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GLOBAL MONOTONICITY AND OSCILLATION
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Abstract. Oscillatory properties of the second order nonlinear equation

(r(t)x′)′ + q(t)f(x) = 0

are investigated. In particular, criteria for the existence of at least one oscillatory solution
and for the global monotonicity properties of nonoscillatory solutions are established. The
possible coexistence of oscillatory and nonoscillatory solutions is studied too.
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1. Introduction

In this paper we are concerned with the oscillatory behavior of solutions for the
second order nonlinear differential equation

(1) (r(t)x′)′ + q(t)f(x) = 0,

where q : [t0,∞) → (0,∞), r : [t0,∞) → (0,∞) are continuous and f : � → � is
continuous with f(u)u > 0 for u 6= 0.
We will restrict our attention to those solutions x of (1) that exist on some interval

[t0, bx), bx 6 ∞, and not continuable for t > bx, whereby bx may depend on the

particular solution involved. A solution x is called oscillatory if there exists {tn}, t0 6
tn < bx, such that lim

n→∞
tn = bx and x(tn) = 0, otherwise it is called nonoscillatory.
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Observe that any nonoscillatory solution is continuable at infinity, i.e. bx = ∞, as
will be pointed out in the next section.
Two problems have been widely studied in literature: the existence of nonoscilla-

tory solutions and the oscillation of all solutions, see, e.g., [1], [2], [6], [7], [14] and

[5], [15], [17], [18], respectively, and references therein. More difficult problems, es-
pecially those motivated by some physical applications, deal with: (i) the existence

of at least one oscillatory solution; (ii) the global monotonicity of nonoscillatory so-
lutions x, i.e. x and x′ different from zero on the whole interval [t0,∞); (iii) the
possible coexistence of oscillatory and nonoscillatory solutions.
The investigation of these problems was started in the sixties by R.A. Moore,

Z. Nehari [16], J. Kurzweil [12], M. Jasný [10] for the Emden-Fowler equation

(2) x′′ + q(t)|x|λ sgnx = 0

in the case λ > 1 and some years later in the case 0 < λ < 1 by K.L. Chiou [13].
We refer to [11], [18] and references therein for further contributions. For our later

comparison, we recall the following result for the Emden-Fowler equation (2):

Theorem A [11, Th. 18.4]. Assume q(t)t(λ+3)/2 is nondecreasing for some λ > 0.
Then (2) has at least one oscillatory solution. In addition, if λ > 1, then every
solution of (2) with a zero is oscillatory.

Later on these results have been generalized in [3], [8], [9] to equations of the form

(3) x′′ + f(t, x) = 0.

In particular, in [8], [9] conditions under which (3) has at least one oscillatory solu-

tion are given. Under similar assumptions, conditions ensuring oscillation of every
solution of (3) with a zero are established in [3, Corollary 9].

The purpose of this paper is to solve the above posed problems (i)–(iii). In partic-
ular we show that every solution x of (1), such that x(t1)x′(t1) > 0 at some t1 > t0,

is oscillatory. As a consequence, we give the affirmative answer to problems (i)–(iii),
under additional assumptions. Also, we give a growth estimate for possible nonoscil-

latory solutions of (1). The paper is completed by an example illustrating that our
results can be applied when the corresponding ones in [3], [8], [9] fail. We note that

our assumption on nonlinearity requires superlinearity or sublinearity conditions nei-
ther on the whole line, nor near zero or infinity.

Our approach is based on a transformation of (1) to an equation of type (3). Since
the function r in (1) may be eliminated by a change of variable, many results in

literature have been stated for the case r(t) ≡ 1. However, the results presented here
cannot be obtained directly from the quoted ones concerning the case r(t) ≡ 1.
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2. Global monotonicity and oscillation

Two cases must be distinguished, according to the convergence or divergence of

the integral
∫∞[1/r(s)] ds. Here the case

(4)
∫ ∞

t0

ds

r(s)
< ∞

is considered. The basic results for the opposite case are formulated in Section 3

without proof.
Our main result concerns the existence of an oscillatory solution and the global

monotonicity properties of nonoscillatory solutions. The following holds:

Theorem 1. Let (4) be verified and assume that for some λ > 1

f(u)
|u|λ is nonincreasing on (−∞, 0) and (0,∞);(5)

q(t)r(t)
(∫ ∞

t

ds

r(s)

)(3+λ)/2

is nondecreasing and tends to ∞ as t →∞.(6)

Then equation (1) has oscillatory solutions. In addition every nonoscillatory solu-
tion x of (1) (if it exists) satisfies x(t)x′(t) < 0 for every t > t0 and lim

t→∞
x(t) = 0. In

particular, every solution x such that x(t1)x′(t1) > 0 at some t1 > t0 is oscillatory.

