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ONE INTERVAL IN THE LATTICE OF PARTIAL HYPERCLONES
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Abstract. In this paper the structure of the interval [OA, HpA] in the lattice of partial
hyperclones is determined, where OA is the clone of all total operations and HpA is the
clone of all partial hyperoperations on A.
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1. Preliminaries

Let A be a nonempty set. For a positive integer n, a function from An to the
family P (A) of all subsets of A is called a partial n-hyperoperation on A. Denote

by Hp
(n)
A the set of all partial n-hyperoperations on A and by HpA the set of all

partial hyperoperations on A, i.e. HpA =
⋃

n>0

Hp
(n)
A . A map f from An to P (A)\{∅}

is called a hyperoperation [5], and the set of all hyperoperations is denoted by H

(H ⊆ HpA).

Every n-ary operation f from An to A can be viewed as a special partial hy-

peroperation (if we do not make difference between an element a ∈ A and the
corresponding one element subset {a} of A). In the same sense, partial opera-

tions f from dom(f) to A, where dom(f) ⊆ An, are also special partial hyper-
operations (if (x1, . . . , xn) 6∈ dom(f), for (x1, . . . , xn) ∈ An and f ∈ Hp

(n)
A we can

put f(x1, . . . , xn) = ∅). Namely, f ∈ HpA with |f(x)| 6 1 for each x ∈ An is de
facto a partial operation on A (if A is a set, then |A| is the cardinality of A). The
set of all operations and the set of all partial operations on A are denoted by OA

and PA, respectively.
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For a positive integer n and for 1 6 i 6 n, en
i is a partial n-hyperprojection if

en
i (x1, . . . , xn) = {xi} for all x1, . . . , xn ∈ A. The set of all hyperprojections is
denoted by JA.
For positive integers n and m, f ∈ Hp

(n)
A and g1, . . . , gn ∈ Hp

(m)
A , the com-

position of f and g1, . . . , gn, denoted by f(g1, . . . , gn) ∈ Hp
(m)
A , is defined by

f(g1, . . . , gn)(x1, . . . , xm) =
⋃{f(y1, . . . , yn) : yi ∈ gi(x1, . . . , xm), 1 6 i 6 n} for

each (x1, . . . , xm) ∈ Am.
The set C ⊆ HpA is a clone of partial hyperoperations on A or a partial hyperclone

if C is composition closed and C contains all partial n-hyperprojections for each
positive integer n.

For F ⊆ HpA, 〈F 〉 stands for the clone of partial hyperoperations generated by F .
The set F of partial hyperoperations is complete if 〈F 〉 = HpA.

A partial hyperclone C1 on A is covered by a partial hyperclone C2 if C1 ⊂ C ⊂ C2

holds for no partial hyperclone C. A maximal partial hyperclone on A is a partial

hyperclone covered by HpA.
We say that an operation f ∈ O

(n)
A depends on its i-th variable if there are

a1, . . . , ai−1, ai+1, . . . , an ∈ A such that h ∈ O
(1)
A , defined by h(x) := f(a1, . . . , ai−1,

x, ai+1, . . . , an) for every x ∈ A, is non-constant. An n-ary operation f ∈ O
(n)
A on A

is essential if it depends on at least two variables and im f = A.

2. Results

Let

HA =
⋃

n∈ !
{f ∈ Hp

(n)
A : |f(x)| > 1 for every x ∈ An},

M =
〈 ⋃

n∈ !
{f ∈ Hp

(n)
A : |f(x)| < 1 for every x ∈ An}

〉
,

=
⋃

n∈ !
{f : An → {∅}} ∪ JA,

OA =
⋃

n∈ !
{f ∈ Hp

(n)
A : |f(x)| = 1 for every x ∈ An}

and

PA =
⋃

n∈ !
{f ∈ Hp

(n)
A : |f(x)| 6 1 for every x ∈ An}.

