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Abstract. By a signpost system we mean an ordered pair (W,P ), where W is a finite
nonempty set, P ⊆ W ×W ×W and the following statements hold:

if (u, v, w) ∈ P, then (v, u, u) ∈ P and (v, u, w) 6∈ P, for all u, v, w ∈ W ;

if u 6= v, then there exists r ∈ W such that (u, r, v) ∈ P, for all u, v ∈ W.

We say that a signpost system (W, P ) is smooth if the folowing statement holds for all
u, v, x, y, z ∈ W : if (u, v, x), (u, v, z), (x, y, z) ∈ P , then (u, v, y) ∈ P . We say thay a
signpost system (W,P ) is simple if the following statement holds for all u, v, x, y ∈ W : if
(u, v, x), (x, y, v) ∈ P , then (u, v, y), (x, y, u) ∈ P .
By the underlying graph of a signpost system (W,P ) we mean the graph G with V (G) =

W and such that the following statement holds for all distinct u, v ∈ W : u and v are
adjacent in G if and only if (u, v, v) ∈ P . The main result of this paper is as follows: If G is
a graph, then the following three statements are equivalent:

G is connected;
G is the underlying graph of a simple smooth signpost system;
G is the underlying graph of a smooth signpost system.

Keywords: connected graph, signpost system

MSC 2000 : 05C38, 05C40, 05C12

By a graph we mean here a finite undirected graph with no multiple edges or
loops. The letters f − n will serve for denoting non-negative integers.

1. Ternary systems

By a ternary system we mean an ordered pair (W, P ) such that W is a finite
nonempty set and P ⊆ W ×W ×W . Obviously, if (W, P ) is a ternary system, then
P is a ternary relation in W .
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Let S = (W, P ) be a ternary system. Consider u0, . . . , ui, v ∈ W , where i > 1. If

(uj , uj+1, v) ∈ P for each j, 0 6 j 6 i− 1,

we will write

u0 . . . uiSv.

Thus, instead of (u, v, w) ∈ P , where u, v, w ∈ W , we write uvSw. Moreover,
instead of (x, y, z) 6∈ P , where x, y, z ∈ W , we will write ¬(xySz). Finally, we will
write V (S) = W .
We say that a ternary system S is smooth if it satisfies the following axiom (SMO):

(SMO) if uvSx, uvSz and xySz, then uvSy for all u, v, x, y, z ∈ V (S).

Lemma 1. Let S be a smooth ternary system and let u0, . . . , ui, x, y, z ∈ V (S),
where i > 1. Assume that u0 . . . uiSx, u0 . . . uiSz and xySz. Then u0 . . . uiSy.
���������

. We proceeed by induction on i. The case when i = 1 follows imme-
diately from (SMO). Let i > 2. Obviously, u0 . . . ui−1Sx and u0 . . . ui−1Sz. By the

induction hypothesis, u0 . . . ui−1Sy. Recall that ui−1uiSx, ui−1uiSz and xySz. As
follows from (SMO), ui−1uiSy. Thus u0 . . . uiSy, which completes the proof. �

Proposition 1. Let S be a smooth ternary system, and let u0, . . . , ui, x0, . . . , xj ∈
V (s), where i, j > 1. If

(1) u0 . . . uiSx0, u0 . . . uiSz and x0 . . . xjSz,

then

(2) u0 . . . uiSxj .

���������
. Assume that (1) holds. We will prove that (2) holds. We proceed

by induction on j. The case when j = 1 follows immediately from Lemma 1. Let
j > 2. Obviously, x0 . . . xj−1Sz. By the induction hypothesis, u0 . . . uiSxj−1. Since

u0 . . . uiSz and xj−1xjSz, Lemma 1 implies that u0 . . . uiSxj , which completes the
proof. �

We say that a ternary system S is simple if it satisfies the following axioms (SIM1)
and (SIM2):

if uvSx, xySv, then uvSy for all u, v, x, y ∈ V (S);(SIM1)

if uvSx, xySv, then xySu for all u, v, x, y ∈ V (S).(SIM2)

The next lemma depends on a result proved in [4].
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Lemma 2. Let S be a simple ternary system, let w0, . . . , wk , y, z ∈ V (S), where
k > 1. Assume that w0 . . . wkSy. If zySw0, then w0 . . . wkSz and zySwk. If yzSwk,

then w0 . . . wkSz and yzSw0.

