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ON THE UNDERLYING LOWER ORDER BUNDLE FUNCTORS

��� ����� �
	���
 � � � � ��� �
, Brno
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Abstract. For every bundle functor we introduce the concept of subordinated functor.
Then we describe subordinated functors for fiber product preserving functors defined on the
category of fibered manifolds with m-dimensional bases and fibered manifold morphisms
with local diffeomorphisms as base maps. In this case we also introduce the concept of the
underlying functor. We show that there is an affine structure on fiber product preserving
functors.
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It is well known that the theory of Weil algebras plays an important role in differ-
ential geometry. The principal result from this field is that every product preserving

bundle functor on the category M f of smooth manifolds and smooth maps is a
Weil functor T A for some Weil algebra A, [4]. Then the natural transformations

T A → T B of two such functors are in a canonical bijection with algebra homomor-
phisms A → B and the iteration T A ◦ T B corresponds to the tensor product A⊗B

of Weil algebras. Further, I. Kolář and W.M. Mikulski [5] have recently described
fiber product preserving functors on the category FM m of fibered manifolds with

m-dimensional bases and fibered manifold morphisms with local diffeomorphisms as
base maps, in terms of Weil algebras. In particular, all such functors are in bijection

with triples (A, H, t), where A is a Weil algebra,H is a group homomorphism and t is
an equivariant algebra homomorphism (see below). The iteration of fiber preserving

functors on FM m was studied by I. Kolář and the author in [1].
Our starting point was the paper [2] by I. Kolář, who introduced the concept of the

underlying lower order Weil functor. He also proved that there is an affine structure
on Weil bundles. Our aim is to introduce underlying lower order functors for every

Tis work was supported by a grant of the GA ČR No. 201/02/0225.
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fiber product preserving functor on FM m. In this connection we show that it is

useful to study underlying functors from a more general point of view.
In Section 1 we introduce the subordinated functor for every bundle functor F .

This is a functor G such that there is a surjective natural transformation F → G.

Then we describe subordinated Weil functors and subordinated Weil algebras. Tak-
ing into account the order of subordinated functors, we generalize the concept of

underlying Weil functor by I. Kolář. Such an approach will also be used in Section 4,
where we introduce the concept of the underlying functor for fiber product preserving

functors on FM m.
In Section 2 we recall the Weil characterization of fiber product preserving func-

tors on FM m by means of the triples (A, H, t). We prove that the order of such
a functor can be determined from its Weil description (A, H, t). In Section 3 we
characterize the subordinated fiber product preserving functors on FM m in an al-
gebraic way. Section 5 is devoted to some examples of subordinated and underlying

functors on FM m. Finally, in Section 6 we show that there is an affine structure
on the fiber product preserving functors on FM m.

All manifolds and maps are assumed to be infinitely differentiable. Unless other-
wise specified, we use the terminology and notation from the book [4].

1. Subordinated and underlying Weil functors

First we recall the concept of the underlying lower order Weil functor, which has

been introduced recently by I. Kolář, [2]. Consider a Weil algebra A = � ×NA , where
NA is the ideal of all nilpotent elements of A. We say that A is of order r, ord(A) = r,

if Nr+1
A = 0 and Nr

A 6= 0. It is well known that the order of the corresponding Weil
functor T A coincides with the order of A, [4]. According to [2], the factor algebra

Ak = A/Nk+1
A is called the underlying algebra of order k and the Weil functor T Ak

is said to be the underlying kth order functor of T A.

Clearly, the algebra epimorphism A → Ak = A/Nk+1
A induces a surjective sub-

mersion T AM → T AkM for every manifold M . This leads us to a more general

concept.

Definition. We say that G is a subordinated functor of a bundle functor F

(or that G is dominated by F ), if there exists a surjective natural transformation
t : F → G.

Notice that the concept of a subordinated functor is independent of the admissible
category and also of the order of bundle functors in question.

If T A and T Ã are two Weil functors, then surjective natural transformations T A →
T Ã are in bijection with algebra epimorphisms µ : A → Ã. In such a case we have
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an exact sequence

(1) 0 → I → A
µ→ Ã = A/I → 0

for some ideal I ⊂ A.

Definition. Let T A and T Ã be two Weil functors. We say that the Weil alge-

bra Ã is dominated by A if the Weil functor T Ã is dominated by T A.