It is clear that these sets are clones of partial hyperoperations.
The next lemma follows from [3].
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Lemma 2.1. The clone OA is covered by OA∪M and the clone OA∪M is covered

by PA.

Lemma 2.2. If f ∈ HA \ OA, then 〈OA ∪ f〉 = HA, i.e. the clone OA is covered

by HA.
"$#&%�%('

. If for an arbitrary n > 1, f ∈ (HA)(n) \ OA, then there is at least one
n-tuple a = (a1, . . . , an) ∈ An such that f(a) = {c0, . . . , cp−1} and p > 2.
The statement 〈OA ∪ {f}〉 ⊆ HA is obvious because HA is a partial hyper-

clone and f ∈ HA and OA ⊆ HA. Now, we shall prove that the statement

〈OA ∪ {f}〉 ⊇ HA is also correct. Let h be an arbitrary m-ary hyperoper-
ation from HA. Let us define maps f1, . . . , fn ∈ O

(m)
A and g ∈ O

(l+m)
A in

the following way. If h(y1, . . . , ym) = {d0, d1, . . . , dq−1} for some q > 1, then
(f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)) = ({a1}, . . . , {an}) and

g(y1, . . . , ym, c0, . . . , c0, c0) = {d0}
g(y1, . . . , ym, c0, . . . , c0, c1) = {d1}

...

g(y1, . . . , ym, cp−1, . . . , cp−1, cp−1) = {dq−1}

where l ∈ ) is the number such that pl−1 < max
(y1,...,ym)∈Am

|h(y1, . . . , ym)| 6 pl.

Precisely, g(y1, . . . , ym, ci1 , . . . , cil−1 , cil
) = {di} where

i =

{
i1p

l−1 + i2p
l−2 + . . . + ilp

0 if i1p
l−1 + i2p

l−2 + . . . + ilp
0 6 q − 1,

q − 1 else.

Now, we can prove that h = g
(
em
1 , . . . , em

m, f(f1, . . . , fn), . . . , f(f1, . . . , fn)
)
, which

implies h ∈ 〈OA ∪ f〉. For h(y1, . . . , ym) = {d0, d1, . . . , dq−1}, we have g
(
em
1 , . . . , em

m,

f(f1, . . . , fn), . . . , f(f1, . . . , fn)
)
(y1, . . . , ym) = g({y1}, . . . , {ym}, {c0, . . . , cp−1}, . . . ,

{c0, . . . , cp−1}) = g(y1, . . . , ym, c0, . . . , c0)∪g(y1, . . . , ym, c0, . . . , c0, c1)∪. . .∪g(y1, . . . ,

ym, cp−1, . . . , cp−1, cp−1) = {d0, d1, . . . , dq−1} = h(y1, . . . , ym). �

Lemma 2.3. If f ∈ M, then 〈HA ∪ {f}〉 = HA ∪M , i.e. the clone HA is covered

by HA ∪M .
"$#&%�%('

. It is obvious that 〈HA ∪ {f}〉 ⊆ HA ∪M .

We only have to prove that for an arbitrary h ∈ M , h ∈ 〈HA ∪ {f}〉 holds. It
is easy to see that h = f(g1, . . . , gn) because f(g1, . . . , gn)(y1, . . . , ym) = ∅ for each
g1, . . . , gn ∈ H

(m)
A . �
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Corollary 2.1. If f ∈ HA \ OA, then 〈OA ∪ M ∪ {f}〉 = HA ∪ M , i.e. the clone

OA ∪M is covered by HA ∪M .

Lemma 2.4. If f ∈ HpA \ (PA ∪HA), then 〈OA ∪ {f}〉 = HpA.

"$#&%�%('
. It is obvious that 〈OA ∪ {f}〉 ⊆ HpA. It remains to prove that

HpA ⊆ 〈OA ∪ {f}〉.
Since f ∈ HpA \ (PA ∪ HA), there is a = (a1, . . . , an) ∈ An such that f(a) = ∅

and b = (b1, . . . , bn) ∈ An such that |f(b)| > 2. We can suppose that f(b) =
f(b1, . . . , bn) = {c0, . . . , cp−1} and p > 2.
Let h be an arbitrary map from Hp

(m)
A .