���������
. The lemma immediately follows from Lemma 1 in [4]. �

Proposition 2. Let S be a simple ternary system, and let u0, . . . ui, x0, . . . , xj ∈
V (S), where i, j > 1. If

(3) ui . . . u0Sx0 and x0 . . . xjSu0,

then

(4) ui . . . u0Sxj and x0 . . . xjSui.

���������
. Put h = i + j. Obviously, h > 2. Let (3) hold. We will prove that

(4) holds. We proceeed by induction on h. First, let h = 2. Then i = 1 = j. Clearly,
(SIM1) and (SIM2) imply (4).

Let h > 3. If i = 1 or j = 1, then (4) immediatelly follows from Lemma 2.
Assume that i, j > 2. Then h > 4. Since ui . . . u0Sx0 and x0 . . . xj−1Su0, the induc-

tion hypothesis implies that ui . . . u0Sxj−1. Since ui−1 . . . u0Sx0 and x0 . . . xjSu0,
the induction hypothesis implies that x0 . . . xjSui−1. It follows from (3) that

uiui−1Sx0 and xj−1xjSu0. Since x0 . . . xjSui−1 and uiui−1Sx0, Lemma 2 im-
plies that x0 . . . xjSui. Since ui . . . u0Sxj−1 and xj−1xjSu0, Lemma 2 implies that

ui . . . u0Sxj . Hence (4) holds. �

2. Signpost systems and their underlying graphs

By a signpost system we mean a ternary system S satisfying the following ax-

ioms (SIG1), (SIG2) and (SIG3):

if uvSw, then vuSu for all u, v, w ∈ V (S),(SIG1)

if uvSw, then ¬(vuSw) for all u, v, w ∈ V (S),(SIG2)

if u 6= v, then there exists r ∈ V (S) such that urSv for all u, v ∈ V (S).(SIG3)

Remark. If S is a signpost system, u, v, w ∈ V (S) and uvSw, then the ordered

triple (u, v, w) can be considered as a signpost showing a “direction” from u to w;
this direction is determined by v.
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The notion of a signpost system appeared in [2] but an implicit form of the idea of

a signpost system can be found in [4] already. Our definition follows the definition
in [6], which is slightly different from that in [2]. Note that (W, P ) is a signpost
system (in the sense of our definition) if and only if P is a signpost system on W in

the sense of the definition in [2].

Proposition 3. Let S be a signpost system. Then

if uvSw, then uvSv for all u, v, w ∈ V (S),(5)

uvSv if and only if vuSu for all u, v ∈ V (S)(6)

and

if uvSw, then v 6= u 6= w for all u, v, w ∈ V (S).(7)

���������
. Obviously, (1) and (2) are implied by (SIG1). Combining (SIG1) and

(SIG2) we get (3). �

Lemma 3. Let S be a smooth signpost system. Then S satisfies the ax-

iom (SIM1).

���������
. Consider arbitrary u, v, x, y ∈ V (S). Let uvSx, xySv. By (5), uvSv. If

we put z = v in (SMO), we get uvSy. �

Let S be a signpost system. By the underlying graph of S we mean the graph G

defined as follows: V (G) = V (S) and

u and v are adjacent in G if and only if uvSv

for all u, v ∈ V (S).

Let S be a signpost system. By a confusing circuit in S we mean an ordered pair

(8) (u0u1 . . . uk, v)

such that u0, u1, . . . uk, v ∈ V (S), k > 1, u0 . . . ukSv and uk = u0.
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Lemma 4. Let S be a signpost system, and let (8) be a confusing circuit in S.

