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Abstract. Let L ⊂ C be a regular Jordan curve. In this work, the approximation
properties of the p-Faber-Laurent rational series expansions in the ω weighted Lebesgue
spaces Lp(L, ω) are studied. Under some restrictive conditions upon the weight functions
the degree of this approximation by a kth integral modulus of continuity in Lp(L, ω) spaces
is estimated.

Keywords: Faber polynomial, Faber series, weighted Lebesgue space, weighted Smirnov
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1. Introduction

Let L be a rectifiable Jordan curve in the complex plane C, G := intL and G− :=
extL. Without loss of generality we assume that 0 ∈ G. Let also U := {w : |w| < 1},
T := ∂U , U− := {w| : |w| > 1}, and let ϕ and ϕ1 be the conformal mappings of G−

and G onto U− respectively, normalized by

ϕ(∞) = ∞, lim
z→∞

ϕ(z)/z > 0

and

ϕ1(0) = ∞, lim
z→0

zϕ1(z) > 0.

The inverse mappings of ϕ and ϕ1 will be denoted by ψ and ψ1, respectively.
Later on we assume that p ∈ (1,∞), and denote by Lp(L) and Ep(G) the set of
all measurable complex valued functions such that |f |p is Lebesgue integrable with
respect to arclength, and the Smirnov class of analytic functions in G, respectively.
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Each function f ∈ Ep(G) has a nontangential limit almost everywhere (a.e.) on L,
and if we use the same notation for the nontangential limit of f , then f ∈ Lp(L).
For p > 1, Lp(L) and Ep(G) are Banach spaces with respect to the norm

‖f‖Ep(G) = ‖f‖Lp(L) :=
(∫

L

|f(z)|p |dz|
)1

p

.

For the further properties, see [5, pp. 168–185] and [8, pp. 438–453].

The order of polynomial approximation in Ep(G), p > 1 has been studied by
several authors. In [17], Walsh and Russel gave results when L is an analytic curve.

For domains with sufficiently smooth boundary, namely when L is a smooth Jordan
curve and θ(s), the angle between the tangent and the positive real axis expressed as a
function of arclength s, has modulus of continuity Ω(θ, s) satisfying the Dini-smooth
condition

(1)
∫ δ

0

Ω(θ, s)
s

ds <∞, δ > 0,

this problem, for p > 1, was studied by S.Y. Alper [1].
These results were later extended to domains with regular boundary which we

define in Section 2, for p > 1 by V.M. Kokilashvili [13], and for p > 1 by J. E. An-
dersson [2]. Similar problems were also investigated in [10]. Let us emphasize that in

these works, the Faber operator, Faber polynomials and p-Faber polynomials were
commonly used and the degree of polynomial approximation in Ep(G) has been stud-
ied by applying various methods of summation to the Faber series of functions in
Ep(G). More extensive knowledge about them can be found in [7, pp. 40–57] and
[16, pp. 52–236].

In [11], for domains with a regular boundary we have constructed the approximants

directly as the nth partial sums of p-Faber polynomial series of f ∈ Ep(G), and later
applying the same method in [3], we have investigated the approximation properties

of the nth partial sums of p-Faber-Laurent rational series expansions in the Lebesgue
spaces Lp(L). The approximation properties of the p-Faber series expansions in the
ω-weighted Smirnov class Ep(G,ω) of analytic functions in G whose boundary is a
regular Jordan curve are studied in [12].

In this work, when L is a regular Jordan curve, the approximation properties of
the p-Faber-Laurent rational series expansions in the ω-weighted Lebesgue spaces

Lp(L, ω) are studied. Under some restrictive conditions upon weight functions the
degree of this approximation is estimated by a kth (k > 1) integral modulus of
continuity in Lp(L, ω) spaces. The results to be obtained in this work are also new
in the nonweighted case ω = 1.
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We shall denote by c constants (in general, different in different relations) depend-

ing only on numbers that are not important for the questions of our interest.

2. New results

For the formulation of new results in detail it is necessary to introduce some
definitions and auxiliary results.

