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1. Introduction

Consider the class of equations

(1) Lu =
n∑

i=1

( r

xi

)p
[
x2

i

∂2u

∂x2
i

+ αixi
∂u

∂xi

]
+ λu = 0

where λ, αi (i = 1, 2, . . . , n) are real parameters, p (> 0) is a real constant and r is
defined by

(2) rp = xp
1 + xp

2 + . . . + xp
n.

The domain of the operator L is the set of all real valued functions u(x) of the
class C2(D), where x = (x1, x2, . . . , xn) denotes points in � n and D is the regularity
domain of u in � n . Note that (1) includes the Laplace equation and an equidimen-

sional (Euler) equation as special cases.

In [1], Almansi gave an expansion formula for the solutions of the Laplace equa-

tion. In [2], Altın generalized the idea to a wide range of a class of singular partial
differential equations and obtained Lord Kelvin principle for this class of equations.
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In this study, we obtain expansion formulas and the Kelvin principle for the iterates

of the equation (1).

2. Solutions for the iterated equation

We first give some properties of the operator L. By direct computation, it can be
shown that

(3) L(rm) = [m(m + ϕ) + λ]rm

where

(4) ϕ = −p + n(p− 1) +
n∑

i=1

αi.

Let Lk denote, as usual, the successive applications of the operator L onto itself,
that is Lku = L(Lk−1u), where k is a positive integer.

The proof of the following lemma can be done easily by using induction argument
on k. For a special case of the lemma see [3], [7].

Lemma 1. For any real parameter m,

(5) Lk(rm) = [m(m + ϕ) + λ]krm

where the integer k is the iteration number.

Let u, v ∈ C2(D) be any two functions. It can be shown that

(6) L(uv) = uLv + vLu− λuv + 2
n∑

i=1

( r

xi

)p(
x2

i

∂u

∂xi

∂v

∂xi

)
.

By replacing v by rm in (6) and by using (3), we get

(7) L(rmu) = rmm(m + ϕ + 2T ∗)u + rmLu

where

T ∗ =
n∑

i=1

xi
∂

∂xi
.

If u is a solution of the equation Lu = 0, then by (7),

(8) L(rmu) = rmm(m + ϕ + 2T ∗)u.
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By direct computation, one can show that

(9) LT ∗ = T ∗L.

In fact, for any integer k we have, by induction on k,

(10) L(T ∗)k = (T ∗)kL,

where (T ∗)k denotes the successive iterations of the operator T ∗, k times onto itself.

Now we are ready to give the following lemma.

Lemma 2. Let u be a solution of the equation Lu = 0. Then for any positive
integer k and for any real number m,

(11) Lk(rmu) = rmmk(m + ϕ + 2T ∗)ku.

���������
. We give the proof by induction on k. It is clear by (8) that, the

equality (11) is true for k = 1. Now, let us assume that the equality is valid for k−1,
that is,

Lk−1(rmu) = rmmk−1(m + ϕ + 2T ∗)k−1u.

By applying the operator L to both sides of the above equality, we obtain

Lk(rmu) = L[rmmk−1(m + ϕ + 2T ∗)k−1u]

= mk−1L[rm(m + ϕ + 2T ∗)k−1u].

Since u is a solution of Lu = 0, by using (10) it can be shown by induction that
the function (m + ϕ + 2T ∗)k−1u is also a solution of the same equation. Hence, by

replacing u by (m + ϕ + 2T ∗)k−1u in (8), we get

Lk(rmu) = mk−1L[rm(m + ϕ + 2T ∗)k−1u]

= mk−1rmm(m + ϕ + 2T ∗)(m + ϕ + 2T ∗)k−1u

= rmmk(m + ϕ + 2T ∗)ku.

Hence the proof is complete. �

The following theorem, which is a generalization of Almansi’s expansion, states a

class of solutions for the iterated equations.
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Theorem 1. Let ui(x), i = 0, 1, . . . , k − 1 be any k solutions of the equation

Lu = 0. Then the function

(12) w =
k−1∑

i=0

(ln r)iui(x)

is a solution of the iterated equation Lku = 0.
���������

. By the hypothesis and by Lemma 2, for m = 0 we already have that

Lk[ui(x)] = 0, i = 0, 1, . . . , k − 1.

Now, let us take the derivative on both sides of the equality (11) with respect to the
parameter m. Then

∂

∂m
[Lk(rmui)] =

∂

∂m
[mkrm(m + ϕ + 2T ∗)kui].