Clearly, we have

Lemma 1. A Weil algebra Ã is dominated by A if and only if Ã = A/I for some

ideal I ⊂ A.

In particular, for I = Nk+1
A we obtain the underlying algebra Ak = A/Nk+1

A of

order k from [2].

Proposition 1. Let T A and T Ã be two Weil functors such that T Ã is dominated

by T A. If the order of T A is r, then the order of T Ã is at most r.

���������
. Let µ : A → Ã be the algebra epimorphism from (1). Then we have

µ(NA) = NÃ, so that (NÃ)r+1 = µ(Nr+1
A ) = 0. �

On the other hand, suppose that the Weil functor T Ã of order s is dominated
by T A. If µ : A → Ã = A/I is the algebra epimorphism from (1), then the condition

(NÃ)s+1 = 0 yields µ(N s+1
A ) = 0, so that we have N s+1

A ⊂ I . This defines an algebra
epimorphism

As = A/Ns+1
A → Ã = A/I.

Hence every sth order Weil functor T Ã, which is dominated by T A, is also dominated

by T As . This property of the functor T As can be generalized in the following way.

Definition. A Weil functor Fs is said to be the underlying sth order functor of

a Weil functor F , if

(1) Fs is dominated by F ,

(2) Fs has order s,

(3) Every sth order Weil functor F̃ which is dominated by F , is also dominated

by Fs.

Thus, we have deduced
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Proposition 2. The underlying sth order functor of a Weil functor F = T A is of

the form Fs = T As , where As = A/Ns+1
A .

We can see that in the case of Weil functors, the underlying sth order functor Fs

is exactly the underlying Weil functor T As defined by I. Kolář, [2]. However, our
general approach to the concept of the underlying functor can also be applied for

bundle functors which are defined on another admissible category. The case of fiber
product preserving functors on FM m will be discussed in Section 4.

Example 1. (a) Let F = TT be the second order iterated tangent functor. Then

the functors G and H defined by GM = TM ×M TM , HM = TM , are dominated
by F . Moreover, F1 = G.

(b) Let T r
m be the velocities functor defined by T r

mM = Jr
0 ( � m , M). Then we have

(T r
m)r−1 = T r−1

m .

(c) Consider the iterated velocities functor F : = T r
p (T s

q ). Clearly, both func-
tors T r

p and T s
q are dominated by F . By [2], the underlying (r + s − 1)th order

functor of F is the fiber product

(T r
p (T s

q )M)r+s−1 = T r−1
p T s

q M ×T r−1
p T s−1

q M T r
p T s−1

q M.

2. Fiber product preserving functors on FM m

We recall that the definition of the order of a functor on FMm is based on the

concept of (q, s, r)-jet, s > q 6 r, [4]. Consider two fibered manifolds p : Y → M ,
q : Z → N and two FM m-morphisms f, g : Y → Z with base maps f, g : M → N .

We say that f and g determine the same (q, s, r)-jet at y ∈ Y , jq,s,r
y f = jq,s,r

y g, if

jq
yf = jq

yg, js
y(f |Yx) = js

y(g|Yx) and jr
xf = jr

xg, x = p(y).

Let F be a bundle functor on the categoryFM m. We say that F is of order (q, s, r),
if jq,s,r

y f = jq,s,r
y g implies Ff |FyY = Fg|FyY .

Definition. The integer r is called the base order of F , s is called the fiber order
and q is called the total order of F , s > q 6 r.

Denote by � r
m = Jr

0 ( � m , � ) the algebra of all r-jets of � m into � with source
0 ∈ � m and by Gr

m = inv Jr
0 ( � m , � m )0 the rth jet group in dimensionm. By I. Kolář

and W.M. Mikulski [5], all fiber product preserving bundle functors on FM m of the

base order r are in bijection with the triples (A, H, t), where A is a Weil algebra, H :
Gr

m → Aut(A) is a group homomorphism of Gr
m into the group of all automorphisms
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of A and t : � r
m → A is an equivariant algebra homomorphism. Further, denote

by P rM [T AY ] the associated bundle to the rth order frame bundle P rM and by
tM : T r

mM → T AM the natural transformation induced by t. Taking into account
the inclusion P rM ⊂ T r

mM , we have

(2) FY = {{u, Z} ∈ P rM [T AY ], tM (u) = T Ap(Z)}.

