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Abstract. The definition of lacunary strongly convergence is extended to the definition of
lacunary strong (Aσ, p)-convergence with respect to invariant mean when A is an infinite
matrix and p = (pi) is a strictly positive sequence. We study some properties and inclusion
relations.
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1. Introduction

Let σ be a mapping of the set of positive integers into itself. A continuous linear

functional ϕ on l∞, the space of real bounded sequences, is said to be an invariant
mean or a σ-mean if and only if (i) ϕ(x) > 0 when the sequence x = (xn) satisfies
xn > 0 for all n, (ii) ϕ(e) = 1 where e = (1, 1, 1, . . .), and (iii) ϕ(xσ(n)) = ϕ(x) for all
x ∈ l∞. The mapping ϕ is assumed to be one-to-one and such that σm(n) 6= n for all

positive integers n and m, where σm(n) denotes the mth iterate of the mapping σ

at n. Thus ϕ extends the limit functional to c, the space of convergent sequences, in

the sense that ϕ(x) = lim x for all x ∈ c.
Consequently, c ⊂ Vσ where Vσ is the set of bounded sequence all of whose σ-means

are equal. If σ is the translation mapping n → n + 1, a σ-mean is often called a
Banach limit (see [1]) and Vσ is the set of almost convergent sequences (see [7]).

[Vσ ] denotes the set of all strongly σ-convergent sequences (see [8]). It is easy to see
that [Vσ ] is a proper closed linear subspace of Vσ . Furthermore, [Vσ ] contains c.

Several authors (e.g. in [2], [8], [11], [12]) have studied invariant convergent se-
quences.

By a lacunary sequence θ = (kr) where k0 = 0 we mean an increasing sequence
of positive integers with hr = kr − kr−1 → ∞ as r → ∞. The intervals determined
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by θ will be denoted by Ir = (kr−1, kr]. The sequence space of lacunary strongly
convergent sequences Nθ was defined in [6] as follows:

Nθ =
{

x = (xi) : lim
r→∞

h−1
r

∑

i∈Ir

|xi − s| = 0 for some s

}
.

Lacunary convergent sequences have been studied most recently in [3], [4], [5],
[10], and [11].

The purpose of this paper is to introduce and study a concept of lacunary strong
(Aσ , p)-convergence.
Let A = (aik) be an infinite matrix of complex numbers. We write Axσi(n) =

(Aσi(n)(x)) if Aσi(n)(x) =
∞∑

k=1

aikxσk(n) converges for all n and i.

For σ(n) = n + 1 we write Axi+n = (Ai+n(x)) and Ai+n(x) =
∞∑

k=1

aikxn+k for

Axσi(n) = (Aσi(n)(x)) and Aσi(n)(x) =
∞∑

k=1

aikxσk(n), respectively.

2. Lacunary strongly (Aσ , p)-convergent sequences

We now introduce the generalizations of lacunary strongly convergent sequences

and investigate some inclusion relations.

Definition 1. Let A = (aik) be an infinite matrix of complex numbers and
p = (pi) a sequence of strictly positive real numbers. We define spaces

σθ[A, p] =
{

x = (xi) : lim
r→∞

h−1
r

∑

i∈Ir

|Axσi(n) − s|pi = 0, uniformly in n, for some s

}
,

σ0
θ [A, p] =

{
x = (xi) : lim

r→∞
h−1

r

∑

i∈Ir

|Axσi(n)|pi = 0, uniformly in n

}
.

A sequence x of real or complex numbers is said to be lacunary strongly (Aσ , p)-
convergent to the value s if x ∈ σθ[A, p]. Then we write xk → s[σθ[A, p]].
If pi = 1 for all i, we write σθ[A] and σ0

θ [A] for σθ[A, p] and σ0
θ [A, p], respectively.

If A is a unit matrix we write σθ and σ0
θ for σθ[A] and σ0

θ [A], respectively. Hence
σθ is the same as the space Lθ of [1]. For σ(n) = n + 1, the space σθ is the same
as Mθ, the space of lacunary strongly almost convergent sequences (see [2]).

The following inequality will be used frequently throughout the paper:

(1) |ai + bi|pi 6 max(1, 2H−1)(|ai|pi + |bi|pi)

where ai, bi are complex numbers and H = sup pi < ∞.
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It is easy to see that σθ[A, p] and σ0
θ [A, p] are linear spaces. We consider only

σθ[A, p].
Suppose that xi → s1 and yi → s2 in σθ[A, p] and that a, b are in C, the set

of complex numbers. Then there exist integers Ta and Tb such that |a| 6 Ta and

|b| 6 Tb. From (1) we have

h−1
r

∑

i∈Ir

|aAxσi(n) + bAyσi(n) − (as1 + bs2)|pi 6 max{1, 2H−1}

×
[
(Ta)Hh−1

r

∑

i∈Ir

|Axσi(n) − s1|pi + (Tb)Hh−1
r

∑

i∈Ir

|Ayσi(n) − s2|pi

]
.