Definition 1. L is called regular if there exists a number c > 0 such that for
every r > 0, sup{|L ∩ D(z, r)| : z ∈ L} 6 cr, where D(z, r) is an open disk with
radius r and centered at z and |L ∩D(z, r)| is the length of the set L ∩D(z, r).

We denote by S the set of all regular Jordan curves in the complex plane.

Definition 2. Let ω be a weight function on L. ω is said to satisfy the Muck-
enhoupt Ap-condition on L if

sup
z∈L

sup
r>0

(
1
r

∫

L∩D(z,r)

ω(ζ) |dζ|
)(

1
r

∫

L∩D(z,r)

[ω(ζ)]−1/p−1 |dζ|
)p−1

<∞.

Let us denote by Ap(L) the set of all weight functions satisfying the Muckenhoupt
Ap-condition on L.
For a weight function ω given on L we also define the following function spaces.

Definition 3. The set Lp(L, ω) := {f ∈ L1(L) : |f |pω ∈ L1(L)} is called the
ω-weighted Lp-space.

Definition 4. The set Ep(G,ω) := {f ∈ E1(G) : f ∈ Lp(L, ω)} is called the
ω-weighted Smirnov space of order p of analytic functions in G.

Let g ∈ Lp(T, ω) and ω ∈ Ap(T ). Since Lp(T, ω) is noninvariant with respect to the
usual shift, we consider the following mean value function as a shift for g ∈ Lp(T, ω):

σhg(w) :=
1
2h

∫ h

−h

g(weit) dt, 0 < h < π, w ∈ T.

As follows from the continuity of the Hardy-Littlewood maximal operator in weighted

Lp(T, ω) spaces, the operator σh is bounded in Lp(T, ω) if ω ∈ Ap(T ) and the
following inequality holds:

‖σhg‖Lp(T,ω) 6 c(p)‖g‖Lp(T,ω), 1 < p <∞.

The last relation is equivalent [15] to the property

lim
h→0

‖σhg − g‖Lp(T,ω) = 0.

Starting from the last two relations we can give the following definition.
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Definition 5. If g ∈ Lp(T, ω) and ω ∈ Ap(T ), then the function Ωp,ω,k(g, ·) :
[0,∞] → [0,∞) defined by

Ωp,ω,k(g, δ) := sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=1

(E − σhi)g
∥∥∥

Lp(T,ω)
, 1 < p <∞,

is called the kth integral modulus of continuity in the Lp(T, ω) space for g. Here
E is the identity operator.

Note that the idea of defining such a modulus of continuity originates from [18].
In [9] this idea was used for investigations of the approximation problems in

Lp([0, 2π], ω) spaces. Recently, in [12], to obtain direct theorems of the approxi-
mation theory in the weighted Smirnov spaces Ep(G,ω), we have used the same idea
for the case k = 1.
It can be shown easily that Ωp,ω,k(g, ·) is a continuous, nonnegative and nonde-

creasing function satisfying the conditions

(2) lim
δ→0

Ωp,ω,k(g, δ) = 0, Ωp,ω,k(g1 + g2, ·) 6 Ωp,ω,k(g1, ·) + Ωp,ω(g2, ·).

For an arbitrary function f ∈ Lp(L, ω) and a weight function given on L we also
set

f0(w) := f [ψ(w)](ψ′(w))1/p, f1(w) := f [ψ1(w)](ψ′1(w))1/pw2/p,(3)

ω0(w) := ω[ψ(w)], ω1(w) := ω[ψ1(w)].

The condition f ∈ Lp(L, ω), implies that f0 ∈ Lp(T, ω0) and f1 ∈ Lp(T, ω1).
Then if ω ∈ Ap(L) and ω0, ω1 ∈ Ap(T ) we can define the weighted integral moduli
of continuity Ωp,ω,k(f0, δ) and Ωp,ω,k(f1, δ), using the procedure given above.
Main result in our work is the following theorem.

