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SOME CHARACTERIZATION OF LOCALLY NONCONICAL
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(Received December 19, 2001)

Abstract. A closed convex set Q in a local convex topological Hausdorff spaces X is
called locally nonconical (LNC) if for every x, y ∈ Q there exists an open neighbourhood U
of x such that (U ∩ Q) + 1

2 (y − x) ⊂ Q. A set Q is local cylindric (LC) if for x, y ∈ Q,
x 6= y, z ∈ (x, y) there exists an open neighbourhood U of z such that U ∩Q (equivalently:
bd(Q)∩U) is a union of open segments parallel to [x, y]. In this paper we prove that these
two notions are equivalent. The properties LNC and LC were investigated in [3], where the
implication LNC ⇒ LC was proved in general, while the inverse implication was proved in
case of Hilbert spaces.
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1. Introduction

In the sequel, X denotes a locally convex Hausdorff topological space, and Q is a

nonempty closed convex subset of X .

Given x, y ∈ Q, by [x, y] the closed segment joining the points x and y is denoted.
Similarly (x, y), [x, y), (x, y] we denote the open, left-sided closed, right-sided closed
segment, respectively. By 〈x, y〉 we denote the ordered pair.

Definition 1.1. The ordered pair 〈x, y〉 is called locally nonconical (LNC) in Q

if x, y ∈ Q and there exists an open neighbourhood U of the point x such that
(U ∩Q) + 1

2 (y − x) ⊂ Q.

Definition 1.2. The set Q is called LNC if every ordered pair 〈x, y〉 ∈ Q×Q is
LNC.
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Definition 1.3. The ordered pair 〈x, y〉 is called LC (local cylindric) if x = y or

for every z ∈ (x, y) there exists an open neighbourhood U of z such that U ∩ Q is
the union of open segments parallel to [x, y].

Definition 1.4. The set Q is called LC if every pair 〈x, y〉 ∈ Q×Q is LC.

In [3] a property of closed convex sets in the local convex topological Hausdorff

spaces was considered. This property was called local nonconicality and was de-
noted LNC. The theorem proved in this paper is a generalization of Theorem 2.2

in [3], which was proved for subsets of Hilbert spaces. In our paper the proof of the
general case is presented.

Definition 1.2 is taken from [3], where the notion of LC occured implicitly. We
introduce the above definitions 1.1 and 1.3 for technical reasons.

The following useful reformulation of property LNC can be found in [3], which we
quote in local version:

Proposition 1.1. The ordered pair 〈x, y〉 is LNC in Q, if and only if x, y ∈ Q

and for every net (xα)α∈Γ contained in Q, if lim
α∈Γ

xα = x then xα + 1
2 (y − x) ∈ Q for

α ∈ Γ large enough.

Below we list some basic properties of LNC, (see [3]):
(a) If dim X 6 2 then Q is LNC.

(b) If Q1, Q2 ⊂ X are LNC then Q1 ∩Q2 is LNC, too.
(c) If Q1 ⊂ X1, Q2 ⊂ X2 are LNC then Q1 ×Q2 ⊂ X1 ×X2 is LNC, too.

(d) If Q is strictly convex then Q is LNC.
(e) If Q is LNC then Q is stable (i.e. f : Q×Q → Q defined f(x, y) := 1

2 (x + y) is
an open map; cf. [2]).

(f) The unit ball in c0 is LNC, but the unit ball l∞ is not LNC.

2. Main lemma

Lemma 2.1. Let x, y ∈ Q, x 6= y be fixed, and let z := 1
2 (x + y). Consider

x′ ∈ (x, z), and y′ := 2z − x′. If the pair 〈x′, y′〉 is LNC in Q, then 〈x, y〉 is LNC,
too.
���������

. Let (xα)α∈Γ be a net contained in Q such that lim
α∈Γ

xα = x. We need to

prove that xα + 1
2 (y− x) ∈ Q for α ∈ Γ large enough. Without loss of generality, we

can assume that xα 6= x for every α ∈ Γ. Let 0 < ε < 1
2 be such that x

′ = x+ε(y−x),
y′ = y − ε(y − x). For α ∈ Γ we put

δ′α := sup{δ > 0: δxα + (1− δ)x + ε(y − x) ∈ Q},
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and

δα := min{δ′α, 2}.

We remark that

(1− 2ε)xα + 2εx + ε(y − x) = (1− 2ε)xα + 2εz ∈ Q,

and hence δ > 1− 2ε > 0.
Because 0 6 δα 6 2, we have lim

α∈Γ
δα(xα − x) = 0. For α ∈ Γ put

x′α := δαxα + (1− δα)x + ε(y − x).

