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Abstract. Let R be a ring andM a right R-module. M is called ⊕-cofinitely supplemented
if every submodule N of M with M/N finitely generated has a supplement that is a direct
summand of M . In this paper various properties of the ⊕-cofinitely supplemented modules
are given. It is shown that (1) Arbitrary direct sum of ⊕-cofinitely supplemented modules
is ⊕-cofinitely supplemented. (2) A ring R is semiperfect if and only if every free R-module
is ⊕-cofinitely supplemented. In addition, if M has the summand sum property, then M is
⊕-cofinitely supplemented iff every maximal submodule has a supplement that is a direct
summand of M .
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1. Introduction and preliminaries

Throughout this paper we assume that R is an associative ring with identity and
all modules are unital right R-modules, unless otherwise specified. Let M be an
R-module. By N 6 M we mean that N is a submodule of M . A submodule N is
called superfluous if N +L 6= M for every proper submodule L ofM . N �M means
that N is superfluous submodule of M . RadM indicates the Jacobson radical ofM .
Let N and K be submodules of M . K is called a supplement of N in M if it is
minimal in the collection of submodules L of M such that M = N + L, equivalently
M = N +K and N∩K � K. For any ring R, an R-moduleM is called supplemented
if every submodule of M has a supplement in M . In addition, for any ring R, any
finite sum of supplemented R-modules is supplemented [6, 41.2].
Mohamed and Müller [5] call an R-moduleM ⊕-supplemented if every submodule

of M has a supplement that is a direct summand of M . An R-module M is called
local if the sum of all proper submodules is a proper submodule of M and is called
hollow if every proper submodule of M is superfluous in M . Every local module is
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hollow. Note that hollow modules are ⊕-supplemented so that local modules are also
⊕-supplemented. Clearly ⊕-supplemented modules are supplemented. In addition,
it was shown in [3, Theorem 1.4] that any finite direct sum of ⊕-supplemented
modules is ⊕-supplemented, but it is not generally true that any infinite direct sum
of ⊕-supplemented modules is ⊕-supplemented. Let R be a semiperfect ring not
right perfect. Then the R-module RR is ⊕-supplemented by [4, Theorem 2.1], but
the R-module R(N) is not ⊕-supplemented by [4, Theorem 2.10].
For characterizations of supplemented modules and ⊕-supplemented modules we

refer to [5] and [6].

2. Semiperfect rings

It is known that a ring R is right perfect if and only if every free right R-module
is ⊕-supplemented [4, Corollary 2.11]. In this section, we will find an analogous
characterization for semiperfect rings.

Let R be an arbitrary ring andM be an R-module. A submodule N ofM is called
cofinite inM if the factor moduleM/N is finitely generated. In [1], an R-moduleM

is called cofinitely supplemented if every cofinite submodule of M has a supplement
inM . In addition, it was shown in [1, Theorem 2.8] that an R-moduleM is cofinitely
supplemented if and only if every maximal submodule of M has a supplement in M .
Clearly supplemented modules are cofinitely supplemented.

An R-module M is called ⊕-cofinitely supplemented if every cofinite submodule
of M has a supplement that is a direct summand of M . Note that ⊕-supplemented
modules are ⊕-cofinitely supplemented. Also, finitely generated ⊕-cofinitely supple-
mented modules are ⊕-supplemented. If every maximal submodule of M is a direct
summand of M then M is ⊕-cofinitely supplemented (see, [1, Lemma 2.7]).
In general it is not true that ⊕-cofinitely supplemented module is ⊕-supplemented.

The � -module � of rational numbers has not any proper cofinite submodule. Thus
� is ⊕-cofinitely supplemented, but the � -module Q is not torsion, so it is not
supplemented by [7].

Lemma 2.1. Let M be cofinitely supplemented. Then M/ RadM is ⊕-cofinitely
supplemented.

���������
. It follows from [1, Lemma 2.6]. �

Recall from Garcia [2] that a module M is said to have the Summand Sum Prop-
erty (SSP) if the sum of two direct summands of M is again a direct summand
of M .
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Let {Lλ}λ∈Λ be the family of local submodules of M such that each of them is a
direct summand of M . Loc⊕M will denote the sum of Lλs for all λ ∈ Λ. That is
Loc⊕M =

∑
λ∈Λ

Lλ. Note that 0 is a local submodule of M .