Theorem 1. Let L ∈ S and f ∈ Lp(L, ω), 1 < p < ∞. If ω ∈ Ap(L) and
ω0, ω1 ∈ Ap(T ), then for every natural number n there are a constant c > 0 and a
rational function

Rn(z, f) :=
n∑

k=−n

a
(n)
k zk

such that

‖f −Rn(·, f)‖Lp(L,ω) 6 c

[
Ωp,ω0,k

(
f0,

1
n

)
+ Ωp,ω1,k

(
f1,

1
n

)]
,
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where the rational functions Rn(z, f) are constructed as the nth partial sums of the
p-Faber-Laurent series of f .

From this theorem we have the following results in the particular cases f ∈
Ep(G,ω) and f ∈ Ep(G−, ω), respectively.

Theorem 2. Let L ∈ S and f ∈ Ep(G,ω), 1 < p < ∞. If ω ∈ Ap(L) and
ω0 ∈ Ap(T ), then for every natural number n there are a constant c > 0 and a
polynomial

Pn(z, f) :=
n∑

k=0

a
(n)
k zk

such that

‖f − Pn(·, f)‖Lp(L,ω) 6 cΩp,ω0,k

(
f0,

1
n

)
,

where the polynomials Pn(z, f) are constructed as the nth partial sums of the p-Faber
series of f .

In the case k = 1 Theorem 2 was proved in [12].

Theorem 3. Let L ∈ S and f ∈ Ep(G−, ω), 1 < p < ∞. If ω ∈ Ap(L) and
ω1 ∈ Ap(T ), then for every natural number n there are a constant c > 0 and a
rational function

Rn(z, f) :=
0∑

k=−n

a
(n)
k zk

such that

‖f −Rn(·, f)‖Lp(L,ω) 6 cΩp,ω1,k

(
f1,

1
n

)
,

where the rational functions Rn(z, f) are constructed as the nth partial sums of the
p-Faber-Laurent series of f .

Note that if L is a sufficiently smooth curve then the conditions ω ∈ Ap(L),
ω0 ∈ Ap(T ), and ω1 ∈ Ap(T ) are equivalent. In particular, the following theorem
holds.

Theorem 4. Let L be a smooth boundary satisfying the condition 1 and f ∈
Lp(L, ω), 1 < p < ∞. If ω ∈ Ap(L) then for every natural number n there are a
constant c > 0 and a rational function

Rn(z, f) :=
n∑

k=−n

a
(n)
k zk
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such that

‖f −Rn(·, f)‖Lp(L,ω) 6 c

[
Ωp,ω0,k

(
f0,

1
n

)
+ Ωp,ω1,k

(
f1,

1
n

)]
,

where the rational functions Rn(z, f) are constructed as the nth partial sums of the
p-Faber-Laurent series of f .

3. Construction of approximants and some auxiliary results

1. The generalized p-Faber-Laurent series
Let f ∈ L1(L). Then the functions f+ and f− defined by

f+(z) =
1

2πi

∫

L

f(ζ)
ζ − z

dζ =
1

2πi

∫

T

f(ψ(w))ψ′(w)
ψ(w) − z

dw, z ∈ G,(4)

and

f−(z) =
1

2πi

∫

L

f(ζ)
ζ − z

dζ =
1

2πi

∫

T

f(ψ1(w))ψ′1(w)
ψ1(w) − z

dw, z ∈ G−,(5)

are analytic in G and G−, respectively, and f−(∞) = 0.
According to the celebrated Privalov’s theorem [8, p. 431], if one of the functions

f+(z) and f−(z) has a nontangential limit on L a.e., then Cauchy’s singular integral
SL(f)(z) defined as

SL(f)(z0) := (P.V.)
1

2πi

∫

L

f(ζ)
ζ − z0

dζ

:= lim
ε→0

1
2πi

∫

L∩{ζ : |ζ−z0|>ε}

f(ζ)
ζ − z0

dζ, z0 ∈ L,

exists a.e. on L, and also the other one of the functions f+(z) and f−(z) has a
nontangential limit on L a.e. Conversely, if SL(f)(z) exists a.e. on L, then the
functions f+(z) and f−(z) have nontangential limits a.e. on L. In both case, the
formulae

f+(z) = SL(f)(z) +
1
2
f(z), f−(z) = SL(f)(z)− 1

2
f(z)

hold a.e. on L. From this it follows that

(6) f(z) = f+(z)− f−(z)

a.e. on L.
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The mappings ψ and ψ1 have in some deleted neighborhood of ∞ the representa-
tions

