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A POLYNOMIAL OF DEGREE FOUR NOT SATISFYING

ROLLE’S THEOREM IN THE UNIT BALL OF l2
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Abstract. We give an example of a fourth degree polynomial which does not satisfy
Rolle’s Theorem in the unit ball of l2.
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1. Introduction

S.A. Shkarin gave in [2] an example of a fourth degree continuous polynomial which

does not satisfy Rolle’s Theorem in the unit ball of L2[0, 1]. This polynomial was
given by the function P (x) = (1 − ‖x‖2)Q(x), where Q(x) = 〈Ax, x〉 + 2〈ϕ, x〉 + k,

with A being the positive operator given by Ax(t) = t x(t), x ∈ L2[0, 1], ϕ(t) =
t(1− t), t ∈ [0, 1], and k = 4/27. Clearly, for ‖x‖ = 1, P (x) = 0 and Shkarin showed
that, for ‖x‖ < 1, the Fréchet derivative P ′(x) = 2[(1−‖x‖2)(Ax+ϕ)−Q(x)x] 6= 0.
Since Rolle’s Theorem is an isometric invariant, it is clear that there exist con-

tinuous polynomials of degree four in l2 for which the result fails. Now, the task of
constructing explicitly one of such polynomials has turned out to be a not so easy

one. This note is devoted to giving one of such constructive counterexamples.

The polynomial that we give in the following is easily seen to be in the class of
Shkarin polynomials which we introduced in [1]. Indeed, what we do here is to guar-

antee, by means of convenient restrictions, that the inequality given in Theorem 1
of [1] is fulfilled so that the polynomial will not satisfy Rolle’s Theorem.
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2. The polynomial

In order to obtain an appropriate positive multiplication operator A, we consider

the set S =
∞⋃

n=1
Sn, where, for each n, the set Sn is formed by all rationals in ]0, 1[

with exactly n significant decimals, i.e., Sn = {0.d1d2 . . . dn : di ∈ {0, 1, 2, . . . , 9}, 1 6
i 6 n, dn 6= 0}. A well-ordering in S can be defined by setting that, for each n, the
elements of Sn are prior to those of Sn+1, and inside each Sn the order considered
is the usual one. Hence, we can represent the set S by means of the sequence (rn)
following the order just defined. Recall that, if rp = 0.d1d2 . . . dn, then p < 10n.
Now, we define the operator A as, if x = (xn) ∈ l2, Ax = (rnxn). Notice that A is
bounded and ‖A‖ = 1.
Following Shkarin’s construction, we proceed to find an appropriate vector ϕ =

(ϕn) ∈ l2. For this purpose, let q be a positive number such that

σ :=
∞∑

n=1

1
(n+ q)4/3

<
1
4
.

For each n, let an := (n+ q)−2/3, and let ϕn := anrn(1 − rn). It follows that
ϕ = (ϕn) ∈ l2 and ‖ϕ‖2 < σ.
Finally, let k ∈ (σ, 1 − 3σ]. We show that, if Q(x) = 〈Ax, x〉 + 2〈ϕ, x〉 + k, x ∈ l2,

the polynomial P (x) = (1−‖x‖2)Q(x) has non-zero derivative when ‖x‖ < 1. Notice
first that Q(x) > 0, x ∈ l2, since, considering the sequence ψ = (ψn) := ((rn −1)an),
we have that Aψ = −ϕ and so, since A is positive,

Q(x) = 〈A(x − ψ), x− ψ〉 + k − 〈Aψ,ψ〉 > k − 〈Aψ,ψ〉 > k − σ > 0.

Proceeding by contradiction, let us assume that, for some vector x with ‖x‖ < 1,
P ′(x) = 0. Then, there would be a real number λ such that

(1) (I − λA)x = λϕ, λ =
1 − ‖x‖2

Q(x)
> 0.

We show next that λ 6 1. Assuming λ > 1, after the first equality in (1), we obtain

(2) xn =
anrn(1 − rn)
λ−1 − rn

, n > 1.

We may suppose that λ−1 /∈ S, otherwise λ−1 = rn, for some n, and xn would not

be defined. Hence, considering the decimal expansion

λ−1 = 0.d1d2 . . . dn . . . ,
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we know that it has infinitely many non-zero decimals. We want to show that the

sequence x = (xn) is not bounded, thus contradicting that x ∈ l2. With this in mind,
let α be such that 0 < α < λ−1. We find positive integers m1, p1 such that

α < rp1 = 0.d1d2 . . . dm1 , dm1 6= 0.

Now, for an arbitrary value M > 0, we find a positive integer m2 > m1 such that

the corresponding decimal dm2 6= 0 and

α(1 − λ−1)
10m2

(10m2 + q)2/3
> M.

Then, if p2 is such that rp2 = 0.d1d2 . . . dm2 , it follows that p2 > p1, rp2 > rp1 and so

xp2 >
ap2α(1 − λ−1)
λ−1 − rp2

> α(1 − λ−1)
10m2

(10m2 + q)2/3
> M.

We have then that λ ∈ ]0, 1]. After (2) it follows that |xn| 6 anrn, n > 1, and so
‖x‖2 < σ. Finally, making use of the first equality in (1),

‖x‖2 + λQ(x) = 2‖x‖2 + λ(〈ϕ, x〉 + k) < 3σ + k 6 1,

which contradicts the second equality in (1).

Acknowledgement. The author wishes to thank Professor M. Valdivia for the
smart details in the proof of the unboudedness of the sequence (xn).
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