Lemma 2.2. Let R be a ring and M be an R-module. Then every maximal

submodule of M has a supplement that is a direct summand of M if and only if
M/ Loc⊕M does not contain a maximal submodule.
���������

. (⇒) Suppose that M/ Loc⊕M contains a maximal submodule
Q/ Loc⊕M . Then Q is a maximal submodule of M . By assumption, there ex-
ist L, L′ submodules of M such that Q + L = M , Q∩L� L and M = L⊕L′. L is
a local by [6, 41.1]. Therefore L 6 Loc⊕M 6 Q which is a contradiction.
(⇐) Let P be a maximal submodule of M . By assumption, P does not contain

Loc⊕M . Hence there exists a local submodule L that is direct summand of M such
that it is not a submodule of P . Since P is maximal, P + L = M , and P ∩L 6= L so
that P ∩ L� L. �

Theorem 2.3. Let R be any ring and M be an R-module with SSP. Then the
following statements are equivalent.

1. M is ⊕-cofinitely supplemented.
2. Every maximal submodule of M has a supplement that is a direct summand

of M .

3. M/ Loc⊕M does not contain a maximal submodule.
���������

. (2)⇔ (3) is proved in Lemma 2.2.
(1)⇒ (2) If P is maximal submodule ofM thenM/P is simple so that it is cyclic.
(3) ⇒ (1) Let N be a cofinite submodule of M . Then N + Loc⊕M is a cofinite

submodule of M and by (3), M = N + Loc⊕M . Because M/N is finitely generated,
there exist local submodules Lλi ∈ {Lλ}λ∈Λ, 1 6 i 6 n for some positive integer n,
such that M = N + Lλ1 + . . . + Lλn . Clearly N + Lλ1 + . . . + Lλn has supplement 0
inM . By [1, Lemma 2.9], there exists a subset J of {λ1, λ2, . . . , λn} such that

∑
j∈J

Lj

is a supplement of N in M . By hypothesis,
∑
j∈J

Lj is a direct summand of M . Thus

M is ⊕-cofinitely supplemented. �

Let R be a ring and M an R-module. We consider the following condition.

(D3) If M1 and M2 are direct summands of M with M = M1 + M2,
then M1 ∩M2 is also a direct summand of M .

IfM is a ⊕-supplemented module with (D3) thenM is completely ⊕-supplemented
(i.e. every direct summand ofM is ⊕-supplemented) (see, [3, Proposition 2.3]). Now,
we prove an analogue of this fact.
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Proposition 2.4. LetM be a⊕-cofinitely supplemented module with (D3). Then
every cofinite direct summand of M is ⊕-cofinitely supplemented.
���������

. Let N be a cofinite direct summand ofM . Then there exists a submod-
ule N ′ of M such that M = N ⊕N ′ and N ′ is finitely generated. Let U be a cofinite
submodule of N . Note that M/U = (N ⊕N ′)/U ∼= N/U ⊕N ′ is finitely generated
so that U is also cofinite submodule of M . Since M is ⊕-cofinitely supplemented,
there exists a direct summand V ofM such thatM = U +V and U ∩V � V . Hence
N = U + V ∩ N . Since M has (D3), V ∩ N is a direct summand of M . Further-
more V ∩N is a direct summand of N because N is a direct summand of M . Then
U ∩ (N ∩ V ) = U ∩ V is superfluous in V ∩N by [6, 19.3]. Hence N is ⊕-cofinitely
supplemented. �

Lemma 2.5. Let M be an R-module and N , U be submodules of M such that
N is cofinitely supplemented, U cofinite and N +U has a supplement A in M . Then

N ∩ (U + A) has a supplement B in N , and A + B is a supplement of U in M .
���������

. Let A be a supplement of N + U in M . Then M = (N + U) + A and
(N + U) ∩ A is superfluous in A. Now

N

N ∩ (U + A)
∼= N + U + A

U + A
=

M

U + A
∼= M/U

(U + A)/U
.