The proof of Theorem 1 is accomplished by means of several lemmas. We will use
the change of variable

(7) s = s(t) =
(∫ ∞

t

dτ

r(τ)

)−1

, z(s) = sx(t).

A function x(t) is a solution of (1) if and only if the function z(s) = sx(t) is a solution
of the equation

(8) z′′ + Q(s)f
(z(s)

s

)
= 0 (s > a > 0)

where t = t(s) is the inverse of the monotone function s and

(9) a =
(∫ ∞

t0

ds

r(s)

)−1

> 0, Q(s) = r(t)q(t)
(∫ ∞

t

dτ

r(τ)

)3

.

Observe that, in view of the convexity, any nonoscillatory solution z of (8) is

continuable at infinity. This fact implies that the same occurs for any nonoscillatory
solution x of (1). In addition, for any nonoscillatory solution z of (8) we have

(10) z(s) 6= 0 for s > sz =⇒ z(s)z′(s) > 0 for s > sz .
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Indeed, if z(s) > 0, then z′′(s) < 0 and so z′ is decreasing and positive (otherwise

z becomes eventually negative). If z(s) < 0, the argument is analogous.
The following two lemmas describe asymptotic properties of nonoscillatory solu-

tions of (8).

Lemma 1. Assume that for some λ > 1 condition (5) is satisfied and

(11) Q(s)s(3−λ)/2 is nondecreasing for s > a.

Then every nonoscillatory solution z of (8) satisfies

(12) lim
s→∞

z(s)
s

= 0, lim
s→∞

z′(s) = 0.

In addition, if z(s) 6= 0 for s > sz, then the function (z′(s)s−z(s)) sgn z is decreasing

for s > sz and is negative for large s, i.e. the function |z(s)|/s is decreasing to zero

as s →∞.
�������! 

. Let z be a solution of (8) and, without loss of generality, assume

z(s) > 0 for s > sz > a. As already claimed, the function z′ is positive decreasing
and thus there exists lim

s→∞
z(s) = c1, 0 < c1 6 ∞ and lim

s→∞
z′(s) = c2, 0 6 c2 < ∞.

Hence

lim
s→∞

z(s)
s

= lim
s→∞

z′(s) = c2, 0 6 c2 <∞.

Suppose c2 > 0 and let ε > 0 be such that z(s)/s > c2 − ε > 0 for s > s0 > sz.
Denote K = max z(s)/s for s ∈ [s0,∞) and m = min f(u) for u ∈ [c2 − ε, K].
Integrating (8) on (s0,∞) we obtain

z′(s0)− c2 =
∫ ∞

s0

Q(σ)f
(z(σ)

σ

)
dσ > m

∫ ∞

s0

Q(σ) dσ,

which implies
∫∞

Q(σ) dσ < ∞. Since λ > 1, by (11) we obtain

(13)
∫ s

a

Q(σ) dσ =
∫ s

a

Q(σ)σ(3−λ)/2σ(λ−3)/2 dσ > c

∫ s

a

σ(λ−3)/2 dσ > c

∫ s

b

dσ

σ

where b = max{a, 1} and c = Q(a)a(3−λ)/2, which gives a contradiction as s → ∞.
Hence (12) holds. In addition we have

(z(s)
s

)′
=

z′(s)s− z(s)
s2

and (z′(s)s− z(s))′ = z′′(s)s < 0 (s > sz),

i.e. the function z′(s)s − z(s) is decreasing for s > sz. If z′(s)s − z(s) > 0 for
large s, then z(s)/s is eventually positive increasing, which contradicts (12). Thus
z′(s)s− z(s) < 0 for large s, i.e. z(s)/s is decreasing to zero as s →∞. �
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Lemma 2. Assume that for some λ > 1 conditions (5) and (11) are satisfied.
Then for any nonoscillatory solution z of (8) such that |z(s)|/s is decreasing and

z(s) 6= 0 on Iz = [sz ,∞), sz > a, the following statements hold for s ∈ Iz :

(a) z(s)z′(s) > 2(λ + 1)−1z(s)f(z(s)/s)Q(s)s,

(b) z(s)f(z(s)/s) > (1 + λ)s−λ

∫ s

sz

f(z(ξ)/ξ)z′(ξ)ξλ dξ + (sz/s)λf(z(sz)/sz)z(sz),

(c) the function

F (s) = s[z′(s)]2 − z(s)z′(s) + 2Q(s)s1−λ

∫ s

sz

f(z(ξ)/ξ)z′(ξ)ξλ dξ

is increasing.

