Czechoslovak Mathematical Journal

Rade Doroslovački; Jovanka Pantović; Gradimir Vojvodić One interval in the lattice of partial hyperclones

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 3, 719-724

Persistent URL: http: //dml.cz/dmlcz/128016

Terms of use:

(C) Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

ONE INTERVAL IN THE LATTICE OF PARTIAL HYPERCLONES

Rade Doroslovački, Jovanka Pantović and Gradimir Vojvodić, Novi Sad

(Received November 3, 2002)

Abstract. In this paper the structure of the interval $\left[O_{A}, H p_{A}\right]$ in the lattice of partial hyperclones is determined, where O_{A} is the clone of all total operations and $H p_{A}$ is the clone of all partial hyperoperations on A.

Keywords: clone, hyperoperation, hyperalgebra, hyperclone
MSC 2000: 08A40

1. Preliminaries

Let A be a nonempty set. For a positive integer n, a function from A^{n} to the family $P(A)$ of all subsets of A is called a partial n-hyperoperation on A. Denote by $H p_{A}^{(n)}$ the set of all partial n-hyperoperations on A and by $H p_{A}$ the set of all partial hyperoperations on A, i.e. $H p_{A}=\bigcup_{n \geqslant 0} H p_{A}^{(n)}$. A map f from A^{n} to $P(A) \backslash\{\emptyset\}$ is called a hyperoperation [5], and the set of all hyperoperations is denoted by H $\left(H \subseteq H p_{A}\right)$.

Every n-ary operation f from A^{n} to A can be viewed as a special partial hyperoperation (if we do not make difference between an element $a \in A$ and the corresponding one element subset $\{a\}$ of A). In the same sense, partial operations f from $\operatorname{dom}(f)$ to A, where $\operatorname{dom}(f) \subseteq A^{n}$, are also special partial hyperoperations (if $\left(x_{1}, \ldots, x_{n}\right) \notin \operatorname{dom}(f)$, for $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ and $f \in H p_{A}^{(n)}$ we can put $f\left(x_{1}, \ldots, x_{n}\right)=\emptyset$). Namely, $f \in H p_{A}$ with $|f(x)| \leqslant 1$ for each $x \in A^{n}$ is de facto a partial operation on A (if A is a set, then $|A|$ is the cardinality of A). The set of all operations and the set of all partial operations on A are denoted by O_{A} and P_{A}, respectively.

For a positive integer n and for $1 \leqslant i \leqslant n, e_{i}^{n}$ is a partial n-hyperprojection if $e_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=\left\{x_{i}\right\}$ for all $x_{1}, \ldots, x_{n} \in A$. The set of all hyperprojections is denoted by J_{A}.

For positive integers n and $m, f \in H p_{A}^{(n)}$ and $g_{1}, \ldots, g_{n} \in H p_{A}^{(m)}$, the composition of f and g_{1}, \ldots, g_{n}, denoted by $f\left(g_{1}, \ldots, g_{n}\right) \in H p_{A}^{(m)}$, is defined by $f\left(g_{1}, \ldots, g_{n}\right)\left(x_{1}, \ldots, x_{m}\right)=\bigcup\left\{f\left(y_{1}, \ldots, y_{n}\right): y_{i} \in g_{i}\left(x_{1}, \ldots, x_{m}\right), 1 \leqslant i \leqslant n\right\}$ for each $\left(x_{1}, \ldots, x_{m}\right) \in A^{m}$.

The set $C \subseteq H p_{A}$ is a clone of partial hyperoperations on A or a partial hyperclone if C is composition closed and C contains all partial n-hyperprojections for each positive integer n.

For $F \subseteq H p_{A},\langle F\rangle$ stands for the clone of partial hyperoperations generated by F. The set F of partial hyperoperations is complete if $\langle F\rangle=H p_{A}$.

A partial hyperclone C_{1} on A is covered by a partial hyperclone C_{2} if $C_{1} \subset C \subset C_{2}$ holds for no partial hyperclone C. A maximal partial hyperclone on A is a partial hyperclone covered by $H p_{A}$.

We say that an operation $f \in O_{A}^{(n)}$ depends on its i-th variable if there are $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n} \in A$ such that $h \in O_{A}^{(1)}$, defined by $h(x):=f\left(a_{1}, \ldots, a_{i-1}\right.$, $\left.x, a_{i+1}, \ldots, a_{n}\right)$ for every $x \in A$, is non-constant. An n-ary operation $f \in O_{A}^{(n)}$ on A is essential if it depends on at least two variables and $\operatorname{im} f=A$.