Since U is a cofinite submodule of M , N ∩ (U + A) is a cofinite submodule of N .
Because N is cofinitely supplemented, N ∩ (U + A) has a supplement B in N . Note
that (U + A) ∩ B is superfluous in B. Then

M = (N + U) + A = U + A + B

and by [6, 19.3],

U ∩ (A + B) 6 A ∩ (U + B) + B ∩ (U + A)

6 A ∩ (N + U) + B ∩ (U + A)� A + B.

Therefore A + B is a supplement of U in M . �

Theorem 2.6. For any ring R, arbitrary direct sum of ⊕-cofinitely supplemented
R-modules is ⊕-cofinitely supplemented.
���������

. Let R be any ring and Mi (i ∈ I) be any collection of ⊕-cofinitely
supplemented R-modules. Let M =

⊕
i∈I

Mi and N be a cofinite submodule of M .
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ThenM/N is generated by some finite set {x1+N, x2+N, . . . , xk +N} and therefore
M = x1R+x2R+ . . .+xkR+N . Since each xi is contained in the direct sum

⊕
j∈Fi

Mj

for some finite subset Fi of I , x1R + x2R + . . . + xkR 6
⊕
j∈F

Mj for some finite

subset F = {i1, i2, . . . , ir} of I . Then M =
r⊕

t=1
Mit + N . Clearly M = Mi1 +

( r⊕
t=2

Mit +N
)
has trivial supplement 0 inM . SinceMi1 is ⊕-cofinitely supplemented,

Mi1 ∩
( r⊕

t=2
Mit +N

)
has a supplement Si1 inMi1 such that Si1 is a direct summand

of Mi1 . By Lemma 2.5, Si1 is a supplement of
r⊕

t=2
Mit + N in M . Note that since

Mi1 is a direct summand of M , Si1 is also a direct summand of M . Continuing in
this way, since the set J is finite at the end we will obtain that N has a supplement
Si1 +Si2 + . . .+Sir inM such that every Sit (1 6 t 6 r) is a direct summand ofMit .

Since everyMit is a direct summand ofM , it follows that
r∑

t=1
Sit =

r⊕
t=1

Sit is a direct

summand of M . �

Corollary 2.7. Any direct sum of ⊕-supplemented modules is ⊕-cofinitely sup-
plemented.

Therefore any direct sum of local (hollow) modules is ⊕-cofinitely supplemented.
As we remarked at the beginning of this section, a ring R is right perfect if and

only if every free right R-module is ⊕-supplemented. Now we prove an analogue for
semiperfect rings. Firstly we need the following lemma.

Lemma 2.8. Let R be a ring with identity. Then the R-module RR is ⊕-cofinitely
supplemented if and only if every free R-module is ⊕-cofinitely supplemented.
���������

. (⇐) Clear.
(⇒) Let M be a free R-module and A = {ai}i∈I be a basis of M . Then, it is

well known that M =
⊕
i∈I

aiR and R ∼= aiR for all i ∈ I . By assumption, every

cyclic R-module aiR (i ∈ I) is ⊕-cofinitely supplemented and M is ⊕-cofinitely
supplemented by Theorem 2.6. �

Theorem 2.9. The following statements are equivalent for a ring with identity.
1. R is semiperfect.
2. Every finitely generated free R-module is ⊕-supplemented.
3. RR is ⊕-supplemented.
4. RR is ⊕-cofinitely supplemented.
5. Every free R-module is ⊕-cofinitely supplemented.
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���������
. (1)⇔ (2)⇔ (3) is proved in [4, Theorem 2.1].

(3)⇒ (4) Clear from the definition.
(4)⇒ (5) It follows from Lemma 2.8.
(5) ⇒ (2) Let M be a finitely generated free R-module. By hypothesis, M is

⊕-cofinitely supplemented. Since M is finitely generated, it follows that M is
⊕-supplemented. �

Corollary 2.10. If R is a semiperfect division ring then every R-module is
⊕-cofinitely supplemented.
���������

. Let R be a semiperfect division ring. By [6, 20.10], every R-module is
free. Then by Theorem 2.9, we have the result. �

We give examples of modules, which are ⊕-cofinitely supplemented but not
⊕-supplemented. The R-module R(N) mentioned at the end of the first section is
⊕-cofinitely supplemented. In addition, if the � -module M is a direct sum of an
infinite number of copies of the Prüfer p-group � (p∞) then M is a direct sum of
infinite number of ⊕-supplemented modules but is not supplemented. Note that
M is ⊕-cofinitely supplemented by Corollary 2.7.
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