Czechoslovak Mathematical Journal

Tunny Bilgin

Lacunary strong $\left(A_{\sigma}, p\right)$-convergence

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 3, 691-697
Persistent URL: http://dml.cz/dmlcz/128013

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LACUNARY STRONG $\left(A_{\sigma}, p\right)$-CONVERGENCE

Tunay Bilgin, Van

(Received October 21, 2002)

Abstract

The definition of lacunary strongly convergence is extended to the definition of lacunary strong $\left(A_{\sigma}, p\right)$-convergence with respect to invariant mean when A is an infinite matrix and $p=\left(p_{i}\right)$ is a strictly positive sequence. We study some properties and inclusion relations.

Keywords: lacunary sequence, invariant convergence, infinite matrix
MSC 2000: 40A05, 40F05

1. Introduction

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional φ on l_{∞}, the space of real bounded sequences, is said to be an invariant mean or a σ-mean if and only if (i) $\varphi(x) \geqslant 0$ when the sequence $x=\left(x_{n}\right)$ satisfies $x_{n} \geqslant 0$ for all n, (ii) $\varphi(e)=1$ where $e=(1,1,1, \ldots)$, and (iii) $\varphi\left(x_{\sigma(n)}\right)=\varphi(x)$ for all $x \in l_{\infty}$. The mapping φ is assumed to be one-to-one and such that $\sigma^{m}(n) \neq n$ for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m th iterate of the mapping σ at n. Thus φ extends the limit functional to c, the space of convergent sequences, in the sense that $\varphi(x)=\lim x$ for all $x \in c$.

Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequence all of whose σ-means are equal. If σ is the translation mapping $n \rightarrow n+1$, a σ-mean is often called a Banach limit (see [1]) and V_{σ} is the set of almost convergent sequences (see [7]). [V_{σ}] denotes the set of all strongly σ-convergent sequences (see [8]). It is easy to see that $\left[V_{\sigma}\right]$ is a proper closed linear subspace of V_{σ}. Furthermore, $\left[V_{\sigma}\right]$ contains c.

Several authors (e.g. in [2], [8], [11], [12]) have studied invariant convergent sequences.

By a lacunary sequence $\theta=\left(k_{r}\right)$ where $k_{0}=0$ we mean an increasing sequence of positive integers with $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined
by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$. The sequence space of lacunary strongly convergent sequences N_{θ} was defined in [6] as follows:

$$
N_{\theta}=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|x_{i}-s\right|=0 \text { for some } s\right\}
$$

Lacunary convergent sequences have been studied most recently in [3], [4], [5], [10], and [11].

The purpose of this paper is to introduce and study a concept of lacunary strong (A_{σ}, p)-convergence.

Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers. We write $A x_{\sigma^{i}(n)}=$ $\left(A_{\sigma^{i}(n)}(x)\right)$ if $A_{\sigma^{i}(n)}(x)=\sum_{k=1}^{\infty} a_{i k} x_{\sigma^{k}(n)}$ converges for all n and i.

For $\sigma(n)=n+1$ we write $A x_{i+n}=\left(A_{i+n}(x)\right)$ and $A_{i+n}(x)=\sum_{k=1}^{\infty} a_{i k} x_{n+k}$ for $A x_{\sigma^{i}(n)}=\left(A_{\sigma^{i}(n)}(x)\right)$ and $A_{\sigma^{i}(n)}(x)=\sum_{k=1}^{\infty} a_{i k} x_{\sigma^{k}(n)}$, respectively.

2. Lacunary strongly $\left(A_{\sigma}, p\right)$-CONVERGENT SEQUENCES

We now introduce the generalizations of lacunary strongly convergent sequences and investigate some inclusion relations.

Definition 1. Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers and $p=\left(p_{i}\right)$ a sequence of strictly positive real numbers. We define spaces $\sigma_{\theta}[A, p]=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{i}(n)}-s\right|^{p_{i}}=0\right.$, uniformly in n, for some $\left.s\right\}$, $\sigma_{\theta}^{0}[A, p]=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{i}(n)}\right|^{p_{i}}=0\right.$, uniformly in $\left.n\right\}$.

A sequence x of real or complex numbers is said to be lacunary strongly $\left(A_{\sigma}, p\right)$ convergent to the value s if $x \in \sigma_{\theta}[A, p]$. Then we write $x_{k} \rightarrow s\left[\sigma_{\theta}[A, p]\right]$.