Moreover, Ff : FY → FZ is the restriction and corestriction of P rf [T Af ] :
P rM [T AY ] → P rN [T AZ].
Let F = (A, H, t) be a fiber product preserving bundle functor on FM m and

denote by βM : T r
mM → T q

mM the jet projection. We are going to show that the
order (q, s, r) of F can be determined from the triple (A, H, t) in the following way.

Proposition 3. The base order r corresponds to H : Gr
m → Aut(A), the fiber

order s is of the form s = ord(A) and the total order is the greatest integer q 6 r

such that the algebra homomorphism t : � r
m → A is projectable over t̄ : � q

m → A,

i.e.

(3) tM = t̄M ◦ βM .

���������
. The condition for the base order r is obvious and the condition for the

fiber order s follows from (2). By locality, it suffices to restrict ourselves to the case
of a product fibered manifold Y = M ×N . Then T Ap(M ×N) = T AM and we have

an identification

F (M ×N) = P rM × T AN, (u, W ) 7→ {u, (tM (u), W )}, u ∈ P rM, W ∈ T AN.

Further, an FM m-morphism f : M ×N → M ×N is of the form

f(x, y) = (f(x), f̃(x, y)), f : M → M, f̃ : M ×N → N.

Denote by f̃1 : M → N and f̃2 : N → N the horizontal and the vertical restriction

of f̃ at (x, y), respectively. Obviously, we have

Ff = P rf [T Af ], T Af = (T Af, T Af̃)

and if N = � n , then T AN = An. Since tM (u) ∈ T AM is horizontal and W ∈ T AN

is vertical, we obtain for N = � n

(4) Ff(u, W ) = {P rf(u), (T Af(tM (u)), T Af̃1(tM (u)) + T Af̃2(W ))}.
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Consider another FM m-morphism g = (g, g̃) : M × N → M × N . The condition

jq,s,r
(x,y)f = jq,s,r

(x,y)g reads

(5) jr
xf = jr

xg, js
(x,y)f̃2 = js

(x,y)g̃2, jq
(x,y)f̃1 = jq

(x,y)g̃1.

Moreover, the naturality on h : M → M yields the commutative diagram

T r
mM

T r
mh−−−−−→ T r

mM

tM

y
ytM

T AM
T Ah−−−−−→ T AM.

Hence we have

T Af(tM (u)) = tM (P rf(u)), T Af̃1(tM (u)) = tN (T r
m(f̃1(u))

and (4) is of the form

(6) Ff(u, W ) = {P rf(u), (tM (P rf(u)), tN (T r
m(f̃1(u)) + T Af̃2(W ))}.

By (3), (5) and (6), Fg(u, W ) coincides with (4). �

Example 2: Holonomic jet functors. Write J r for the r-jet functor defined
onM fm×M f and Jr

h : FM m → FM for the functor of the r-jet prolongation of

fibered manifolds. Further, let Jr
v be the vertical r-jet functor on FM m defined by

Jr
v (Y ) =

⋃

x∈M

Jr
x(M, Yx)

and analogously for morphisms. It holds Aut( � r
m ) = Gr

m, which induces the canon-

ical action C of Gr
m on the algebra � r

m given by the composition of jets. Then the
triples (A, H, t) of the functors Jr

h and Jr
v are of the form

Jr
h = ( � r

m , idGr
m

, id � r
m

), Jr
v = ( � r

m , idGr
m

, 0 � r
m

)

where 0 � r
m

: � r
m → � r

m is the zero homomorphism transforming the nilpotent part

into zero. This implies that Jr
h and Jr

v have the orders (r, r, r) and (0, r, r), respec-
tively.
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Example 3: Vertical functors. (a) Vertical A-prolongation functor V A. Let

A be a Weil algebra of order s and V A : FM m → FM be the functor defined by

V A(Y ) =
⋃

x∈M

T AYx

and analogously for morphisms. Clearly, the order of V A is (0, s, 0). Since G0
m = {e}

is the one-element group and � 0
m = � , we have

V A = (A, He, i � )

where He : {e} → Aut(A) is the trivial homomorphism and i � : � → A is the
canonical injection.