Setting β0(m) = rm(m + ϕ + 2T ∗)kui we have

Lk
[ ∂

∂m
(rm)ui

]
=

∂

∂m
[mkβ0(m)],

which, in turn, gives

Lk[rm(ln r)ui] = kmk−1β0(m) + mkβ′
0(m)

or

Lk[rm(ln r)ui] = mk−1β1(m)(13)

where β1(m) = kβ0(m) + mβ′
0(m). Now, taking m = 0 we obtain

Lk[(ln r)ui] = 0, i = 0, 1, . . . , k − 1.

Once again, the differentiation of (13) with respect to m gives

Lk[rm(ln r)2ui] = mk−2β2(m),

where β2(m) = (k − 1)β1(m) + mβ′
1(m). Thus, for m = 0, we have

Lk[(ln r)2ui] = 0, i = 0, 1, . . . , k − 1.
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Proceeding in this way, by taking the derivative with respect to m, (k − 2) times
in (13), we finally get

Lk[rm(ln r)k−1ui] = mβ(k−1)(m),

where β(k−1)(m) = 2β(k−2)(m) + mβ′
(k−2)(m). Thus, for m = 0 we have

Lk[(ln r)k−1ui] = 0, i = 0, 1, . . . , k − 1.

Hence, we conclude that the functions

(ln r)jui(x), i, j = 0, 1, . . . , k − 1

are solutions of Lku = 0. Therefore, by the principle of superposition,

Lkw = 0.

The proof is complete. �

Remark 1. It is clear that under the hypotheses of Theorem 1, the function

w =
k−1∑

i,j=0

(ln r)jui(x)

is in fact also a solution of Lku = 0. In addition, if u is any solution of the equation
Lu = 0, then we conclude that for any nonnegative integer i, (ln r)iu is also a solution

of the iterated equation Lku = 0 (k > 2).

The following theorem gives an expansion formula for the homogeneous solutions.

Theorem 2. Let uν(x), ν = 0, 1, . . . , k − 1, be homogeneous (of degree λν ,

respectively) solutions of the equation Lu = 0. Then the function

(14) w =
k−1∑

ν=0

r−ϕ−2λν (ln r)νuν(x)

is a solution of the iterated equation Lku = 0.
���������

. Since uν(x) is a homogeneous function of degree λν , the Euler theorem

on homogeneous functions yields

T ∗uν(x) =
n∑

i=1

xi
∂uν(x)

∂xi
= λνuν(x).

535



On the other hand, since uν satisfies the equation Lu = 0, Lemma 2 implies for
each ν

(15) Lk[rmuν(x)] = rmmk(m + ϕ + 2λν)kuν(x),

which yields
Lk[r−ϕ−2λν uν(x)] = 0, ν = 0, 1, . . . , k − 1.

Now, let us take the derivative on both sides of the equality (15) with respect to

the parameter m. Then

∂

∂m
[Lk(rmuν)] =

∂

∂m
[mkrm(m + ϕ + 2λν)kuν .

Setting θ0(m) = mkrmuν , we obtain

Lk
[ ∂

∂m
(rm)uν

]
=

∂

∂m
[(m + ϕ + 2λν)kθ0(m)],

which, after differentiation gives

Lk[rm(ln r)uν ] = k(m + ϕ + 2λν)k−1θ0(m) + (m + ϕ + 2λν)kθ′0(m)

or

Lk[rm(ln r)uν ] = (m + ϕ + 2λν)k−1θ1(m)

where θ1(m) = kθ0(m)+(m+ϕ+2λν)θ′0(m). Now, taking m = −ϕ−2λν we obtain

Lk[r−ϕ−2λν (ln r)uν ] = 0, ν = 0, 1, . . . , k − 1.

By taking the successive derivatives with respect to m and proceeding in a way
similar to the proof of Theorem 1, we conclude that

Lk[r−ϕ−2λν (ln r)juν ] = 0, j, ν = 0, 1, . . . , k − 1.

Hence, for j, ν = 0, 1, . . . , k − 1, the functions

r−ϕ−2λν (ln r)juν(x)

are solutions of Lku = 0. Therefore, by the principle of superposition,

Lkw = 0,

which is the proof. �
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3. Solutions generated by Kelvin inversion

The standard Kelvin inversion principle states that if a solution

u(x1, x2, . . . , xn) of the n-dimensional Laplace equation∆u = 0 is known, then the
function v = r2−nu(x1/r2, x2/r2, . . . , xn/r2) is also a solution of the Laplace equa-
tion, where r2 = x2

1+x2
2+. . .+x2

n. The Kelvin principle is studied by several authors.
(See, for example Altın [2], Çelebi [4], Weinstein [5], Özalp and Çetinkaya [6]).