Then u0 6= v and k > 3.
���������

. As follows from (7), u0 6= v and k > 2. Let k = 2. Since u2 = u0, we

get u1u0Sv and u0u1Sv, which contradicts (SIG2). Thus k > 3. �

Example. Let X , Y and Z be pairwise disjoint finite sets such that |X | > 3,
|Y | > 1 and |Z| > 3. Put j = |X | and m = |Y |. Assume that

X = {x0, . . . , xj−1} and Z = {z0, . . . , zm−1}.

Moreover, put xj = x0 and zm = z0. Let S be the ternary system defined as follows:
V (S) = X ∪ Y ∪ Z and the following statement holds for all u, v, w ∈ V (S): uvSw

if and only if one of the conditions (9)–(12) holds:

u, v ∈ X ∪ Y and u 6= v = w;(9)

u, v ∈ Y ∪ Z and u 6= v = w;(10)

there exists f, 0 6 f 6 j − 1, such that u = xf , v = xf+1 and w ∈ Z;(11)

there exists h, 0 6 h 6 m− 1, such that u = zh, v = zh+1 and w ∈ X.(12)

Obviously, S is a simple signpost system and its underlying graph is connected. It

is clear that (x0 . . . xj−1xj , z) and (z0 . . . zm−1zm, x) are confusing circuits in S for
every z ∈ Z and every x ∈ X .

Let S be a simple signpost system. Assume that the underlying graph of S is
connected. It was proved in [4] that there exists no confusing circuit in S if S satisfies

the following axiom (ALT):

(ALT) if uvSx and xySy, then uvSy or xySu or yxSv for all u, v, x, y ∈ V (S).

The assumption that the underlying graph of a considered signpost system is con-
nected is not needed in the next proposition:

Proposition 4. Let S be a smooth signpost system. Then there exists no con-

fusing circuit in S.
���������

. Suppose, to the contrary, that there exist u0, u1, . . . , uk, v ∈ V (S) such
that k > 1 and (8) is a confusing circuit in S. Then u0u1 . . . ukSv and u0 = uk. By

Lemma 4, k > 3. Since u0u1Sv, Proposition 3 implies that u0u1Su1. Since u0 = uk,
Proposition 3 implies that ¬(u0u1Suk). Then there exists j, 1 6 j 6 k − 1, such
that u0u1Suj and ¬(u0u1Suj+1). Recall that u0u1Sv. Since S is smooth, we get
¬(ujuj+1Sv), which contradicts the fact that u0u1 . . . ukSv. Thus the proposition is

proved. �
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Corollary 1. Let S be a smooth signpost system, let u0, . . . , ui, v ∈ V (S), where
i > 1, and let u0 . . . uiSv. Then (u0, . . . , ui) is a path in the underlying graph of S.
���������

. Let G denote the underlying graph of S. Clearly, (u0, . . . , ui) is a walk
in G. Suppose, to the contrary, that (u0, . . . , ui) is not a path. Then there exist j

and k such that 0 6 j < k 6 i and uj = uk. Then (uj . . . uk, v) is a confusing circuit
in S, which is a contradiction. �

Let S be a smooth signpost system. By a path in S we mean a sequence

(u0, . . . , uk), where k > 1, u0, . . . , uk ∈ V (S) and u0 . . . ukSuk. As follows from
Corollary 1, every path in S is a nontrivial path in the underlying graph of S. Let

v0, . . . , vm, u, v, w ∈ V (S), where m > 1; if (v0, . . . , vm) is a path in S, u = v0, v = v1

and w = vm, then we say that (v0, . . . , vm) is an uv − w path in S.

Theorem 1. Let S be a smooth signpost system, and let u, v, w ∈ V (S). If uvSw,

then there exists an uv − w path in S.
���������

. Suppose, to the contrary, that there exist no uv − w path in S. Then

v 6= w. As follows from (SIG3), there exists an infinite sequence

v0, v1, v2, . . .

of elements of V (S) such that v0 = u, v1 = v and

v0 . . . viSw and vi 6= w for each i = 1, 2, 3, . . . .