2. Results

Let

$$
\begin{aligned}
H_{A} & =\bigcup_{n \in \mathbb{N}}\left\{f \in H p_{A}^{(n)}:|f(\mathbf{x})| \geqslant 1 \text { for every } \mathbf{x} \in A^{n}\right\} \\
M & =\left\langle\bigcup_{n \in \mathbb{N}}\left\{f \in H p_{A}^{(n)}:|f(\mathbf{x})|<1 \text { for every } \mathbf{x} \in A^{n}\right\}\right\rangle \\
& =\bigcup_{n \in \mathbb{N}}\left\{f: A^{n} \rightarrow\{\emptyset\}\right\} \cup J_{A}, \\
O_{A} & =\bigcup_{n \in \mathbb{N}}\left\{f \in H p_{A}^{(n)}:|f(\mathbf{x})|=1 \text { for every } \mathbf{x} \in A^{n}\right\}
\end{aligned}
$$

and

$$
P_{A}=\bigcup_{n \in \mathbb{N}}\left\{f \in H p_{A}^{(n)}:|f(\mathbf{x})| \leqslant 1 \text { for every } \mathbf{x} \in A^{n}\right\}
$$

It is clear that these sets are clones of partial hyperoperations.
The next lemma follows from [3].

Lemma 2.1. The clone O_{A} is covered by $O_{A} \cup M$ and the clone $O_{A} \cup M$ is covered by P_{A}.

Lemma 2.2. If $f \in H_{A} \backslash O_{A}$, then $\left\langle O_{A} \cup f\right\rangle=H_{A}$, i.e. the clone O_{A} is covered by H_{A}.

Proof. If for an arbitrary $n \geqslant 1, f \in\left(H_{A}\right)^{(n)} \backslash O_{A}$, then there is at least one n-tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ such that $f(\mathbf{a})=\left\{c_{0}, \ldots, c_{p-1}\right\}$ and $p \geqslant 2$.

The statement $\left\langle O_{A} \cup\{f\}\right\rangle \subseteq H_{A}$ is obvious because H_{A} is a partial hyperclone and $f \in H_{A}$ and $O_{A} \subseteq H_{A}$. Now, we shall prove that the statement $\left\langle O_{A} \cup\{f\}\right\rangle \supseteq H_{A}$ is also correct. Let h be an arbitrary m-ary hyperoperation from H_{A}. Let us define maps $f_{1}, \ldots, f_{n} \in O_{A}^{(m)}$ and $g \in O_{A}^{(l+m)}$ in the following way. If $h\left(y_{1}, \ldots, y_{m}\right)=\left\{d_{0}, d_{1}, \ldots, d_{q-1}\right\}$ for some $q \geqslant 1$, then $\left(f_{1}\left(y_{1}, \ldots, y_{m}\right), \ldots, f_{n}\left(y_{1}, \ldots, y_{m}\right)\right)=\left(\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\}\right)$ and

$$
\begin{aligned}
g\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}, c_{0}\right) & =\left\{d_{0}\right\} \\
g\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}, c_{1}\right) & =\left\{d_{1}\right\} \\
& \vdots \\
g\left(y_{1}, \ldots, y_{m}, c_{p-1}, \ldots, c_{p-1}, c_{p-1}\right) & =\left\{d_{q-1}\right\}
\end{aligned}
$$

where $l \in \mathbb{N}$ is the number such that $p^{l-1}<\max _{\left(y_{1}, \ldots, y_{m}\right) \in A^{m}}\left|h\left(y_{1}, \ldots, y_{m}\right)\right| \leqslant p^{l}$.
Precisely, $g\left(y_{1}, \ldots, y_{m}, c_{i_{1}}, \ldots, c_{i_{l-1}}, c_{i_{l}}\right)=\left\{d_{i}\right\}$ where

$$
i= \begin{cases}i_{1} p^{l-1}+i_{2} p^{l-2}+\ldots+i_{l} p^{0} & \text { if } i_{1} p^{l-1}+i_{2} p^{l-2}+\ldots+i_{l} p^{0} \leqslant q-1 \\ q-1 & \text { else. }\end{cases}
$$

Now, we can prove that $h=g\left(e_{1}^{m}, \ldots, e_{m}^{m}, f\left(f_{1}, \ldots, f_{n}\right), \ldots, f\left(f_{1}, \ldots, f_{n}\right)\right)$, which implies $h \in\left\langle O_{A} \cup f\right\rangle$. For $h\left(y_{1}, \ldots, y_{m}\right)=\left\{d_{0}, d_{1}, \ldots, d_{q-1}\right\}$, we have $g\left(e_{1}^{m}, \ldots, e_{m}^{m}\right.$, $\left.f\left(f_{1}, \ldots, f_{n}\right), \ldots, f\left(f_{1}, \ldots, f_{n}\right)\right)\left(y_{1}, \ldots, y_{m}\right)=g\left(\left\{y_{1}\right\}, \ldots,\left\{y_{m}\right\},\left\{c_{0}, \ldots, c_{p-1}\right\}, \ldots\right.$, $\left.\left\{c_{0}, \ldots, c_{p-1}\right\}\right)=g\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}\right) \cup g\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}, c_{1}\right) \cup \ldots \cup g\left(y_{1}, \ldots\right.$, $\left.y_{m}, c_{p-1}, \ldots, c_{p-1}, c_{p-1}\right)=\left\{d_{0}, d_{1}, \ldots, d_{q-1}\right\}=h\left(y_{1}, \ldots, y_{m}\right)$.