ψ(w) = αw + α0 +
α1

w
+
α2

w2
+ . . .+

αk

wk
+ . . . , α > 0,

and

ψ1(w) =
β1

w
+
β2

w2
+ . . .+

βk

wk
+ . . . , β1 > 0.

Hence the functions

(ψ′(w))1−
1
p

ψ(w) − z
, z ∈ G

and

w−2/p(ψ′1(w))1−
1
p

ψ1(w) − z
, z ∈ G−

are analytic in the domain U− and have a simple zero and a zero of order 2 at ∞,
respectively. Therefore, they have expansions

(ψ′(w))1−
1
p

ψ(w)− z
=

∞∑

k=0

Fk,p(z)
wk+1

, z ∈ G and w ∈ U−,(7)

and

w−2/p(ψ′1(w))1−
1
p

ψ1(w)− z
=

∞∑

k=1

− F̃k,p(1/z)
wk+1

, z ∈ G− and w ∈ U−,(8)

where Fk,p(z) and F̃k,p(1/z) are the p-Faber polynomials of degree k with respect
to z and 1/z for the continuums G and C \G, respectively (see also [16, pp. 255–257]
for p = ∞).
Note that the functions ϕk(ϕ′)1/p and ϕk−2/p

1 (ϕ′1)
1/p have poles of order k at the

points∞ and z = 0, respectively. Therefore, the polynomial Fk,p(z) can alternatively
be defined as the polynomial part of the Laurent expansion of ϕk(ϕ′)1/p in some
neighbourhood of the point∞. Similarly, the principle part of the Laurent expansion
of ϕk−2/p

1 (ϕ′1)1/p in some neighbourhood of the point z = 0 defines the polynomial
F̃k,p(1/z). Moreover, the following relations hold:

[ϕ(z)]k(ϕ′(z))1/p = Fk,p(z) +Ek,p(z), z ∈ G−,
[ϕ1(z)]k−2/p(ϕ′1(z))

1/p = F̃k,p(1/z) + Ẽk,p(z), z ∈ G \ {0},

where the functions Ek,p(z) and Ẽk,p(z) are analytic in G− and in G, respectively.
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We shall also exploit the integral representations

Fk,p(z) = ϕk(z)(ϕ′(z))
1
p +

1
2πi

∫

L

ϕk(ζ)(ϕ′(ζ))
1
p

ζ − z
dζ, z ∈ G−(9)

and

F̃k,p

(1
z

)
= [ϕ1(z)]k−

2
p (ϕ′1(z))

1
p − 1

2πi

∫

L

[ϕ1(ζ)]k−
2
p (ϕ′1(ζ))

1
p

ζ − z
dζ, z ∈ G \ 0,(10)

which are proved similarly as in the classical case p = ∞ (see for example, [14,
pp. 114–118]).

We define the coefficients ak and ãk starting from the relations (4), (3), (7) and
relations (5), (3), (8), respectively, by

ak = ak(f) :=
1

2πi

∫

T

f0(w)
wk+1

dw, k = 0, 1, 2, . . . ,(11)

and

ãk = ãk(f) :=
1

2πi

∫

T

f1(w)
wk+1

dw, k = 1, 2, . . . .(12)

Then taking the relation (6) into account we can associate a formal series

∞∑

k=0

akFk,p(z) +
∞∑

k=1

ãkF̃k,p(1/z)

with the function f ∈ L1(L), i.e.,

f(z) ∼
∞∑

k=0

akFk,p(z) +
∞∑

k=1

ãkF̃k,p(1/z).

This formal series is called the p-Faber-Laurent series of f , and the coefficients ak

and ãk are said to be the p-Faber-Laurent coefficients of f .
We will also use the following lemma which was proved in [12].