Since V (S) is finite, there exist distinct j and k such that 0 6 j < k and vj =
vk. Since vj . . . vkSw, we see that (vj . . . vk, w) is a confusing circuit in S, which
contradicts Proposition 4. Thus the theorem is proved. �

Remark. Theorem 1 can be interpreted as follows: Let S be a signpost system,

let G denote the underlying graph of S, let u, v, w ∈ V (S) and uvSw. If we know
that S is smooth, then we are certain that the signpost (u, v, w) shows a path going
from u to w in G; the direction (in u) of this path is determined by v.

The next lemma was proved in [4]:

Lemma 5 (see Lemma 2 in [4]). Let S be a simple signpost system, and let

u0, . . . , ui−1, ui ∈ V (S), where i > 1. If u0 . . . ui−1uiSui, then uiui−1 . . . u0Su0.

Hint for the proof. We proceed by induction on i. If i = 1, then we use (6). If
i > 2, then we combine the induction hypothesis with Lemma 2 and (6). �
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Corollary 2. Let S be a simple smooth signpost system, and let u0, . . . , ui−1, ui ∈
V (S), where i > 1. If (u0, . . . , ui−1, ui) is a path in S, then (ui, ui−1, . . . , u0) is a
path in S.
���������

. Proof is obvious. �

3. Extensions of simple smooth signpost systems

The next lemma will be used in the proof of the main result of this section.

Lemma 6. Let S be a simple smooth signpost system, and let u0, . . . , ui,

v0, . . . , vj , x, y ∈ V (S), where i, j > 1. Assume that u0 = v0 and ui = vj . If

(13) u0 . . . uiSx and v0 . . . vjSy,

then

(14) u0 . . . uiSy and v0 . . . vjSx.

���������
. Let (13) hold. Since S is a smooth signpost system, Theorem 1 implies

that there exist an ui−1ui − x path in S and a vj−1vj − y path in S.
If ui = x, we put m = i. Let ui 6= x. Then there exist ui+1, . . . um ∈ V (S), where

m > i + 1, such that um = x and (ui−1, ui, . . . , um) is a path in S.
If vj = y, we put n = j. Let vj 6= y. Then there exist vj+1, . . . , vn ∈ V (S), where

n > j + 1, such that vn = y and (vj−1, vj , . . . , vn) is a path in S.
Clearly,

(u0, . . . , ui−1, ui, . . . , um) and (v0, . . . , vj−1, vj , . . . , vn)

are paths in S. Corollary 2 implies that

(um, . . . , ui, ui−1, . . . , u0) and (vn, . . . , vj , vj−1, . . . , v0)

are paths in S. Since u0 = v0 and ui = vj , we see that

(vn, . . . , vj = ui, ui−1, . . . , u0) and (um, . . . , ui = vj , vj−1, . . . v0)

are paths in S and therefore, by Corollary 2,

(u0, . . . , ui−1, ui = vj , . . . , vn) and (v0, . . . , vj−1, vj = ui, . . . , um)

are paths in S as well. Since vn = y and um = x, (14) follows, which completes the

proof. �
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Corollary 3. Let S be a simple smooth signpost system, and let u0, . . . , ui, x ∈
V (S), where i > 1. If u0 . . . uiSx and u0uiSui, then u0uiSx.
���������

. Proof is obvious. �

A graph G is called a factor of a graph H if V (H) = V (G) and E(G) ⊆ E(H).
Let S be a simple smooth signpost system, and let G denote the underlying graph

of S. Consider a graph H such that G is a factor of H . By the extension of S to H

we mean a ternary system S ′ with the following properties:
(a) V (S′) = V (S);
(b) if u, v, w ∈ V (S′), then uvS′w if and only if u and v are adjacent vertices of H
and there exist u0, . . . , ui ∈ V (S′), where i > 1, such that u0 = u, ui = v and

u0 . . . uiSw.
Clearly, the extension of S to H is defined uniquely.