This implies that ax + by ∈ σθ[A, p].
The lacunary sequence θ! = (k!

r) is called a lacunary refinement of θ = (kr) if
(kr) ⊂ (k!

r) (see [4]).
Now we establish the inclusion relations among σθ[A, p] for different θ.

Theorem 2. (i) Let θ! be a refinement of θ. Then σθ! [A, p] ⊂ σθ[A, p].
(ii) Let L be a set of lacunary sequences closed under arbitrary union and inter-

section. Writing α =
⋃

θ∈L

θ and γ =
⋂

θ∈L

θ we have σα[A, p] ⊂ σθ[A, p] ⊂ σγ [A, p] for

all θ ∈ L.
��������

. Let x ∈ σθ! [A, p] and let us suppose that there is a finite number of
points θ! = (k!

r) in the interval Ir = (kr−1, kr]. We assume for simplicity that there
is exactly one point k!

r of θ
! in the interval Ir, that is, kr−1 = k!

j−1 < k!
j < k!

j+1 = kr.

Now, from (1) we have

h−1
r

∑

i∈Ir

|Axσi(n) − s|pi 6 max{1, 2H−1}

×
[
(h−1

r h1
r)h

−1
r

∑

i∈I1
r

|Axσi(n) − s|pi + (h−1
r h2

r)h
−2
r

∑

i∈I2
r

|Axσi(n) − s|pi

]
,

where I1
r = (kr−1, kj ], I2

r = (kj , kr], h1
r = kj − kr−1 and h2

r = kr − kj . Since

x ∈ σθ!(A, p), 0 < h−1
r h1

r 6 1 and 0 < h−1
r h2

r 6 1, we have x ∈ σθ[A, p]. This
proves (i).

(ii) follows from the fact that α is a refinement of θ and θ is a refinement of γ for

every θ ∈ L. �

For σ(n) = n + 1 we write Mθ[A, p] for σθ[A, p]. We now give a lemma to be used
later.
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Lemma 3. Suppose that for a given ε > 0 there exist k0 and n0 such that

k−1
k−1∑

i=0

|Axi+n − s|pi < ε

for all k > k0 and n > n0. Then x ∈ w[A, p], where

w[A, p] =
{

x = (xi) : lim
k→∞

k−1
k−1∑

i=0

|Axi+n − s|pi = 0 uniformly in n, for some s

}
.

��������
. Let ε > 0 be given. Choose k1 and n0 such that

k−1
k−1∑

i=0

|Axi+n − s|pi <
ε

2

for all k > k1, n > n0. It is enough to prove that there is k2 such that k > k2,

0 6 n 6 n0,

(2) k−1
k−1∑

i=0

|Axi+n − s|pi < ε.

Taking k0 = max(k1, k2), (2) will hold for k > k0 and for all n, which gives the result.

Once n0 has been chosen, n0 is fixed, so

n0−1∑

i=0

|Axi+n − s|pi = R(n) (say).

Now, taking 0 6 n 6 n0 and k > n0, we have

k−1
k−1∑

i=0

|Axi+n − s|pi = k−1

(n0−1∑

i=0

+
k−1∑

i=n0

)
|Axi+n − s|pi 6 R(n)

k
+

ε

2
.

Taking k sufficiently large, we have (2) and hence the result. �
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Theorem 4. w[A, p] = Mθ[A, p] for every lacunary sequence θ, where

Mθ[A, p] =
{

x = (xi) : lim
r→∞

h−1
r

∑

i∈Ir

|Axi+n − s|pi = 0 uniformly in n, for some s

}
.

��������
. Let x ∈ Mθ[A, p]. Then given ε > 0, there exist r0 and s such that

h−1
r

hr−1∑

i=0

|Axi+n − s|pi < ε

for r > r0 and n = kr−1 + 1 + u, u > 0. Let k > hr, write k = mhr + p, where
0 6 p 6 hr, m is an integer. Since k > hr, m > 1, we have

k−1
k−1∑

i=0

|Axi+n − s|pi 6 k−1

(m+1)hr−1∑

i=0

|Axi+n − s|pi = k−1
m∑

j=0

(j+1)hr−1∑

i=jhr

|Axi+n − s|pi

6 (m + 1)k−1hrε 6 2mk−1hrε

for k−1hr 6 n, and since mk−1hr 6 1 we conclude

k−1
k−1∑

i=0

|Axi+n − s|pi 6 2ε.

Then by Lemma 3, Mθ[A, p] ⊂ w[A, p]. It is easy to see that w[A, p] ⊂ Mθ[A, p] for
every θ. �

Theorem 5. Let A be a strongly regular matrix and 0 < inf pi, then xi → s

implies xi → s[Mθ[A, p]].
��������

. Suppose that xi → s as i → ∞. This implies Axi+n → s as i → ∞
uniformly in n. Since 0 < h = inf pi we have lim

i→∞
|Axi+n − s|h = 0 uniformly

in n. So for 0 < ε < 1, there is i0 ∈ � such that for all i > i0 and for all n,
|Axi+n − s|h < ε < 1 and since pi > h for all i,

|Axi+n − s|pi 6 |Axi+n − s|h < ε.