Lemma 1. If L ∈ S and ω ∈ Ap(L), then f+ ∈ Ep(G,ω) and f− ∈ Ep(G−, ω)
for each f ∈ Lp(L, ω).

Since f0 ∈ Lp(T, ω0) and f1 ∈ Lp(T, ω1), under the conditions ω0, ω1 ∈ Ap(T ) we
have by Lemma 1 that

f+
0 ∈ Ep(U, ω0), f−0 ∈ Ep(U−, ω0),(13)

f+
1 ∈ Ep(U, ω1), f−1 ∈ Ep(U−, ω1).(14)
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Moreover, f−0 (∞) = f−1 (∞) = 0, and by the celebrated Privalov’s theorem

f0(w) = f+
0 (w) − f−0 (w)(15)

and

f1(w) = f+
1 (w) − f−1 (w)(16)

a.e. on T . Using the relations (13) and (15) in (11), and (14) and (16) in (12) we
conclude that the coefficients ak, k = 0, 1, 2, . . . , and ãk, k = 1, 2, . . ., are also the
Taylor coefficients of the functions f+

0 ∈ Ep(U, ω0) and f+
1 ∈ Ep(U, ω1), respectively.

2. Singular integrals and modulus of continuity
As was noted in [6, p. 89], for the Cauchy singular integral the following result,

which is analogously deduced from [4], holds.

Theorem 5. Let L ∈ S, 1 < p < ∞, and let ω be a weight function on L. The
inequality

‖SL(f)‖Lp(L,ω) 6 c‖f‖Lp(L,ω)

holds for every f ∈ Lp(L, ω) if and only if ω ∈ Ap(L).

Lemma 2. Let g ∈ Lp(T, ω) and let ω ∈ Ap(T ). Then

σh1,h2,...,hk
[ST (g)](w) = ST [σh1,h2,...,hk

(g)](w)

for every natural number k.
���������

. Let k = 1. Applying the Fubini theorem we have

[ST (g)]h(w) =
1
2h

∫ h

−h

ST (g(weiθ)) dθ

=
1
2h

∫ h

−h

1
2πi

(
(P.V.)

∫

T

g(τ) dτ
τ − weiθ

)
dθ

=
1
2h

∫ h

−h

1
2πi

(
(P.V.)

∫

T

g(τeiθ)eiθ dτ
τeiθ − weiθ

)
dθ

=
1
2h

∫ h

−h

1
2πi

(
(P.V.)

∫

T

g(τeiθ) dτ
τ − w

)
dθ

=
1

2πi
(P.V.)

∫

T

(1/2h)
∫ h

−h g(τe
iθ) dθ

τ − w
dτ

=
1

2πi
(P.V.)

∫

T

gh(τ)
τ − w

dτ = [ST (gh)](w).
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Now let the lemma hold for n = k − 1, i.e.

σh1,h2,...,hk−1 [ST (g)](w) = ST [σh1,h2,...,hk−1(g)](w).

Then

σh1,h2,...,hk
[ST (g)](w) = σhk

{σh1,h2,...,hk−1 [ST (g)]}(w)

= σhk
[STσh1,h2,...,hk−1(g)](w)

= ST [σh1,h2,...,hk
(g)](w),

and the lemma is proved by the induction method. �

Lemma 3. Let g ∈ Lp(T, ω) and let ω ∈ Ap(T ). Then

Ωp,ω,k(ST (g), ·) 6 cΩp,ω,k(g, ·).

���������
. Again we use the induction method. Let k = 1. Using Lemma 2 and

Theorem 5 we obtain

‖ST (g)− σh1 [ST (g)]‖Lp(T,ω) = ‖ST (g − σh1g)‖Lp(T,ω) 6 c‖g − σh1g‖Lp(T,ω).

This inequality implies that

Ωp,ω,1(ST (g), ·) 6 cΩp,ω,1(g, ·).

Let the lemma hold for n = k − 1, i.e.,

Ωp,ω,k−1(ST (g), ·) 6 cΩp,ω,k−1(g, ·).