As follows from Corollary 3, the extension of a simple smooth signpost system S

to the underlying graph of S is identical to S.

Theorem 2. Let S be a simple smooth signpost system, and let G denote the

underlying graph of S. Consider a graph H such that G is a factor of H . Then

the extension of S to H is a simple smooth signpost system and H is its underlying

graph.
���������

. Put W = V (S). Let S′ denote the extension of S to H . Obviously,
S′ is a ternary system with V (S ′) = W . The proof of the theorem will be divided
into four parts. We will prove that

(1) S′ is a signpost system,
(2) H is the underlying graph of S ′,

(3) S′ is smooth, and
(4) S′ is simple.

Part 1. Consider arbitrary u, v, w ∈ W such that uvS ′w. Then there exist
u0, . . . ui ∈ W , where i > 1, such that u0 = u, ui = v and u0 . . . uiSw. Hence

ui−1uiSw. Recall that S is a smooth signpost system. If ui = w, we put m = i. If
ui 6= w, then, by Theorem 1, there exist ui+1, . . . um ∈ W , where m > i, such that

um = w and (ui−1, ui, . . . , um) is a path in S. Hence (u0, . . . , ui, . . . , um) is a path
in S.

By Corollary 2, (um, . . . , ui, . . . , u0) is a path in S as well. Hence ui . . . u0Su0.
This means that vuS′u. We see that S′ satisfies (SIG1).

Assume that vuS′w. Then there exist v0, . . . , vj ∈ W , where j > 1, such that v0 =
v, vj = u and v0 . . . vjSw. Since ui = v0 and vj = u0, we see that (u0 . . . uiv1 . . . vj , w)
is a confusing circuit in S, which contradicts Proposition 4. Hence ¬(vuS ′w). We
see that S′ satisfies (SIG2).

290



Consider arbitrary u∗, v∗ ∈ W such that u∗ 6= v∗. Then there exists r ∈ W such

that u∗rSv∗. Since u∗ and r are adjacent vertices of H , we get u∗rS′v∗. We see that
S′ satisfies (SIG3). Therefore, S ′ is a signpost system.

Part 2. Obviously, V (H) = W . Consider arbitrary u, v ∈ W , u 6= v. As follows
from the definition of S′, if uvS′v, then uv ∈ E(H). Conversely, let uv ∈ E(H).
As follows from (SIG3), there exists r ∈ W such that urS ′v. By Theorem 1, there
exists an ur − v path in S. This implies that there exist u0, . . . , uk, where k > 1,
such that u0 = u, u1 = r, uk = v and u0 . . . ukSuk. Thus u0ukS′uk; we have uvS′v.
Therefore, H is the underlying graph of S ′.

Part 3. Consider arbitrary u, v, x, y ∈ W such that uvS ′x, uvS′z and xyS′z. Then
uv, xy ∈ E(H) and there exist u0, . . . , ui, v0, . . . , vj , x0, . . . , xk ∈ W , where i, j, k > 1,
such that u0 = u, ui = v, v0 = u, . . . vj = v, x0 = x, xk = y,

u0 . . . uiSx, v0 . . . vjSz and x0 . . . xkSz.

Since S is a simple smooth signpost system, Lemma 6 implies that u0 . . . uiSz. By
Proposition 1, u0 . . . uiSxk. Recall that uv ∈ E(H). Hence uvS ′y. We see that S′

satisfies (SMO). Therefore, S ′ is smooth.