(b) General vertical functor V A,H . Consider an arbitrary group homomorphism
H : Gr

m → Aut(A) and define a functor F A,H on M fm ×M f by

F A,H(M, N) = P rM [T AN, HN ]

where HN is the action induced by H . Then we can introduce a functor V A,H

on FM m by

V A,H(Y ) =
⋃

x∈M

F A,H
x (M, Yx), V A,H(f) =

⋃

x∈M

F A,H
x (f, fx).

We have

V A,H = (A, H, 0A)

where 0A : � r
m → A is the zero homomorphism. Obviously, V A,H has the or-

der (0, s, r). For example, V A,He = V A and V
� r

m ,idGr
m = Jr

v . From (2) it follows
directly that

(A, H, t) = V A,H if and only if t = 0A.

Since V A = V A,He , we have (A, H, t) = V A if and only if t = 0A and H = He.

Example 4: Nonholonomic and general jet functors. Denote by J̃r :
M fm × M f → FM the nonholonomic r-jet functor and by J̃r

h the functor of

nonholonomic r-jet prolongation of fibered manifolds. Then J̃r
h coincides with the

r-fold iteration of J1
h, i.e.

J̃r
h = J1

h ◦ . . . ◦ J1
h.

By [1], the Weil algebra ˜� r
m = J̃r

0 ( � m , � ) of J̃r
h is of the form

(7) ˜� r
m = � 1

m ⊗ . . .⊗ � 1
m︸ ︷︷ ︸

r−times

.
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The composition of nonholonomic jets defines an action of the group

G̃r
m = inv J̃r

0 ( � m , � m )0

on ˜� r
m and its restriction to Gr

m ⊂ G̃r
m yields the action C̃ of Gr

m on ˜� r
m . By [3], we

have
J̃r

h = (˜� r
m , C̃, ĩ)

where ĩ : � r
m → ˜� r

m is the canonical inclusion. I. Kolář has recently introduced the

general concept of an rth order jet functor on FMm, [3]. This is a subfunctor

Jr
h ⊂ F ⊂ J̃r

h

that preserves fiber products. According to [3], these functors are in bijection with

the Gr
m-invariant Weil subalgebras A of ˜� r

m satisfying � r
m ⊂ A ⊂ ˜� r

m . Denoting
by CA the restriction of the action C̃ to A and by iA : A → ˜� r

m the injection, a

general rth order jet functor F on FM m is of the form

F = (A, CA, iA).

3. Subordinated functors on FM m

Consider two fiber product preserving bundle functors F = (A, H, t) and G =
(B, D, τ) on FM m and suppose that the base order of F and G is r and s, respec-

tively, s 6 r. Write β : � r
m → � s

m , π : Gr
m → Gs

m and % : P rM → P sM for the jet
projections. From [5] it follows easily

Lemma 2. Surjective natural transformations (A, H, t) → (B, D, τ) are in bi-
jection with π-equivariant epimorphisms µ : A → B of Weil algebras satisfying

µ ◦ t = τ ◦ β.

So the following diagram commutes

Gr
m×A

H−−−−→ A

π

y
yµ

yµ

Gs
m×B

D−−−−→ B.

By (2), GY = {{u, Z} ∈ P sM [T BY ], τM (u) = T Bp(Z)}. Denoting by µY : T AY →
T BY the natural transformation induced by the algebra epimorphism µ, we can
construct the induced map of the associated bundles

[µ]Y : P rM [T AY ] → P sM [T BY ].
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Proposition 4. The natural transformations F → G are of the form

(8) [µ]Y ({u, Z}) = {%(u), µY (Z)}, u ∈ P rM, Z ∈ T AY.

���������
. Taking any g ∈ Gr

m we have

[µ]Y ({ug, g−1Z}) = {%(ug), µY (g−1Z)} = {%(u)π(g), π(g−1)µY (Z)}

so that (8) is independent of the choice of (u, Z). Further, the naturality of µ on
p : Y → M yields T Bp ◦ µY = µM ◦ T Ap. Then we have

τM (βM (u)) = µM (tM (u)) = µM (T Ap(Z)) = T Bp(µY (Z)).