If $p_{i}=1$ for all i, we write $\sigma_{\theta}[A]$ and $\sigma_{\theta}^{0}[A]$ for $\sigma_{\theta}[A, p]$ and $\sigma_{\theta}^{0}[A, p]$, respectively. If A is a unit matrix we write σ_{θ} and σ_{θ}^{0} for $\sigma_{\theta}[A]$ and $\sigma_{\theta}^{0}[A]$, respectively. Hence σ_{θ} is the same as the space L_{θ} of [1]. For $\sigma(n)=n+1$, the space σ_{θ} is the same as M_{θ}, the space of lacunary strongly almost convergent sequences (see [2]).

The following inequality will be used frequently throughout the paper:

$$
\begin{equation*}
\left|a_{i}+b_{i}\right|^{p_{i}} \leqslant \max \left(1,2^{H-1}\right)\left(\left|a_{i}\right|^{p_{i}}+\left|b_{i}\right|^{p_{i}}\right) \tag{1}
\end{equation*}
$$

where a_{i}, b_{i} are complex numbers and $H=\sup p_{i}<\infty$.

It is easy to see that $\sigma_{\theta}[A, p]$ and $\sigma_{\theta}^{0}[A, p]$ are linear spaces. We consider only $\sigma_{\theta}[A, p]$.

Suppose that $x_{i} \rightarrow s^{1}$ and $y_{i} \rightarrow s^{2}$ in $\sigma_{\theta}[A, p]$ and that a, b are in C, the set of complex numbers. Then there exist integers T_{a} and T_{b} such that $|a| \leqslant T_{a}$ and $|b| \leqslant T_{b}$. From (1) we have

$$
\begin{aligned}
& h_{r}^{-1} \sum_{i \in I_{r}}\left|a A x_{\sigma^{i}(n)}+b A y_{\sigma^{i}(n)}-\left(a s^{1}+b s^{2}\right)\right|^{p_{i}} \leqslant \max \left\{1,2^{H-1}\right\} \\
& \quad \times\left[\left(T_{a}\right)^{H} h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{i}(n)}-s^{1}\right|^{p_{i}}+\left(T_{b}\right)^{H} h_{r}^{-1} \sum_{i \in I_{r}}\left|A y_{\sigma^{i}(n)}-s^{2}\right|^{p_{i}}\right] .
\end{aligned}
$$

This implies that $a x+b y \in \sigma_{\theta}[A, p]$.
The lacunary sequence $\theta^{!}=\left(k_{r}^{!}\right)$is called a lacunary refinement of $\theta=\left(k_{r}\right)$ if $\left(k_{r}\right) \subset\left(k_{r}^{!}\right)($see [4] $)$.

Now we establish the inclusion relations among $\sigma_{\theta}[A, p]$ for different θ.

Theorem 2. (i) Let $\theta^{!}$be a refinement of θ. Then $\sigma_{\theta^{!}}[A, p] \subset \sigma_{\theta}[A, p]$.
(ii) Let L be a set of lacunary sequences closed under arbitrary union and intersection. Writing $\alpha=\bigcup_{\theta \in L} \theta$ and $\gamma=\bigcap_{\theta \in L} \theta$ we have $\sigma_{\alpha}[A, p] \subset \sigma_{\theta}[A, p] \subset \sigma_{\gamma}[A, p]$ for all $\theta \in L$.

Proof. Let $x \in \sigma_{\theta!}[A, p]$ and let us suppose that there is a finite number of points $\theta^{!}=\left(k_{r}^{!}\right)$in the interval $I_{r}=\left(k_{r-1}, k_{r}\right]$. We assume for simplicity that there is exactly one point $k_{r}^{!}$of θ ! in the interval I_{r}, that is, $k_{r-1}=k_{j-1}^{!}<k_{j}^{!}<k_{j+1}^{!}=k_{r}$. Now, from (1) we have

$$
\begin{aligned}
& h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{i}(n)}-s\right|^{p_{i}} \leqslant \max \left\{1,2^{H-1}\right\} \\
& \quad \times\left[\left(h_{r}^{-1} h_{r}^{1}\right) h_{r}^{-1} \sum_{i \in I_{r}^{1}}\left|A x_{\sigma^{i}(n)}-s\right|^{p_{i}}+\left(h_{r}^{-1} h_{r}^{2}\right) h_{r}^{-2} \sum_{i \in I_{r}^{2}}\left|A x_{\sigma^{i}(n)}-s\right|^{p_{i}}\right],
\end{aligned}
$$