Then applying Lemma 2 and the last inequality successively we obtain

Ωp,ω,k(ST (g), δ) = sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=1

(E − σhi)ST g
∥∥∥

Lp(T,ω)

= sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=2

(E − σhi)(E − σh1)ST g
∥∥∥

Lp(T,ω)
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= sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=2

(E − σhi)ST (g − σh1g)
∥∥∥

Lp(T,ω)

6 c sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=2

(E − σhi)(g − σh1g)
∥∥∥

Lp(T,ω)

= c sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=2

(E − σhi)(E − σh1)(g)
∥∥∥

Lp(T,ω)

= c sup
0<hi6δ

i=1,2,...,k

∥∥∥
k∏

i=1

(E − σhi)(g)
∥∥∥

Lp(T,ω)
= cΩp,ω,k(g, δ).

�

Lemma 4. If g ∈ Lp(T, ω) and ω ∈ Ap(T ), then

Ωp,ω,k(g+, ·) 6
(
c+

1
2

)
Ωp,ω,k(g, ·).

���������
. Taking into account the relation

g+ =
g

2
+ ST g

which holds a.e. on T , by virtue of Lemma 3 and the property (2) we obtain the

proof of Lemma 4. �

Lemma 5. Let g ∈ Ep(U, ω) and ω ∈ Ap(T ). If

n∑

k=0

αk(g)wk

is the nth partial sum of the Taylor series of g at the origin, then there exists a

constant c > 0 such that
∥∥∥∥g(w)−

n∑

k=0

αk(g)wk

∥∥∥∥
Lp(T,ω)

6 cΩp,ω,k

(
g,

1
n

)

for every natural number n.
���������

. In the case k = 1 this lemma was shown in [12, Lemma 9]. For k > 1
the proof proceeds analogously. �
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4. Proof of the new results

���������
of Theorem 1. We shall prove that the rational function

Rn(f, z) :=
n∑

k=0

akFk,p(z) +
n∑

k=1

ãkF̃k,p(1/z)

satisfies the necessary inequality from Theorem 1.

In view of the relation

f(z) = f+(z)− f−(z),

which holds a.e. on L, it suffices to establish the inequalities

∥∥∥∥f−(z) +
n∑

k=1

ãkF̃k,p(1/z)
∥∥∥∥

Lp(L,ω)

6 cΩp,ω1,k

(
f1,

1
n

)
(17)

and
∥∥∥∥f+(z)−

n∑

k=0

akFk,p(z)
∥∥∥∥

Lp(L,ω)

6 cΩp,ω0,k

(
f0,

1
n

)
.(18)

Putting ϕ(z) and ϕ1(z) instead of w in the notation (3) of the functions f0(w)
and f1(w), respectively, and using the relations (15) and (16), we obtain

f(z) = [f+
0 (ϕ(z))− f−0 (ϕ(z))](ϕ′(z))1/p(19)

and

f(z) = [f+
1 (ϕ1(z))− f−1 (ϕ1(z))](ϕ1(z))−2/p(ϕ′1(z))

1/p(20)

a.e. on L.

First we prove the estimate (17). Let us take a z ′ ∈ G. Using the relations (10)

and (20) we obtain

n∑

k=1

ãkF̃k,p

( 1
z′

)
= (ϕ′1(z

′))
1
p (ϕ1(z′))−

2
p

n∑

k=1

ãkϕ
k
1(z′)

− 1
2πi

∫

L

(ϕ′1(ζ))
1
p (ϕ1(ζ))−

2
p

n∑
k=1

ãkϕ
k
1(ζ)

ζ − z′
dζ
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= (ϕ′1(z
′))

1
p (ϕ1(z′))−

2
p

n∑

k=1

ãkϕ
k
1(z′)

− 1
2πi

∫

L

(ϕ′1)(ζ))
1
p (ϕ1(z′))−

2
p

[ n∑
k=1

ãkϕ
k
1(ζ) − f+

1 (ϕ1(ζ))
]

ζ − z′
dζ

− 1
2πi

∫

L

(ϕ′1(ζ))
1
p (ϕ1(z′))−

2
p f−1 (ϕ(ζ))

ζ − z′
dζ − 1

2πi

∫

L

f(ζ)
ζ − z′

dζ.