Hence (8) maps FY into GY . �

In what follows, a functor F with the base order r will be shortly called an
r-functor. By Lemma 2, if an s-functor G = (B, D, τ) is dominated by an r-functor

F = (A, H, t), then B = A/I , where I ⊂ A is an ideal. Write � r
m = � × Nr

m and
define Gr,s

m and Nr,s
m by the exact sequences

e → Gr,s
m → Gr

m
π−−−→ Gs

m → e, 0 → Nr,s
m → Nr

m
β−−−→ N s

m → 0.

If µ : A → B = A/I is an equvariant epimorphism, then

µ(H(k)(a)) = D(e)(µ(a)) = µ(a), a ∈ A, k ∈ Gr,s
m .

In particular, H(k)(I) ⊂ I and for all a ∈ A we have

(9) H(k)(a + I) = a + I, k ∈ Gr,s
m .

Definition. We say that an ideal I ⊂ A is strongly Gr,s
m -invariant, if (9) holds

for all a ∈ A, k ∈ Gr,s
m .

Clearly, the kernel I of an equivariant epimorphism µ : A → B is a strongly Gr,s
m -

invariant ideal.

Lemma 3. If I and Ĩ are two strongly Gr,s
m -invariant ideals, then I ∩ Ĩ is also a

strongly Gr,s
m invariant ideal.

���������
. For s ∈ I ∩ Ĩ we have H(k)(a + s) = a + s̄, which yields s̄ ∈ I ∩ Ĩ . �

From Lemma 2 it follows directly that if an s-functorG = (A/I, D, τ) is dominated
by an r-functor F = (A, H, t), then t(N r,s

m ) ⊂ I .

Definition. An ideal I ⊂ A is called s-admissible if it is strongly Gr,s
m -invariant

and satisfies the condition t(N r,s
m ) ⊂ I .

Thus, we have
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Proposition 5. If an s-functor (B, D, τ) is dominated by an r-functor (A, H, t),
then B = A/I , where I is an s-admissible ideal in A.

Remark. By Proposition 3, the fiber order s̄ of a functor G = (A/I, D, τ) which
is dominated by F = (A, H, t), is less than or equal to the fiber order s of F . On
the other hand, the base order of a subordinated functor G can be greater than

the base order of the original functor F . In fact, consider two Weil algebras A

and B such that there is an epimorphism A → B. Let D : Gr
m → Aut(B) be an

arbitrary homomorphism. Write F = V A, G = V B,D. One evaluates directly that
the functor G is dominated by F . On the other hand, the base order of F is 0, while
the base order of G is r.

Suppose now that F = (A, H, t) is an arbitrary r-functor and I ⊂ A is an

s-admissible ideal. In the rest of this section we construct an s-functor

FI := (A/I, HI , tI)

which is dominated by F . First, define the action HI of the group Gs
m = Gr

m/Gr,s
m

on A/I by

HI(gGr,s
m )(a + I) = H(g)(a) + I, g ∈ Gr

m, a ∈ A.

By Gr,s
m -invariance of I we have

H(gk)(a + I) = H(g)(H(k)(a + I)) = H(g)(a + I).

This implies that the definition of HI is correct. Further, from the condition
t(Nr,s

m ) ⊂ I it follows that there exists a factor homomorphism

tI : � s
m = � r

m/Nr,s
m → A/I, tI(x + Nr,s

m ) = t(x) + I, x ∈ N r
m.

It remains to show that tI is Gs
m-equivariant. In fact, G

r
m-equivariancy of t means

t(gn) = H(g)(t(n)) for g ∈ Gr
m, n ∈ Nr

m.

Then we have

tI((gGr,s
m )(n + Nr,s

m )) = tI(gn + Nr,s
m ) = t(gn) + I = H(g)(t(n)) + I

= HI(gGr,s
m )(t(n) + I) = HI(gGr,s

m )(tI(n + Nr,s
m )).

We have proved
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Proposition 6. The s-functor FI = (A/I, HI , tI) constructed above is domi-
nated by (A, H, t).

4. Underlying functors on FM m

In Section 1 we have defined the underlying sth order functor Fs of a Weil
functor F . However, the order of a functor on FM m is determined by three

integers (q, s, r). That is why we can define several types of underlying functors
on FM m.