where $I_{r}^{1}=\left(k_{r-1}, k_{j}\right], I_{r}^{2}=\left(k_{j}, k_{r}\right], h_{r}^{1}=k_{j}-k_{r-1}$ and $h_{r}^{2}=k_{r}-k_{j}$. Since $x \in \sigma_{\theta^{!}}(A, p), 0<h_{r}^{-1} h_{r}^{1} \leqslant 1$ and $0<h_{r}^{-1} h_{r}^{2} \leqslant 1$, we have $x \in \sigma_{\theta}[A, p]$. This proves (i).
(ii) follows from the fact that α is a refinement of θ and θ is a refinement of γ for every $\theta \in L$.

For $\sigma(n)=n+1$ we write $M_{\theta}[A, p]$ for $\sigma_{\theta}[A, p]$. We now give a lemma to be used later.

Lemma 3. Suppose that for a given $\varepsilon>0$ there exist k_{0} and n_{0} such that

$$
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}<\varepsilon
$$

for all $k \geqslant k_{0}$ and $n \geqslant n_{0}$. Then $x \in w[A, p]$, where

$$
w[A, p]=\left\{x=\left(x_{i}\right): \lim _{k \rightarrow \infty} k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}=0 \text { uniformly in } n, \text { for some } s\right\}
$$

Proof. Let $\varepsilon>0$ be given. Choose k_{1} and n_{0} such that

$$
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}<\frac{\varepsilon}{2}
$$

for all $k \geqslant k_{1}, n \geqslant n_{0}$. It is enough to prove that there is k_{2} such that $k \geqslant k_{2}$, $0 \leqslant n \leqslant n_{0}$,

$$
\begin{equation*}
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}<\varepsilon . \tag{2}
\end{equation*}
$$

Taking $k_{0}=\max \left(k_{1}, k_{2}\right),(2)$ will hold for $k \geqslant k_{0}$ and for all n, which gives the result. Once n_{0} has been chosen, n_{0} is fixed, so

$$
\sum_{i=0}^{n_{0}-1}\left|A x_{i+n}-s\right|^{p_{i}}=R(n) \quad \text { (say) }
$$

Now, taking $0 \leqslant n \leqslant n_{0}$ and $k>n_{0}$, we have

$$
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}=k^{-1}\left(\sum_{i=0}^{n_{0}-1}+\sum_{i=n_{0}}^{k-1}\right)\left|A x_{i+n}-s\right|^{p_{i}} \leqslant \frac{R(n)}{k}+\frac{\varepsilon}{2}
$$

Taking k sufficiently large, we have (2) and hence the result.

Theorem 4. $w[A, p]=M_{\theta}[A, p]$ for every lacunary sequence θ, where $M_{\theta}[A, p]=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{i+n}-s\right|^{p_{i}}=0\right.$ uniformly in n, for some $\left.s\right\}$.

Proof. Let $x \in M_{\theta}[A, p]$. Then given $\varepsilon>0$, there exist r_{0} and s such that

$$
h_{r}^{-1} \sum_{i=0}^{h_{r}-1}\left|A x_{i+n}-s\right|^{p_{i}}<\varepsilon
$$

for $r \geqslant r_{0}$ and $n=k_{r-1}+1+u, u \geqslant 0$. Let $k \geqslant h_{r}$, write $k=m h_{r}+p$, where $0 \leqslant p \leqslant h_{r}, m$ is an integer. Since $k \geqslant h_{r}, m \geqslant 1$, we have

$$
\begin{aligned}
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}} & \leqslant k^{-1} \sum_{i=0}^{(m+1) h_{r}-1}\left|A x_{i+n}-s\right|^{p_{i}}=k^{-1} \sum_{j=0}^{m} \sum_{i=j h_{r}}^{(j+1) h_{r}-1}\left|A x_{i+n}-s\right|^{p_{i}} \\
& \leqslant(m+1) k^{-1} h_{r} \varepsilon \leqslant 2 m k^{-1} h_{r} \varepsilon
\end{aligned}
$$

for $k^{-1} h_{r} \leqslant n$, and since $m k^{-1} h_{r} \leqslant 1$ we conclude

$$
k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}} \leqslant 2 \varepsilon .
$$

Then by Lemma $3, M_{\theta}[A, p] \subset w[A, p]$. It is easy to see that $w[A, p] \subset M_{\theta}[A, p]$ for every θ.