�������! 
. Let z be a nonoscillatory solution of (8) and, without loss of generality,

assume z(s) > 0 and z′(s)s − z(s) < 0 for s > sz. Set g(u) = f(u)/uλ for u > 0.
By (5) the function g(z(s)/s) is nondecreasing for s > sz.

Claim (a). In view of (10) and Lemma 1, integrating (8) on (s,∞), s > sz, we

obtain

z′(s) =
∫ ∞

s

Q(ξ)f
(z(ξ)

ξ

)
dξ =

∫ ∞

s

Q(ξ)g
(z(ξ)

ξ

)zλ(ξ)
ξλ

dξ

> g
(z(s)

s

)
zλ(s)

∫ ∞

s

Q(ξ)ξ(3−λ)/2ξ−(3+λ)/2 dξ

> f
(z(s)

s

)
sλQ(s)s(3−λ)/2

∫ ∞

s

ξ−(3+λ)/2 dξ

=
2

λ + 1
f
(z(s)

s

)
Q(s)s.

Claim (b). We have

z(s)f
(z(s)

s

)
− (1 + λ)

1
sλ

∫ s

sz

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ

= z(s)f
(z(s)

s

)
− (1 + λ)

1
sλ

∫ s

sz

g
(z(ξ)

ξ

)
zλ(ξ)z′(ξ) dξ

> z(s)f
(z(s)

s

)
− (1 + λ)

1
sλ

g
(z(s)

s

)[
zλ+1(ξ)

]s

sz

1 + λ

= g
(z(s)

s

) 1
sλ

zλ+1(sz) >
(sz

s

)λ

f
(z(sz)

sz

)
z(sz),

which yields the assertion.
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Claim (c). In view of claim (b) we have

F ′(s) = 2sz′z′′ − zz′′ + 2
(
Q(s)s(3−λ)/2

)′
s−[(1+λ)/2]

∫ s

sz

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ

− (1 + λ)Q(s)s−λ

∫ s

sz

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ + 2sQ(s)f

(z(s)
s

)
z′(s)

> Q(s)
[
z(s)f

(z(s)
s

)
− (1 + λ)

1
sλ

∫ s

sz

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ

]

> Q(s)
(sz

s

)λ

f
(z(sz)

sz

)
z(sz) > 0.

�

The next result establishes upper bounds for nonoscillatory solutions of (8).

Lemma 3. If for some λ > 1 conditions (5) and (11) hold, then every nonoscilla-
tory solution z of (8) satisfies

(14) |z(s)| 6 C
√

s
(
Q(s)s(3−λ)/2

)1/(λ−1)
as s →∞,

where C > 0 is a suitable constant. In addition, if

(15) lim
s→∞

Q(s)s(3−λ)/2 = ∞,

then no nonoscillatory solutions z of (8) such that

|z(s)| > c
√

s for any c > 0 and s large

exist.
�������! 

. Let z be a solution of (8). In view of (10) and Lemma 1, without loss of
generality, we can assume z(s) > 0, z′(s) > 0 and z(s)/s decreasing for s > T > a.

As claimed in the proof of Lemma 2, the function g(z(s)/s) is nondecreasing for
s > T . By Lemma 2 (a) we have

z′(s) > 2
λ + 1

zλ(s)
sλ

g
(z(s)

s

)
Q(s)s > czλ(s)Q(s)s1−λ

where c = 2(λ + 1)−1g(z(T )/T ). From here, by integrating on [s,∞) and using (11)
and Lemma 1, we obtain

1
(λ− 1)[z(s)]λ−1

> c

∫ ∞

s

Q(t)t(3−λ)/2t−(1+λ)/2 dt > cQ(s)s(3−λ)/2 2
(λ − 1)s(λ−1)/2

,

which implies the assertion. �
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Assumption (15) cannot be omitted, as the following example shows.

Example 1. Equation

z′′ +
1
4
s(λ−3)/2

∣∣∣z
s

∣∣∣
λ

sgn z = 0, λ > 1, s > 1

has a solution z(s) =
√

s, whereby the function Q(s)s(3−λ)/2 = 1
4 .