Lemma 2.3. If $f \in M$, then $\left\langle H_{A} \cup\{f\}\right\rangle=H_{A} \cup M$, i.e. the clone H_{A} is covered by $H_{A} \cup M$.

Proof. It is obvious that $\left\langle H_{A} \cup\{f\}\right\rangle \subseteq H_{A} \cup M$.
We only have to prove that for an arbitrary $h \in M, h \in\left\langle H_{A} \cup\{f\}\right\rangle$ holds. It is easy to see that $h=f\left(g_{1}, \ldots, g_{n}\right)$ because $f\left(g_{1}, \ldots, g_{n}\right)\left(y_{1}, \ldots, y_{m}\right)=\emptyset$ for each $g_{1}, \ldots, g_{n} \in H_{A}^{(m)}$.

Corollary 2.1. If $f \in H_{A} \backslash O_{A}$, then $\left\langle O_{A} \cup M \cup\{f\}\right\rangle=H_{A} \cup M$, i.e. the clone $O_{A} \cup M$ is covered by $H_{A} \cup M$.

Lemma 2.4. If $f \in H p_{A} \backslash\left(P_{A} \cup H_{A}\right)$, then $\left\langle O_{A} \cup\{f\}\right\rangle=H p_{A}$.
Proof. It is obvious that $\left\langle O_{A} \cup\{f\}\right\rangle \subseteq H p_{A}$. It remains to prove that $H p_{A} \subseteq\left\langle O_{A} \cup\{f\}\right\rangle$.

Since $f \in H p_{A} \backslash\left(P_{A} \cup H_{A}\right)$, there is $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ such that $f(\mathbf{a})=\emptyset$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in A^{n}$ such that $|f(\mathbf{b})| \geqslant 2$. We can suppose that $f(\mathbf{b})=$ $f\left(b_{1}, \ldots, b_{n}\right)=\left\{c_{0}, \ldots, c_{p-1}\right\}$ and $p \geqslant 2$.

Let h be an arbitrary map from $H p_{A}^{(m)}$.
Let us define $f_{1}, \ldots, f_{n} \in O_{A}^{(m)}$ and $e \in O_{A}^{(m+l)}$ as follows. If $h(\mathbf{y})=\emptyset$, where $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in A^{n}$, then $\left(f_{1}(\mathbf{y}), \ldots, f_{n}(\mathbf{y})\right)=\left(\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\}\right)$. If $h(\mathbf{y})=\left\{d_{0}, d_{1}, \ldots, d_{q-1}\right\}$ for some $q \geqslant 1$, then $\left(f_{1}(\mathbf{y}), \ldots, f_{n}(\mathbf{y})\right)=\left(\left\{b_{1}\right\}, \ldots\right.$, $\left.\left\{b_{n}\right\}\right)$ and $e\left(y_{1}, \ldots, y_{m}, c_{i_{1}}, \ldots c_{i_{l-1}}, c_{i_{l}}\right)=\left\{d_{i}\right\}$, where $l \in \mathbb{N}$ satisfies $p^{l-1}<$ $\max _{\left(y_{1}, \ldots, y_{m}\right) \in A^{m}} \mid h\left(\mathbf{y} \mid \leqslant p^{l}\right.$ and

$$
i= \begin{cases}i_{1} p^{l-1}+i_{2} p^{l-2}+\ldots+i_{l} p^{0} & \text { if } i_{1} p^{l-1}+i_{2} p^{l-2}+\ldots+i_{l} p^{0} \leqslant q-1 \\ q-1 & \text { else. }\end{cases}
$$

Now, we can prove that $h=e\left(e_{1}^{m}, \ldots, e_{m}^{m}, f\left(f_{1}, \ldots, f_{n}\right) \ldots, f\left(f_{1}, \ldots, f_{n}\right)\right)$, i.e. h belongs to $\left\langle O_{A} \cup\{f\}\right\rangle$.