Part 4. Consider arbitrary u, v, x, y ∈ W such that uvS ′x and xyS′v. Then
uv, xy ∈ E(H) and there exist u0, . . . ui, x0, . . . , xj ∈ W , where i, j > 1, such that
u0 = v, ui = u, x0 = x, xj = y, ui . . . u0Sxj and x0 . . . xjSu0. Since S is simple,
Proposition 2 implies that ui . . . u0Sxj and x0 . . . xjSui. Recall that uv, xy ∈ E(H).
Hence uvS′y and xyS′u. We see that S′ satisfies (SIM1) and (SIM2). Therefore,
S′ is simple. �

4. Connected graphs

Let G be a connected graph. By the step system of G we mean the ternary

system S such that V (S) = V (G) and

uvSw if and only if d(u, v) = 1 and d(v, w) = d(u, w)− 1 for all u, v, w ∈ V (G),

where d(x, y) denotes the distance between vertices x and y in G. It is easy to show
that the step system of a connected graph is a simple signpost system.

Lemma 7. If G is a tree, then the step system of G is smooth.

���������
. Proof is simple. �
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As was proved in [3] (and also in [5]), a simple signpost system is the step system

of a connected graph if and only if

(15) the underlying graph of S is connected

and S satisfies the axiom (ALT) and a certain pair of additional axioms. Almost
the same result was proved in [6]; but the proof in [6] is very different both from the

proof in [3] and the proof in [5]; the pair of additional axioms was replaced by the
following axiom (COM) in [6]:

(COM) if uvSx, vuSy and xySu, then yxSv for all u, v, x, y ∈ V (S).

The axioms (SIG1), (SIG2), (SIG3), (SIM1), (SIM2), (ALT) and (COM) (and, of

course, the axiom (SWO)) could be formulated in a language of the first-order logic.
It is unknown whether the condition (15) can be replaced by a finite set of axioms

of the same kind.
The step systems of connected graphs of two special classes were characterized

without help of the condition (15) in [2]; one of these classes is the class of median
graphs (for the notion of a median graph the reader is referred to [1]); note that

every tree is a median graph.

As was shown in [6], the step system of every median graph is smooth. On the
other hand, if G is a connected graph that contains an induced K(2, 3), then the

step system of G is not smooth.

The following theorem is the main result of the present paper.

Theorem 3. Let G be a graph. Then the following statements are equivalent:

(a) G is connected;

(b) G is the underlying graph of a simple smooth signpost system;

(c) G is the underlying graph of a smooth signpost system.
���������

. (a) → (b): Let G be connected. Consider an arbitrary spanning tree T

of G. Let ST denote the step system of T . Then ST is a simple signpost system. By
Lemma 7, ST is smooth. Let S denote the extension of ST to G. By Theorem 2,

S is a simple smooth signpost system and the underlying graph of S is G.

(b) → (c): Obvious.
(c) → (a): Let G be the underlying graph of a smooth signpost system S. Consider

arbitrary u, v ∈ V (S) such that u 6= v. By (SIG3), there exists t ∈ V (S) such that
utSv. Theorem 1 implies that there exists an ut− v path in S. Clearly, there exists

a path connecting u and v in G. This implies that G is connected. �

292



References

[1] H.M. Mulder: The Interval Function of a Graph. Math. Centre Tracts 132. Math. Cen-
tre, Amsterdam, 1980.

[2] H.M. Mulder and L. Nebeský: Modular and median signpost systems and their under-
lying graphs. Discussiones Mathematicae Graph Theory 23 (2003), 309–324.

[3] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47(122)
(1997), 149–161.

[4] L. Nebeský: An axiomatic approach to metric properties of connected graphs. Czecho-
slovak Math. J. 50(125) (2000), 3–14.

[5] L. Nebeský: A theorem for an axiomatic aproach to metric properties of graphs. Cze-
choslovak Math. J. 50(125) (2000), 121–133.

[6] L. Nebeský: On properties of a graph that depend on its distance function. Czechoslovak
Math. J. 54(129) (2004), 445–456.

Author’s address: Univerzita Karlova v Praze, Filozofická fakulta, nám. J. Palacha 2,
116 38 Praha 1, Czech Republic, e-mail: Ladislav.Nebesky@ff.cuni.cz.

293


		webmaster@dml.cz
	2020-07-03T15:15:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