Remark 1. If, for some λ > 1, conditions (5), (11) and

(16) Q(s) > sλ−2h(s), lim
s→∞

h(s) = ∞

hold, then no nonoscillatory solutions of (8) exist. In fact, (14) implies

|z(s)| 6 C
[ 1
h(s)

]1/(λ−1)

,

which gives a contradiction with (10) when s → ∞. In particular, conditions (16)
are satisfied if

lim
s→∞

Q(s)s2−λ =∞.

Observe that for the Emden-Fowler nonlinearity f(u) = |u|λ sgnu, equation (8)

takes the form z′′ + s−λQ(s)|z|λ sgn z = 0 and the statement is known, see [11,
Th. 18.2].

The following lemma gives the existence of oscillatory solutions and describes the

global monotonicity properties of nonoscillatory solutions.

Lemma 4. Assume that for some λ > 1 conditions (5), (11) and (15) are satisfied.
Then every solution z of (18) such that

(17) (z′(T )T − z(T )) sgn z(T ) > 0

at some T > a is oscillatory. Every nonoscillatory solution z1 of (8) satisfies

z1(s) 6= 0, z1(s)z′1(s) > 0

on the whole [a,∞) and, on the same interval [a,∞), the function |z1(s)|/s is de-

creasing and converges to zero as s →∞.
�������! 

. Let z be a solution of (8) satisfying (17) at some T > a. Assume z is
nonoscillatory. If z(s) 6= 0 for all s > T , put T = T ; otherwise let T be the largest
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zero of z. Without loss of generality assume z(s) > 0 for s > T . By (10), z ′(s) > 0
for s > T . Consider two cases: (a) T = T . By (17) we have

(18)
(z(s)

s

)′
s=T

=
z′s− z

s2

∣∣∣
s=T

> 0.

(b) T > T . Since z(T ) = 0, (18) holds, too.
By Lemma 1, the function z(s)/s is decreasing as s →∞. Thus there exists τ > T

such that (z(s)
s

)′
s=τ

= 0,
(z(s)

s

)′
< 0 for s > τ,

i.e.

(19) z′(τ)τ − z(τ) = 0 and z′(s)s− z(s) < 0 for s > τ.

Applying Lemma 2 on [τ,∞) we obtain

(20) z(s)z′(s) > 2
λ + 1

sQ(s)z(s)f
(z(s)

s

)
> 2

sλ−1
Q(s)

∫ s

τ

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ.

Consider the function F from Lemma 2: in view of (19) we have F (τ) = 0. Since
F is increasing, from (20) we obtain for s > τ + 1

0 = F (τ) < F (τ + 1) 6 F (s)

= s[z′(s)]2 − z(s)z′(s) + 2s
Q(s)
sλ

∫ s

τ

f
(z(ξ)

ξ

)
z′(ξ)ξλ dξ 6 s[z′(s)]2.

Therefore we have for s > τ + 1

z′(s) >
√

F (τ + 1)√
s

.

Since, in view of (19), [z(s)/s] > z′(s), we conclude

z(s) >
√

F (τ + 1)
√

s.

This contradicts Lemma 3 and hence any solution z satisfying (17) is oscillatory.

In particular, every solution with a zero is oscillatory. Therefore, any nonoscilla-
tory solution z1 satisfies z1(s) 6= 0 for s > a and thus, in view of (10), z1(s)z′1(s) > 0
for s > a. By Lemma 1 the function (z′1(s)s − z1(s)) sgn z1 is decreasing for s > a

and negative for large s. Since any solution satisfying (17) is oscillatory, the function

(z′1(s)s− z1(s)) sgn z1 must be negative for every s > a, i.e. the function |z1(s)|/s is
decreasing on [a,∞). �
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�������! 
of Theorem 1. Let x be a solution of (1) and consider the transforma-

tion (7). Obviously, this transformation preserves zeros of solutions. Since, in view
of (7),

(21) Q(s)s(3−λ)/2 = q(t)r(t)
(∫ ∞

t

dτ

r(τ)

)(3+λ)/2

,

assumptions (11) and (15) for equation (8) are equivalent to the assumption (6) for
equation (1). Applying Lemmas 1 and 4 to (8) and going back to (1) we obtain that
every solution x of (1) with a zero is oscillatory and any nonoscillatory solution x

of (1) satisfies lim
t→∞

x(t) = 0.