For $h\left(y_{1}, \ldots, y_{m}\right)=\emptyset$ the statement is obvious and for $h\left(y_{1}, \ldots, y_{m}\right)=\left\{d_{0}, d_{1}\right.$, $\left.\ldots, d_{q-1}\right\}$, for some $q \geqslant 1$, we have $e\left(e_{1}^{m}, \ldots, e_{m}^{m}, f\left(f_{1}, \ldots, f_{n}\right), \ldots, f\left(f_{1}, \ldots, f_{n}\right)\right)\left(y_{1}\right.$, $\left.\ldots, y_{m}\right)=e\left(\left\{y_{1}\right\}, \ldots,\left\{y_{m}\right\}, f(\mathbf{a}), \ldots, f(\mathbf{a})\right)=e\left(\left\{y_{1}\right\}, \ldots,\left\{y_{m}\right\},\left\{c_{0}, \ldots, c_{p-1}\right\}, \ldots\right.$, $\left.\left\{c_{0}, \ldots, c_{p-1}\right\}\right)=e\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}\right) \cup e\left(y_{1}, \ldots, y_{m}, c_{0}, \ldots, c_{0}, c_{1}\right) \cup \ldots \cup e\left(y_{1}, \ldots\right.$, $\left.y_{m}, c_{p-1}, \ldots, c_{p-1}, c_{p-1}\right)=\left\{d_{0}, d_{1}, \ldots, d_{q-1}\right\}=h\left(y_{1}, \ldots, y_{m}\right)$.

Lemma 2.5. If $f \in H p_{A} \backslash\left(H_{A} \cup M\right)$, then $\left\langle H_{A} \cup M \cup\{f\}\right\rangle=H p_{A}$, i.e. the clone $H_{A} \cup M$ is covered by $H p_{A}$.

Proof. If $f \in P_{A}$, the statement is a consequence of Lemma 2.1, or else (if $\left.f \notin P_{A}\right)$ of Lemma 2.4.

Lemma 2.6. If $f \in H p_{A} \backslash P_{A}$, then $\left\langle P_{A} \cup\{f\}\right\rangle=H p_{A}$, i.e. P_{A} is covered by $H p_{A}$.
Proof. If $f \in H_{A}$, then the statement follows from Lemma 2.2. Otherwise, if $f \notin H_{A}$, then it follows from Lemma 2.4.

Theorem 2.1. The structure of the interval

$$
\left[O_{A}, H p_{A}\right]=\left\{O_{A}, H_{A}, O_{A} \cup M, H_{A} \cup M, P_{A}, H p_{A}\right\}
$$

is described in the following figure.

Figure. The interval $\left[O_{A}, H p_{A}\right]$.

Theorem 2.2 (Slupecki-type criterion). Let A be finite. If $F \subseteq H p_{A}$ satisfies the following three conditions: (i) F contains an essential operation, (ii) F generates all unary operations and (iii) F contains the partial hyperoperation $f \in H p_{A} \backslash\left(P_{A} \cup H_{A}\right)$, then F is complete.

Proof. By Slupecki criterion, (i) and (ii) imply $O_{A} \subseteq\langle F\rangle$. From (iii) and Lemma 2.4 we obtain $H p_{A}=\left\langle O_{A} \cup\{f\}\right\rangle \subseteq\langle F\rangle \subseteq H p_{A}$, i.e. $\langle F\rangle=H p_{A}$.

Corollary 2.2. Let A be finite and $f \in H p_{A}$. Then $\{f\}$ is complete iff $f \in$ $H p_{A} \backslash\left(P_{A} \cup H_{A}\right)$ and $\langle\{f\}\rangle$ contains all unary operations and at least one essential operation.

References

[1] S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Graduate Texts in Mathematics, Vol 78. Springer-Verlag, New York-Heidelberg-Berlin, 1981.
[2] Th. Drescher and R. Pöschel: Multiclones and relations. Multi-Val. Logic 7 (2001), 313-337.
[3] L. Haddad, I. G. Rosenberg and D. Schweigert: A maximal partial clone and a Slu-pecki-type criterion. Acta Sci. Math. 54 (1990), 89-98.
[4] R. Pöschel and L. A. Kalužnin: Funktionen und Relationenalgebren. Ein Kapitel der diskreten Mathematik. Deutscher Verlag der Wiss., Berlin, 1979 (in German); Birkhäuser Verlag, Basel u. Stuttgart (Math. Reihe Bd. 67).
[5] I. G. Rosenberg: An algebraic aproach to hyperalgebras. Proceedings of 26th ISMVL, Santiago de Compostela, May 28-31, 1996. IEEE, 1996, pp. 203-207.
[6] I. G. Rosenberg: Multiple-valued hyperstructures. Proceedings of 28th ISMVL, May 27-29, 1998. IEEE, 1998, pp. 326-333.

Authors' addresses: R. Doroslovački, J. Pantović, Faculty of Engineering, University of Novi Sad, Trg Dositeja Obradovića, 21000 Novi Sad, Serbia and Montenegro, e-mails: ftn_dora@eunet.yu, pantovic@uns.ns.ac.yu; G. Vojvodić, Dept. of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića, 21000 Novi Sad, Serbia and Montenegro, e-mail: vojvodic@unsim.ns.ac.yu.