In this section we state a generalized Kelvin principle for the solutions of the
equation (1) in the following theorem.

Theorem 3 (Kelvin principle). Let u(x) = u(x1, x2, . . . , xn) be any solution of
the equation (1). Then the function

(16) v = r
p+n(1−p)−

n�
i=1

αi

u
(x1

r2
,
x2

r2
, . . . ,

xn

r2

)

is also a solution of the same equation, where r is as defined in (2).
���������

. From (7) we already have

L(rmu) = rmm(m + ϕ + 2T ∗)u + rmLu.

Now, let ξ = (ξ1, ξ2, . . . , ξn), where ξi = xi/r2, i = 1, 2, . . . , n. Then for %p =
ξp
1 + ξp

2 + . . . + ξp
n, clearly, rp%p = 1. By making the change of variables, a rather

lengthy computations yields

(17) T ∗u(ξ) =
n∑

i=1

xi
∂u(ξ)
∂xi

= −
n∑

i=1

ξi
∂u(ξ)
∂ξi

= −T ∗
(ξ)u(ξ)

and

Lu(ξ) =
{ n∑

i=1

rp
(
x2−p

i

∂2

∂x2
i

+ αix
1−p
i

∂

∂xi

)
+ λ

}
u(ξ)(18)

=
{ n∑

i=1

%p
(
ξ2−p
i

∂2

∂ξ2
i

+ αiξ
1−p
i

∂

∂ξi

)
+ λ

}
u(ξ)

− 2
[
−p + n(p− 1) +

n∑

i=1

αi

] n∑

i=1

ξi
∂u(ξ)
∂ξi

= L(ξ)u(ξ)− 2ϕT ∗
(ξ)u(ξ),

where we use the notation T ∗
(ξ) and L(ξ), respectively, for the operators T ∗ and L

with x replaced by ξ.
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Now substituting (17) and (18) in (7), we obtain

(19) L[rmu(ξ)] = rmm(m + ϕ− 2T ∗
(ξ))u(ξ) + rmL(ξ)u(ξ)− 2ϕrmT ∗

(ξ)u(ξ).

Since u(x) is a solution of Lu = 0, the equation (19) becomes

L[rmu(ξ)] = rmm(m + ϕ− 2T ∗
(ξ))u(ξ)− 2ϕrmT ∗

(ξ)u(ξ)

or simply

(20) L[rmu(ξ)] = rm(m + ϕ)(m − 2T ∗
(ξ))u(ξ).

Hence, by setting m = −ϕ in (20), we get

L[r−ϕu(ξ)] = 0

or, explicitly,

L

[
r

p+n(1−p)−
n�

i=1
αi

u
(x1

r2
,
x2

r2
, . . . ,

xn

r2

)]
= 0,

which completes the proof. �

The Kelvin principle roughly tells us that if a solution of the equation (1) is known,
then one can obtain another solution just by using the transformation mentioned

above. The following simple example clears out the case:

An Example of the Inversion: Let, in (1), n = 3, α1 = −3, α2 = −2, α3 = 1,
λ = −6, p = 4 and thus r = (x4

1 + x4
2 + x4

3)
1/4. By (3), we easily conclude that

u(x1, x2, x3) = r2 = (x4
1 + x4

2 + x4
3)

1/2 is a solution of (1) with the given parameters.
Hence, by using the Kelvin principle, we obtain that

v = r−1u
(x1

r2
,
x2

r2
,
x3

r2

)
= r−1

[(x1

r2

)4

+
(x2

r2

)4

+
(x3

r2

)4
]1/2

= r−3

is also a solution of the same equation. If we used u = r−3 as a solution, then we
should get v = r2 as another solution under the inversion.

The following result states that the Kelvin principle also holds for the iterated

equation Lku = 0.
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Theorem 4. Let ui(x), i = 0, 1, . . . , k − 1 be any k solutions of the equation

Lu = 0. Then the function

w =
k−1∑

i=0

(ln r)ir−ϕui(ξ) = r−ϕ
k−1∑

i=0

(ln r)iui

(x1

r2
,
x2

r2
, . . . ,

xn

r2

)

is a solution of the iterated equation Lku = 0, where ϕ is given by (4).