Since (ϕ′1(ζ))
1
p (ϕ1(z′))−

2
p f−1 (ϕ1(ζ)) ∈ Ep(G,ω) we get

1
2πi

∫

L

(ϕ′1(ζ))
1
p (ϕ1(z′))−

2
p f−1 (ϕ(ζ))

ζ − z′
dζ = (ϕ′1(z

′))
1
p (ϕ1(z′))−

2
p f−1 (ϕ1(z′)).

Then

n∑

k=1

ãkF̃k,p

( 1
z′

)
= (ϕ′1(z

′))
1
p (ϕ1(z′))−

2
p

n∑

k=1

ãkϕ
k
1(z′)

− 1
2πi

∫

L

(ϕ′1(ζ))
1
p (ϕ1(z′))−

2
p

[ n∑
k=1

ãkϕ
k
1(ζ) − f+

1 (ϕ1(ζ))
]

ζ − z′
dζ

− (ϕ′1(z
′))

1
p (ϕ1(z′))−

2
p f−1 (ϕ1(z′))− f+(z′).

Taking limit as z′ → z along all nontangential paths inside of L, it appears that

n∑

k=1

ãkF̃k,p(
1
z
) = (ϕ′1(z))

1
p (ϕ1(z))−

2
p

n∑

k=1

ãkϕ
k
1(z)

− 1
2
(ϕ′1(ζ))

1
p (ϕ1(z))−

2
p

( n∑

k=1

ãkϕ
k
1(z)− f+

1 (ϕ1(z))
)

− SL

[
(ϕ′1)

1
pϕ

− 2
p

1

( n∑

k=1

ãkϕ
k
1 − f+

1 ◦ ϕ1

)]
(z)

− (ϕ′1(z))
1
p (ϕ1(z))−

2
p f−1 (ϕ1(z))− f+(z)

a.e. on L. Using the relations (6) and (20), from the last equality we obtain

f−(z) +
n∑

k=1

ãkF̃k,p

(1
z

)
=

1
2
(ϕ′1(z))

1
p (ϕ1(z))−

2
p

( n∑

k=1

ãkϕ
k
1(z)− f+

1 (ϕ1(z))
)

− SL

[
(ϕ′1)

1
pϕ

− 2
p

1

( n∑

k=1

ãkϕ
k
1 − f+

1 ◦ ϕ1

)]
(z).
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Applying here Minkowski’s inequality and Theorem 5, we conclude that

∥∥∥∥f−(z) +
n∑

k=1

ãkF̃k,p

(1
z

)∥∥∥∥
Lp(L,ω)

6 c

∥∥∥∥f
+
1 (w)−

n∑

k=1

α̃kw
k

∥∥∥∥
Lp(T,ω1)

.

Now, by virtue of Lemmas 5 and 4 we have

∥∥∥∥f−(z) +
n∑

k=1

ãkF̃k,p

(1
z

)∥∥∥∥
Lp(L,ω)

6 cΩp,ω1,k

(
f1,

1
n

)
.

The proof of the relation (18) proceeds similarly to that of (17), using the rela-

tions (9) and (19) instead of the relations (10) and (20), respectively, and limiting
along all nontangential path outside of L.

Now the relation (6) and the estimate (17) and (18) complete the proof. �
���������

of Theorem 3. If f ∈ Ep(G−, ω) we apply Theorem 1 to the function
f∗ := f − f(∞). The approximate rational function Rn(z, f) is constructed as

f(∞) +
n∑

k=1

ãkF̃k,p

(1
z

)
.

�
���������

of Theorem 4. It can be shown easily that, under the condition (1), the
relations

ω ∈ Ap(L), ω0 ∈ Ap(T ), ω1 ∈ Ap(T ),

are equivalent. Therefore, the proof of Theorem 4 proceeds similarly to that of
Theorem 1. �
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