Let us define f1, . . . , fn ∈ O
(m)
A and e ∈ O

(m+l)
A as follows. If h(y) = ∅,

where y = (y1, . . . , ym) ∈ An, then (f1(y), . . . , fn(y)) = ({a1}, . . . , {an}). If
h(y) = {d0, d1, . . . , dq−1} for some q > 1, then (f1(y), . . . , fn(y)) = ({b1}, . . . ,
{bn}) and e(y1, . . . , ym, ci1 , . . . cil−1 , cil

) = {di}, where l ∈ ) satisfies pl−1 <

max
(y1,...,ym)∈Am

|h(y| 6 pl and

i =

{
i1p

l−1 + i2p
l−2 + . . . + ilp

0 if i1p
l−1 + i2p

l−2 + . . . + ilp
0 6 q − 1,

q − 1 else.

Now, we can prove that h = e(em
1 , . . . , em

m, f(f1, . . . , fn) . . . , f(f1, . . . , fn)), i.e. h be-
longs to 〈OA ∪ {f}〉.
For h(y1, . . . , ym) = ∅ the statement is obvious and for h(y1, . . . , ym) = {d0, d1,

. . . , dq−1}, for some q > 1, we have e
(
em
1 , . . . , em

m, f(f1, . . . , fn), . . . , f(f1, . . . , fn)
)
(y1,

. . . , ym) = e
(
{y1}, . . . , {ym}, f(a), . . . , f(a)

)
= e({y1}, . . . , {ym}, {c0, . . . , cp−1}, . . . ,

{c0, . . . , cp−1}) = e(y1, . . . , ym, c0, . . . , c0)∪e(y1, . . . , ym, c0, . . . , c0, c1)∪. . .∪e(y1, . . . ,

ym, cp−1, . . . , cp−1, cp−1) = {d0, d1, . . . , dq−1} = h(y1, . . . , ym). �

Lemma 2.5. If f ∈ HpA \ (HA ∪M), then 〈HA ∪M ∪{f}〉 = HpA, i.e. the clone

HA ∪M is covered by HpA.

"$#&%�%('
. If f ∈ PA, the statement is a consequence of Lemma 2.1, or else (if

f 6∈ PA) of Lemma 2.4. �

Lemma 2.6. If f ∈ HpA\PA, then 〈PA∪{f}〉 = HpA, i.e. PA is covered by HpA.

"$#&%�%('
. If f ∈ HA, then the statement follows from Lemma 2.2. Otherwise, if

f 6∈ HA, then it follows from Lemma 2.4. �
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Theorem 2.1. The structure of the interval

[OA, HpA] = {OA, HA, OA ∪M, HA ∪M, PA, HpA}

is described in the following figure.

HA

OA

PA

HpA

HA ∪M

OA ∪M

Figure. The interval [OA, HpA].

Theorem 2.2 (Slupecki-type criterion). Let A be finite. If F ⊆ HpA satisfies the

following three conditions: (i) F contains an essential operation, (ii) F generates all

unary operations and (iii) F contains the partial hyperoperation f ∈ HpA\(PA∪HA),
then F is complete.

"$#&%�%('
. By Slupecki criterion, (i) and (ii) imply OA ⊆ 〈F 〉. From (iii) and

Lemma 2.4 we obtain HpA = 〈OA ∪ {f}〉 ⊆ 〈F 〉 ⊆ HpA, i.e. 〈F 〉 = HpA. �

Corollary 2.2. Let A be finite and f ∈ HpA. Then {f} is complete iff f ∈
HpA \ (PA ∪HA) and 〈{f}〉 contains all unary operations and at least one essential
operation.
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