���������
. By the hypothesis, since each ui(x) is a solution of Lu = 0, Theorem 3

implies that

vi(x) = r−ϕui

(x1

r2
,
x2

r2
, . . . ,

xn

r2

)

is also a solution of the same equation. Hence, by Theorem 1,

w =
k−1∑

i=0

(ln r)ivi(x)

is a solution of Lku = 0. Thus, the proof is complete. �

Lemma 4. Let u(x) be a homogeneous function of degree µ. Then

T ∗(r−ϕu(ξ)) = −r−ϕ(ϕ + µ)u(ξ).

���������
. Since u(x) is a function of degree µ, it is clear that T ∗u(ξ) =

−T ∗
(ξ)u(ξ) = −µu(ξ) and T ∗(r−ϕ) = −ϕr−ϕ. Thus,

T ∗(r−ϕu(ξ)) = r−ϕT ∗(u(ξ)) + u(ξ)T ∗(r−ϕ)

= − r−ϕ(ϕ + µ)u(ξ).

Lemma 5. Let u(x) be a homogeneous function of degree µ. Then

(m + ϕ + 2T ∗)k(r−ϕu(ξ)) = (m− ϕ− 2µ)kr−ϕu(ξ).

���������
. We give the proof by induction. For k = 1, Lemma 4 yields

(m + ϕ + 2T ∗)(r−ϕu(ξ)) = (m + ϕ)(r−ϕu(ξ)) + 2T ∗(r−ϕu(ξ))

= (m + ϕ)r−ϕu(ξ)− 2(ϕ + µ)r−ϕu(ξ)

= (m− ϕ− 2µ)r−ϕu(ξ).
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Thus, the lemma holds for k = 1. Now let the assertion be true for k− 1, that is, let

(m + ϕ + 2T ∗)k−1(r−ϕu(ξ)) = (m− ϕ− 2µ)k−1r−ϕu(ξ)

hold. Then

(m + ϕ + 2T ∗)k(r−ϕu(ξ)) = (m + ϕ + 2T ∗)k−1(m + ϕ + 2T ∗)(r−ϕu(ξ))

= (m + ϕ + 2T ∗)k−1(m− ϕ− 2µ)(r−ϕu(ξ))

= (m− ϕ− 2µ)(m + ϕ + 2T ∗)k−1(r−ϕu(ξ))

= (m− ϕ− 2µ)(m− ϕ− 2µ)k−1(r−ϕu(ξ))

= (m− ϕ− 2µ)k(r−ϕu(ξ)),

which gives the desired result. �

Theorem 6. Let uν(x), ν = 0, 1, . . . , k−1 be homogeneous (of degree λν , respec-

tively) solutions of the equation Lu = 0. Then the function

w =
k−1∑

ν=0

r2λν (ln r)νuν(ξ)

is a solution of the iterated equation Lkw = 0.
���������

. By the hypothesis, since each uν(x) is a solution of Lu = 0, Theorem 3
implies that

vν(x) = r−ϕuν

(x1

r2
,
x2

r2
, . . . ,

xn

r2

)

is also a solution of the same equation. On the other hand, for each ν, by Lemma 2,

Lk(rmvν(x)) = rmmk(m + ϕ + 2T ∗)kvν(x)

or

Lk(rmr−ϕuν(ξ)) = rmmk(m + ϕ + 2T ∗)kr−ϕuν(ξ).

Thus, by Lemma 5, we have

(21) Lk(rm−ϕuν(ξ)) = rm−ϕmk(m− ϕ− 2λν)kuν(ξ).

Hence for m = ϕ + 2λν

Lk(r2λν uν(ξ)) = 0,
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which means that r2λν uν(ξ) is a solution of Lku = 0. Analogously to the proof of
Theorem 2, by taking successive derivatives (k− 1) times with respect to m in (21),
we conclude that

Lk(r2λν (ln r)iuν(ξ)) = 0, i, ν = 0, 1, . . . , k − 1,

which completes the proof. �
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Mathematics, Beşevler, 061 00 Ankara, Turkey, e-mail: nozalp@science.ankara.edu.tr;- .0/132�4 5 )76 / 2 8 # 9 :;' . ' , Gazi University, Kırsehir Campus, Dept. of Mathematics, Kırse-
hir, Turkey, e-mail: caysegul@gazi.edu.tr.

541


		webmaster@dml.cz
	2020-07-03T15:24:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