It remains to prove that every nonoscillatory solution x of (1) satisfies x(t)x′(t) < 0
for t > t0. Without loss of generality assume x(t) > 0 for t > t0. Then z(s) > 0 is a
nonoscillatory solution of (8) and, by Lemma 4, z(s)/s is decreasing on [a,∞). The
change of variable (7) gives

ṡ =
ds

dt
=

1
(∫∞

t 1/r
)2

1
r(t)

=
s2

r(t)
, x′ =

dx

dt
=

ż(s)s− z(s)
r(t)

,

from where x′(t) < 0 follows for all t > t0. �

3. Applications and extensions

As we have already mentioned, the problem of existence of an oscillatory solution
and the one of the global monotonicity of nonoscillatory solutions are closely related

to the possible coexistence of such kinds of solutions. In this section we give some
applications of our results to this problem.

We recall the following existence result that can be obtained, e.g., from [11], [14],
[18].

Lemma 5. Let (4) be satisfied and assume there exist a nondecreasing function g

and positive numbers β, K, ε such that

|f(u)| 6 g(u) for |u| 6 ε,(22)
∫ ∞

q(t)g
(∫ ∞

t

ds

r(s)

)
dt < ∞.(23)

Then there exists a nonoscillatory solution x of (1) such that

(24) x(t) =
∫ ∞

t

dτ

r(τ)
[α + o(1)]

where α 6= 0 is an arbitrary constant.
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The first application follows from Theorem 1 and Lemma 5.

Corollary 1. Assume conditions (4), (5), (6), (22) and (23) are satisfied. Then
every solution of (1) with a zero is oscillatory and there exists a nonoscillatory solu-

tion x of (1) such that lim
t→∞

x(t) = 0 and x(t)x′(t) < 0 on the whole [t0,∞).

Example 3 below illustrates Corollary 1. The second application follows from

Lemma 3 and establishes an a-priori estimate for nonoscillatory solutions of (1).

Theorem 2. Assume, for some λ > 1, that conditions (4), (5) are satisfied and

q(t)r(t)
(∫ ∞

t

ds

r(s)

)(3+λ)/2

is nondecreasing on [t0,∞).

Then every nonoscillatory solution x of (1) satisfies for large t

|x(t)| 6 c

(
q(t)r(t)

(∫ ∞

t

ds

r(s)

)2−λ)−1/(λ−1)

where c is a suitable constant.

The following examples illustrate our results. In particular, Example 3 illustrates

a case of coexistence of oscillatory and globally nonoscillatory solutions and shows
that the quoted results in [8], [9] cannot be applied.

Example 2. Consider the generalized Emden-Fowler equation

(25) (t2x′)′ + tδ|x|γ sgn x = 0.

When 0 < γ 6 1 and δ > 0, then choosing 1 < λ < 1 + 2δ we obtain from
Theorem 1 the existence of oscillatory solutions and the global monotonicity property

of nonoscillatory solutions. When γ > 1 and δ > (γ − 1)/2, then by virtue of
Theorem 1 again, the same result holds. Note that the existence of an oscillatory
solution of (25) follows also from other known results (see, e.g. [11]).

Example 3. Consider the equation

(26) (t2x′)′ + t1/4+εf(x) = 0 (t > 1)

where ε > 0 and

f(u) =

{
|u|4/3 sgn u for |u| 6 1,
√
|u| sgnu for |u| > 1.

It is easy to verify that the assumptions of Theorem 1 are satisfied with λ = 3/2 and
any ε > 0. Hence (26) has an oscillatory solution and, as we will point out in the next
section, such a solution is nontrivial in any neighbourhood of infinity. In addition,

for ε < 1/12 Corollary 1 is applicable and thus for ε ∈ (0, 1/12) the coexistence of
oscillatory and nonoscillatory solutions of (26) takes place.
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Let us show that the quoted result from [8], [9] cannot be applied. First we show

that condition of Izjumova

(27) lim inf
t→∞, |x|→∞

t3/2|f(t, t1/2x)|
x

> 1

is not verified for equation (26). To check this, we apply transformation (7): in this
case s = t, s > 1 and (26) is reduced to

(28) z′′ + s−3/4+εf
(z

s

)
= 0 (s > 1).

For equation (28) assumption (27) becomes

(29) lim inf
s→∞, |u|→∞

s3/2s−3/4+εf(u/
√

s)
u

= lim inf
s→∞, |u|→∞

s3/4+εf(u/
√

s)
u

> 1.

Choosing u = s2 and ε < 1/2, condition (29) is not verified. Similarly, the condition
of [8]

(30) lim inf
|x|→0

t
3/2
0 f(t0, t

1/2
0 x)

x
> 1/4

is not satisfied for equation (26) because for x in a right neighboorhood of zero we

have
t3/2f(t, t1/2x)

x
= tεt29/12x1/3.

