ∗(T ) = U∗◦(Ψp)∗((πp)∗(T ))◦U
is a continuous ∗-morphism and

Φ∗(T )(x ⊗̇ y) = T (x) ⊗̇ y, x ∈ E, y ∈ F, T ∈ LA(E).

If Φ is injective, then it is easy to see that Φ∗ is injective.
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(2) If Φ(A) ⊆ KB(F ), then Ψp(Ap) ⊆ KB(F ) and according to [6, Proposition 4.7],
(Ψp)∗(KAp(Ep)) ⊆ KB(Ep ⊗Ψp F ). Since (πp)∗(KA(E)) = KAp(Ep), it is easy to
see that Φ∗(KA(E)) ⊆ KB(E ⊗Φ F ).
If Φ(A) is dense in KA(F ) then Ψp(Ap) = KB(F ) and according to [6, Proposi-

tion 4.7], (Ψp)∗(KAp(Ep)) = KB(Ep⊗Ψp F ). Therefore Φ∗(KA(E)) = KB(E⊗Φ F ).
Now we will suppose that B is an arbitrary locally C∗-algebra.

(1) For each q ∈ S(B) we consider the map Φq : A → LBq (Fq) defined by Φq =
(πq)∗ ◦Φ. Evidently Φq is a continuous ∗-morphism and according to the first half of
this proof, there is a continuous ∗-morphism (Φq)∗ : LA(E) → LBq (E ⊗Φq Fq) such
that

(Φq)∗(T )
(
x⊗̇σF

q (y)
)

= T (x) ⊗̇ σF
q (y), x ∈ E, y ∈ F, T ∈ LA(E).

It is easy to see that (πq1q2)∗ ◦ (Φq1 )∗ = (Φq2)∗ for all q1, q2 ∈ S(B), q1 > q2.
Therefore there is a continuous ∗-morphism Ψ: LA(E) → lim←−q

LBq (E ⊗Φq Fq) such

that (πq)∗ ◦Ψ = (Φq)∗ for all q ∈ S(B). Identifying the Hilbert B-modules E ⊗Φ F

and lim←−q
(E⊗ΦqFq) (cf. Proposition 4.2) and the locally C∗-algebrasKB(E⊗ΦF ) and

lim←−q
LBq (E⊗Φq Fq) (cf. Corollary 4.3) we can identify the continuous ∗-morphism Ψ

with a continuous ∗-morphism Φ∗ : LA(E) → LB(E ⊗Φ F ). It is easy to see that
Φ∗(T )(x ⊗̇ y) = T (x) ⊗̇ y, x ∈ E, y ∈ F , T ∈ LA(E). Also it is easy to verify that if
Φ is injective, then Φ∗ is injective.

(2) If Φ(A) ⊆ KB(F ), then Φq(A) ⊆ KBq (Fq) for each q ∈ S(B), and according
to the first part of this proof, (Φq)∗(KA(E)) ⊆ KBq (E ⊗Φq Fq). This implies that
Φ∗(KA(E)) ⊆ KB(E⊗ΦF ), sinceKB(E⊗ΦF ) = lim←−q

KBq(E⊗ΦqFq) and (πq)∗◦Φ∗ =

(Φq)∗ for each q ∈ S(B).
If Φ(A) is dense in KA(F ) then for each q ∈ S(B), Φq(A) is dense in KBq (Fq) and

according to the first half of this proof, (Φq)∗(KA(E)) is dense in KBq (E ⊗Φq Fq).
Thus we have

(Φq)∗(KA(E)) = lim←−
q

(Φq)∗(KA(E)) = lim←−
q

KBq (E ⊗Φq Fq) = KB(E ⊗Φ F ).