Then lim
i→∞

|Axi+n−s|pi = 0 uniformly in n and therefore lim
k→∞

k−1
k−1∑
i=0

|Axi+n−s|pi =

0. From Theorem 4 we have lim
r→∞

h−1
r

∑
i∈Ir

|Axi+n − s|pi = 0 uniformly in n. So

xi → s[Mθ[A, p]]. �
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Theorem 6. Let A be a limitation method, x ∈ `∞ and pi = p for all i. Then

w(Ap) ≡ Mθ(Ap) for every lacunary sequence θ, where

w(Ap) =
{

x = (xi) : lim
k→∞

k−1
k−1∑

i=0

(Axi+n − s)p = 0 uniformly in n, for some s

}

and

Mθ(Ap) =
{

x = (xi) : lim
r→∞

h−1
r

∑

i∈Ir

(Axi+n − s)p = 0 uniformly in n, for some s

}
.

In order to prove this theorem, we need the following lemma.

Lemma 7. Suppose that for a given ε > 0 there exist k0 and n0 such that

k−1
k−1∑

i=0

(Axi+n − s)p < ε

for all k > k0 and n > n0. Then x ∈ w(Ap).
��������

. The proof of Lemma 7 is similar to the proof of Lemma 3. �
��������

of Theorem 6. Let x ∈ Mθ(Ap). Then given ε > 0, there exist r0 and

n0 such that

(3) h−1
r

∣∣∣∣
hr−1∑

i=0

(Axi+n − s)p

∣∣∣∣ <
ε

2

for r > r0, n > n0 and n = kr−1 + 1 + u, u > 0. Let k > hr, m be an integer greater

than or equal to 1. Then

(4) k−1

∣∣∣∣
k−1∑

i=0

(Axi+n−s)p

∣∣∣∣ 6 k−1
m∑

j=0

∣∣∣∣
(j+1)hr−1∑

i=jhr

(Axi+n−s)p

∣∣∣∣+k−1
k−1∑

i=mhr

|Axi+n−s|p.

Since A is a limitation method and x ∈ `∞, let for all i and n, |Axi+n − s|p 6 M

(say). So (3) and (4) imply

k−1

∣∣∣∣
k−1∑

i=0

(Axi+n − s)p

∣∣∣∣ 6 mk−1hr
ε

2
+ Mk−1hr.

For k−1hr 6 1, since mk−1hr 6 1, we can make Mk−1hr less than ε/2 by taking k

sufficiently large. So

k−1

∣∣∣∣
k−1∑

i=0

(Axi+n − s)p

∣∣∣∣ < ε

for all k > k0 and n > n0. Hence, by Lemma 7, Mθ(Ap) ⊂ w(Ap). It is trivial to see
that w(Ap) ⊂ Mθ(Ap) for every θ. This completes the proof. �
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Let pk = s for all k, qk = t for all k and 0 < s 6 t. Then it follows from Hölder’s

inequality that

h−1
r

∑

i∈Ir

|Axσ′(n)|s 6
(

h−1
r

∑

i∈Ir

|Axσi(n)|t
)s/t

and therefore σ0
θ [A, q] ⊆ σ0

θ [A, p].
We now consider the case that (pi) and (qi) are not constant sequences. We are

able to prove σ0
θ [A, q] ⊆ σ0

θ [A, p] only under additional conditions.

Theorem 8. Let 0 < pi 6 qi for all k and let (qi/pi) be bounded. Then

σ0
θ [A, q] ⊆ σ0

θ [A, p] and σθ[A, q] ⊆ σθ[A, p].

��������
. If we take ti = |Axσi(n)|pi for all i, then using the same technique as

in [9, Theorem 2], it is easy to prove the theorem. �

Result.
(i) If 0 < inf pi 6 pi 6 1 for all k, then σθ[A] ⊆ σθ[A, p].
(ii) 1 6 pi 6 sup pi = H < ∞, then σθ[A, p] ⊆ σθ[A].
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Babeş-Bolyai Math. 46 (2001), 39–46.

[4] G. Das and S.K. Mishra: Sublinear functional and a class of conservative matrices.
J. Orissa Math. 20 (1989), 64–67.

[5] G. Das and B.K. Patel: Lacunary distribution of sequences. Indian J. Pure Appl. Math.
20 (1989), 64–74.

[6] A.R Freedman, J. J. Sember and M. Raphed: Some Cesaro-type summability spaces.
Proc. London Math. Soc. 37 (1978), 508–520.

[7] G.G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80
(1980), 167–190.

[8] Mursaleen: Matrix transformations between some new sequence spaces. Houston
J. Math. 4 (1983), 505–509.

[9] E. Öztürk and T. Bilgin: Strongly summable sequence spaces defined by a modulus.
Indian J. Pure Appl. Math. 25 (1994), 621–625.

[10] S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of
modulus functions. Comment. Math. Univ. Carolin. 36 (1995), 69–76.
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