In a similar way one can check that the results of [3] cannot be applied in this case,
either.

We close this section by considering the case

(31)
∫ ∞

t0

ds

r(s)
= ∞.

Using the well-known transformation

σ = σ(t) =
∫ t

0

dτ

r(τ)
, z(σ) = x(t(σ))

and proceeding in a similar way as in Section 2, we obtain the following result, which

extends Theorem A.
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Theorem 3. Let (31) be verified and assume that for some λ > 1

f(u)
|u|λ is nondecreasing on (−∞, 0) and (0,∞),(32)

q(t)r(t)
(∫ t

0

ds

r(s)

)(3+λ)/2

is nondecreasing and tends to ∞ as t →∞.(33)

Then (1) has oscillatory solutions. On the other hand, every nonoscillatory solution x

(if it exists) satisfies x(t)x′(t) > 0 for all t > t0 and

lim
t→∞

x(t)
(∫ t

t0

dτ

r(τ)

)−1

= 0.

In particular, every solution x such that x(t1)x′(t1) > 0 at some t1 > t0 is oscillatory.

Observe that, in this case, a completely different proof of the statement that every

solution with a zero is oscillatory, has been presented in [3, Corollary 9]. Under ad-
ditional assumptions ensuring the existence of bounded nonoscillatory solutions (see,

e.g., [11, Corollary 8.2]) we can obtain conditions for the coexistence of oscillatory
and nonoscillatory solutions. For instance, the following holds:

Corollary 2. Assume conditions (31), (32), (33) are satisfied and

∫ ∞
r(t)q(t)

(∫ t

0

dτ

r(τ)

)
dt < ∞.

Then every solution of (1) with a zero is oscillatory and there exists a bounded
nonoscillatory solution x of (1) such that x(t)x′(t) > 0 on the whole [t0,∞).

4. Concluding remarks

Here we discuss the continuability at infinity and the uniqueness problem. As
we have already claimed, nonoscillatory solutions of (1) are continuable at infinity.

Hence the only possible noncontinuable solutions of (1) are the oscillatory ones.
For the Emden-Fowler equation (2), if the function q(t)r(t) is locally of bounded
variation, then every solution of (1) is continuable at infinity (see e.g. [3], [4], [18]).

Another “pathological” type of oscillatory solutions, which may arise, are solutions
identically equal to zero in a neighbourhood of infinity. These solutions do not

exist when an additional uniqueness assumption on f is supposed, for instance the
Osgood condition, i.e. |f(u)| 6 ω(|u|) for |u| 6 ε where ω is a nondecreasing function
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such that
∫ ε

0
1/ω(u) = ∞. As concerns the problem of continuability of oscillatory

solutions, we recall [3], where this problem is deeply discussed for the equation

x′′ + xF (x2, t) = 0.

However, conditions stated in [3] seem to be rather difficult to apply for equation (1),
under our assumptions. Hence we offer here the following criterion for continuability

of solutions of (1).

Proposition 1. Assume conditions (4), (5) are satisfied. If q(t)r(t) is absolute
continuous on [t0,∞), f is absolute continuous on � and for any c 6= 0 the function

(34) q(t)r(t)
(∫ ∞

t

ds

r(s)

)3∣∣∣∣f
(

c

∫ ∞

t

ds

r(s)

)∣∣∣∣

is nonincreasing, then all solutions of (1) are continuable at infinity.

�������! 
. For the reduced equation (8), the condition (34) becomes

Q(s)
∣∣∣f

( c

s

)∣∣∣ is nonincreasing for s > a > 0 and c 6= 0.

For any solution z of (8) consider the function

F (s) =
∫ z(s)

0

Q(s)f
(τ

s

)
dτ +

1
2
z′2(s) > 1

2
z′2(s).

We have F (s) > 0 and

F ′(s) =
∫ z(s)

0

sgn z(τ)
d
ds

[
Q(s)

∣∣∣f
(τ

s

)∣∣∣
]
dτ 6 0.

It means that F is bounded, so z′ is bounded too and z is a continuable at infinity
solution. By using the transformation (7), we obtain the assertion. �

Applying Proposition 1 to the equation (26) in Example 3 we can conclude that

all solutions of this equation are defined on [1,∞) and this equation has oscillatory
solutions defined on [1,∞) and nontrivial on any neighbourhood of infinity.
When (31) is assumed, then a result similar to that in Proposition 1 holds; the

details are left to the reader.
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