�

Remark 4.5. In the case when B is a C∗-algebra and F = B, the proposition

was proved in [8, pp. 184–185].
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Corollary 4.6. Let A and B be locally C∗-algebras, let E be a Hilbert A-module,
let F be a Hilbert B-module and let Φ: A → LB(F ) be a continuous ∗-morphism
such that Φ(A) = KB(F ). If for each q ∈ S(B) there is pq ∈ S(A) such that
q̃(Φ(a)) = pq(a) for all a ∈ A and if {pq ; q ∈ S(B)} is a cofinal subset of S(A), then
Φ∗(KA(E)) = KB(E ⊗Φ F ).
��������

. According to Proposition 4.4 (2), Φ∗(KA(E)) = KB(E ⊗Φ F ). We will
show that Φ∗(KA(E)) is closed. Let q ∈ S(A). We know that there is pq ∈ S(A)
such that q̃(Φ(a)) = pq(a) for all a ∈ A. Therefore there is a continuous ∗-morphism
Φpq : Apq → LBq (Fq) such that Φpq ◦πpq = (πq)∗◦Φ. Moreover, Φpq (Apq ) = KBq (Fq)
and then according to [6, Proposition 4.7], ‖(Φpq )∗(T )‖ = ‖T‖ for all T in K(Epq ).
It is easy to verify that (Φpq )∗ ◦ (πpq )∗ = (πq)∗ ◦ (Φ)∗. Then for each T ∈ KA(E) we
have

q̃((Φ)∗(T )) = ‖(πq)∗((Φ)∗(T ))‖ = ‖(Φpq )∗((πpq )∗(T ))‖ = ‖(πpq )∗(T )‖ = p̃q(T ).

From this, since {pq ; q ∈ S(B)} is a cofinal subset of S(A), it follows that Φ∗(KA(E))
is closed. �

Proposition 4.7. Let A and B be locally C∗-algebras, let E be a Hilbert A-
module, let F be a Hilbert B-module and let Φ: A → LB(F ) be a continuous
∗-morphism such that Φ(A)F is dense in F . Then the Hilbert B-modules HA ⊗Φ F

and H ⊗ F , where H is a separable infinite dimensional Hilbert space (as well as
A⊗Φ F and F ) are unitarily equivalent.
��������

. First we suppose that B is a C∗-algebra.
The continuity of Φ implies that there is a continuous ∗-morphism Ψp : Ap →

LB(F ) such that Ψp ◦ πp = Φ. Since πp is surjective, Ψp(Ap)F is dense in F . Then,
since Ap and B are C∗-algebras and Ψp : Ap → LB(F ) is a morphism of C∗-algebras
such that Ψp(Ap)F is dense in F , the Hilbert C∗-modules HAp⊗Ψp F and H⊗F (as
well as Ap ⊗Ψp F and F ) are unitarily equivalent (see, for instance, [6, pp. 41–42]).

On the other hand, we know that the Hilbert C∗-modules HA⊗ΦF and HAp⊗ΨpF

(as well as A ⊗Φ F and Ap ⊗Ψp F ) are unitarily equivalent (see the proof of the
Proposition 4.4). Therefore the proposition is proved in this case.

Now we suppose that B is an arbitrary locally C∗-algebra.

For each q ∈ S(B), Φq(A)Fq is dense in Fq , where Φq is a continuous ∗-morphism
from A into LBq(Fq) defined by Φq = (πq)∗ ◦ Φ, since Φq(A)Fq = (πq)∗(Φ(A))Fq =
σF

q (Φ(A)F ) and Φ(A)F is dense in F . Then, according to the first half of this proof,
the Hilbert C∗-modules HA ⊗Φq Fq and H ⊗ Fq (as well as A ⊗Φq Fq and Fq) are

unitarily equivalent. It is easy to see that the Hilbert B-modules lim←−q
(HA ⊗Φq Fq)
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and lim←−q
(H ⊗ Fq) (as well as lim←−q

(A ⊗Φq Fq) and lim←−q
Fq) are unitarily equivalent

and thus the proposition is proved. �

Remark 4.8. Putting F = B in Proposition 4.7 and using Remark 3.1 we deduce

that the Hilbert B-modules HA⊗ΦB and HB (as well as A⊗ΦB and B) are unitarily
equivalent.
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