Since Q is closed, it follows from the definition of δα that x′α ∈ Q for α ∈ Γ. Moreover

lim
α∈Γ

x′α = x + ε(y − x) = x′.

Since the pair 〈x′, y′〉 is LNC, we get

x′α +
1
2
(y′ − x′) = x′α +

(1
2
− ε

)
(y − x) ∈ Q

for α ∈ Γ large enough. Now convexity of Q implies that

(1− 2ε)xα + 2ε

(
x′α +

(1
2
− ε

)
(y − x)

)
∈ Q

for α ∈ Γ large enough. Observe that

(1− 2ε)xα + 2ε

(
x′α +

(1
2
− ε

)
(y − x)

)

= (1− 2ε)xα + 2ε
(
x + δα(xα − x) +

1
2
(y − x)

)

= (2εδα + 1− 2ε)xα + (2ε− 2εδα)x + ε(y − x).

Letting δ := 2εδα + 1− 2ε, we see that δ > 1− 2ε > 0, and

δxα + (1− δ)x + ε(y − x) ∈ Q.

Therefore δ′α > δ. If δα = δ′α then δα > 2εδα +1−2ε; hence δα > 1. If δα 6= δ′α, then
δα = 2 and, again, δα > 1.
The above considerations show that

xα + ε(y − x) ∈ [x + ε(y − x), δαxα + (1− δα)x + ε(y − x)] ⊂ Q,
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for α ∈ Γ large enough. Let

x′′α := xα + ε(y − x).

We have x′′α ∈ Q for α ∈ Γ large enough and lim
α∈Γ

x′′α = x′. Because the pair 〈x′, y′〉
is LNC, we infer that for α ∈ Γ large enough x′′α + 1

2 (y′ − x′) ∈ Q. But

x′′α +
1
2
(y′ − x′) = xα + ε(y − x) +

(1
2
− ε

)
(y − x) = xα +

1
2
(y − x).

Therefore, for α ∈ Γ large enough xα + 1
2 (y − x) ∈ Q; hence 〈x, y〉 is LNC, and the

proof is complete. �

3. Main theorem

Theorem 3.1. Properties LNC and LC are equivalent.
���������

. In view of [3], Theorem 2.1, we only need to prove that LC implies
LNC. Let x, y ∈ Q, x 6= y and let the pair 〈x, y〉 is LC. Put z := 1

2 (x + y). We need
to show that there is x′ ∈ (x, z) such that for y′ := x+y−x′ the pair 〈x′, y′〉 is LNC.
In view of Lemma 2.1 this will complete the proof.

Let U be a convex neighbourhood of z such that U ∩ Q is the union of open
segments parallel to [x, y]. Let x′, y′ ∈ U ∩ [x, y], x′ ∈ [x, z), y′ := 2z − x′. Let

(xα)α∈Γ be a net such that lim
α∈Γ

xα = x′ and xα ∈ U ∩Q for α ∈ Γ. Let

εα := sup{ε : xα + ε(y′ − x′) ∈ U ∩Q}

for α ∈ Γ.
We have to show that xα + 1

2 (y′ − x′) ∈ Q for α ∈ Γ large enough. To get a
contradiction assume that xα + 1

2 (y′ − x′) /∈ Q for all α ∈ Γ. But then 0 6 εα 6 1
2

for every α ∈ Γ. Upon replacing (xα)α ∈ Γ by some subnet of (xα)α ∈ Γ we can
assume that lim

α∈Γ
εα = ε > 0, where 0 6 ε 6 1

2 . Observe that

Wα := xα + εα(y′ − x′) ∈ cl(U) ∩Q = (bd(U) ∩Q) ∪ (U ∩Q).

If Wα belongs to U ∩ Q then either xα + ε(y′ − x′) ∈ U ∩ Q for some ε > εα

which contradicts the definition εα, or xα + εα(y′ − x′) belongs to no open segment
contained in U ∩ Q, parallel to [x, y] in contrary to the assumption. Therefore
xα + εα(y′ − x′) ∈ bd(U) ∩Q for α ∈ Γ. Hence

lim
α∈Γ

(xα + εα(y′ − x′)) = x′ + ε(y′ − x′) ∈ bd(U) ∩Q.

Therefore x′ + ε(y′ − x′) ∈ bd(U) ∩ [x′, y′]. But [x′, y′] ⊂ U , U ∩ bd U = ∅, hence
bd(U) ∩ [x′, y′] = ∅, and we get a contradiction. �
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