Theorem 5. Let A be a strongly regular matrix and $0<\inf p_{i}$, then $x_{i} \rightarrow s$ implies $x_{i} \rightarrow s\left[M_{\theta}[A, p]\right]$.

Proof. Suppose that $x_{i} \rightarrow s$ as $i \rightarrow \infty$. This implies $A x_{i+n} \rightarrow s$ as $i \rightarrow \infty$ uniformly in n. Since $0<h=\inf p_{i}$ we have $\lim _{i \rightarrow \infty}\left|A x_{i+n}-s\right|^{h}=0$ uniformly in n. So for $0<\varepsilon<1$, there is $i_{0} \in \mathbb{N}$ such that for all $i>i_{0}$ and for all n, $\left|A x_{i+n}-s\right|^{h}<\varepsilon<1$ and since $p_{i}>h$ for all i,

$$
\left|A x_{i+n}-s\right|^{p_{i}} \leqslant\left|A x_{i+n}-s\right|^{h}<\varepsilon .
$$

Then $\lim _{i \rightarrow \infty}\left|A x_{i+n}-s\right|^{p_{i}}=0$ uniformly in n and therefore $\lim _{k \rightarrow \infty} k^{-1} \sum_{i=0}^{k-1}\left|A x_{i+n}-s\right|^{p_{i}}=$ 0. From Theorem 4 we have $\lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{i+n}-s\right|^{p_{i}}=0$ uniformly in n. So $x_{i} \rightarrow s\left[M_{\theta}[A, p]\right]$.

Theorem 6. Let A be a limitation method, $x \in \ell_{\infty}$ and $p_{i}=p$ for all i. Then $w(A p) \equiv M_{\theta}(A p)$ for every lacunary sequence θ, where

$$
w(A p)=\left\{x=\left(x_{i}\right): \lim _{k \rightarrow \infty} k^{-1} \sum_{i=0}^{k-1}\left(A x_{i+n}-s\right)^{p}=0 \text { uniformly in } n, \text { for some } s\right\}
$$

and
$M_{\theta}(A p)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left(A x_{i+n}-s\right)^{p}=0\right.$ uniformly in n, for some $\left.s\right\}$.
In order to prove this theorem, we need the following lemma.
Lemma 7. Suppose that for a given $\varepsilon>0$ there exist k_{0} and n_{0} such that

$$
k^{-1} \sum_{i=0}^{k-1}\left(A x_{i+n}-s\right)^{p}<\varepsilon
$$

for all $k \geqslant k_{0}$ and $n \geqslant n_{0}$. Then $x \in w(A p)$.
Proof. The proof of Lemma 7 is similar to the proof of Lemma 3.
Proof of Theorem 6. Let $x \in M_{\theta}(A p)$. Then given $\varepsilon>0$, there exist r_{0} and n_{0} such that

$$
\begin{equation*}
h_{r}^{-1}\left|\sum_{i=0}^{h_{r}-1}\left(A x_{i+n}-s\right)^{p}\right|<\frac{\varepsilon}{2} \tag{3}
\end{equation*}
$$

for $r \geqslant r_{0}, n \geqslant n_{0}$ and $n=k_{r-1}+1+u, u \geqslant 0$. Let $k \geqslant h_{r}, m$ be an integer greater than or equal to 1 . Then

$$
\begin{equation*}
k^{-1}\left|\sum_{i=0}^{k-1}\left(A x_{i+n}-s\right)^{p}\right| \leqslant k^{-1} \sum_{j=0}^{m}\left|\sum_{i=j h_{r}}^{(j+1) h_{r}-1}\left(A x_{i+n}-s\right)^{p}\right|+k^{-1} \sum_{i=m h_{r}}^{k-1}\left|A x_{i+n}-s\right|^{p} . \tag{4}
\end{equation*}
$$

Since A is a limitation method and $x \in \ell_{\infty}$, let for all i and $n,\left|A x_{i+n}-s\right|^{p} \leqslant M$ (say). So (3) and (4) imply

$$
k^{-1}\left|\sum_{i=0}^{k-1}\left(A x_{i+n}-s\right)^{p}\right| \leqslant m k^{-1} h_{r} \frac{\varepsilon}{2}+M k^{-1} h_{r}
$$

For $k^{-1} h_{r} \leqslant 1$, since $m k^{-1} h_{r} \leqslant 1$, we can make $M k^{-1} h_{r}$ less than $\varepsilon / 2$ by taking k sufficiently large. So

$$
k^{-1}\left|\sum_{i=0}^{k-1}\left(A x_{i+n}-s\right)^{p}\right|<\varepsilon
$$

for all $k \geqslant k_{0}$ and $n \geqslant n_{0}$. Hence, by Lemma $7, M_{\theta}(A p) \subset w(A p)$. It is trivial to see that $w(A p) \subset M_{\theta}(A p)$ for every θ. This completes the proof.

Let $p_{k}=s$ for all $k, q_{k}=t$ for all k and $0<s \leqslant t$. Then it follows from Hölder's inequality that

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{\prime}(n)}\right|^{s} \leqslant\left(h_{r}^{-1} \sum_{i \in I_{r}}\left|A x_{\sigma^{i}(n)}\right|^{t}\right)^{s / t}
$$

and therefore $\sigma_{\theta}^{0}[A, q] \subseteq \sigma_{\theta}^{0}[A, p]$.
We now consider the case that $\left(p_{i}\right)$ and $\left(q_{i}\right)$ are not constant sequences. We are able to prove $\sigma_{\theta}^{0}[A, q] \subseteq \sigma_{\theta}^{0}[A, p]$ only under additional conditions.

Theorem 8. Let $0<p_{i} \leqslant q_{i}$ for all k and let $\left(q_{i} / p_{i}\right)$ be bounded. Then

$$
\sigma_{\theta}^{0}[A, q] \subseteq \sigma_{\theta}^{0}[A, p] \quad \text { and } \quad \sigma_{\theta}[A, q] \subseteq \sigma_{\theta}[A, p]
$$

Proof. If we take $t_{i}=\left|A x_{\sigma^{i}(n)}\right|^{p_{i}}$ for all i, then using the same technique as in [9, Theorem 2], it is easy to prove the theorem.

Result.

(i) If $0<\inf p_{i} \leqslant p_{i} \leqslant 1$ for all k, then $\sigma_{\theta}[A] \subseteq \sigma_{\theta}[A, p]$.
(ii) $1 \leqslant p_{i} \leqslant \sup p_{i}=H<\infty$, then $\sigma_{\theta}[A, p] \subseteq \sigma_{\theta}[A]$.

References

[1] S. Banach: Theorie des operation lineaires. Warszava, 1932.
[2] T. Bilgin: Strong A_{σ}-summability defined by a modulus. J. Ist. Univ. Sci. 53 (1996), 89-95.
[3] T. Bilgin: Lacunary strong A-convergence with respect to a modulus. Studia Univ. Babeş-Bolyai Math. 46 (2001), 39-46.
[4] G. Das and S. K. Mishra: Sublinear functional and a class of conservative matrices. J. Orissa Math. 20 (1989), 64-67.
[5] G. Das and B. K. Patel: Lacunary distribution of sequences. Indian J. Pure Appl. Math. 20 (1989), 64-74.
[6] A.R Freedman, J. J. Sember and M. Raphed: Some Cesaro-type summability spaces. Proc. London Math. Soc. 37 (1978), 508-520.
[7] G. G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1980), 167-190.
[8] Mursaleen: Matrix transformations between some new sequence spaces. Houston J. Math. 4 (1983), 505-509.
[9] E. Öztürk and T. Bilgin: Strongly summable sequence spaces defined by a modulus. Indian J. Pure Appl. Math. 25 (1994), 621-625.
[10] S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36 (1995), 69-76.
[11] E. Savaş: Lacunary strong σ-convergence. Indian J. Pure Appl. Math. 21 (1990), 359-365.
[12] P. Scheafer: Infinite matrices and invariant meant. Proc. Amer. Math. Soc. 36 (1972), 104-110.

Author's address: Department of Mathematics, University of 100. Yil, Van, Turkey, e-mail: tbilgin@yyu.edu.tr.