Definition. Let F be a functor on FM m. A functor F b
s is said to be the

underlying functor with the base order s, if

(1) F b
s is dominated by F ,

(2) the base order of F b
s is s,

(3) every functor F̃ on FM m with the base order s, which is dominated by F , is
also dominated by F b

s .

If we replace the base order by the fiber order, we obtain the concept of an under-

lying functor F f
s with the fiber order s.

By Lemma 3, the intersection I ∩ Ĩ of two s-admissible ideals is an s-admissible
ideal as well. Denote by Is the minimal s-admissible ideal in A and write

Fs := FIs = (A/Is, HIs , tIs).

Proposition 7. Let F be a fiber product preserving functor on FM m. The

underlying functor F b
s of F is of the form F b

s = Fs.

���������
. Suppose that F̃ := FI is another functor of the base order s, which is

dominated by F . We have to show that there is a surjective natural transformation
Fs → F̃ . Since Is is minimal, we have Is ⊂ I . This defines a factor epimorphism µ :
A/Is → A/I , which is idGs

m
-equivariant. Finally, one evaluates easily that µ satisfies

µ ◦ tIs = tI . �

Proposition 8. Let F = (A, H, t) be an r-functor and suppose that the ideal

Ns+1
A ⊂ A is s-admissible. Then we have

Fs = (As, Hs, ts) where As = A/Ns+1
A , Hs = HNs+1

A
, ts = tNs+1

A
.

Moreover, it holds F b
s = F f

s = Fs.
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���������
. It suffices to show that the ideal N s+1

A is minimal. Suppose that

I ⊂ A is another s-admissible ideal and write µ : A → Ã = A/I for the algebra
epimorphism. The condition (NÃ)s+1 = 0 yields (µ(NA))s+1 = 0, which implies
Ns+1

A ⊂ I . Further, by Proposition 1 we have F f
s = Fs. �

5. Examples of subordinated and underlying functors on FM m

I. Subordinated 0-functors and r-functors.

Proposition 9. Let F = (A, H, t) be an r-functor and B = A/I be a Weil algebra

dominated by A. We have

(1) If t(Nr
m) ⊂ I , then the 0-functor V B is dominated by F ,

(2) If t(Nr
m) = 0, then F0 = V A.

���������
. Clearly, Gr,0

m = Gr
m and Nr,0

m = Nr
m. One evaluates directly that each

ideal I ⊂ A is strongly Gr,0
m -invariant. Moreover, I = 0 is the minimal 0-admissible

ideal. �

Proposition 10. Let F = (A, H, t) be an r-functor and B = A/I be a Weil alge-

bra dominated by A. Then every r-functor of the form G = (B, D, τ) is dominated
by F . Further, we have Fr = F .

���������
. Since Nr,r

m = 0, every ideal I ⊂ A satisfies t(N r,r
m ) ⊂ I . Further, we

have Gr,r
m = e, so that I is r-admissible. Finally, I = 0 is a minimal r-admissible

ideal. �

Example 5. (a) By Proposition 9, if the algebra B is dominated by A, then

the 0-functor V B is dominated by V A and also by V A,H for an arbitrary group
homomorphism H : Gr

m → Aut(A). Further, we have (V A)0 = (V A,H)0 = V A.

(b) Clearly, the vertical jet functor Jr
v = V

� r
m ,idGr

m has a subordinated functor V B ,

where B is an arbitrary Weil algebra dominated by � r
m . Moreover, (Jr

v )0 = V
� r

m .
On the other hand, (Jr

h)0 = idFMm
.

II. The iterated jet functor. By [1], J r
h(Js

h) = (A, H, t), where the Weil alge-
bra A is the tensor product A = � r

m ⊗ � s
m . Consider now the iterated velocities

functor T r
m(T s

m), which is a Weil functor of order r + s. Write

T BM := (T r
m(T s

mM))r+s−1
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for the underlying (r + s − 1)th order Weil functor, which has been described in
Example 1. Then the Weil algebra B is of the form

B = Ar+s−1 = A/I, where I = (N r
m ⊗Ns

m)r+s.

Clearly, the (r + s)-functor Jr
h(Js

h) has the subordinated (r + s−1)-functor G, where

GY = Jr−1
h (Js

hY )×Jr−1
h Js−1

h Y Jr
h(Js−1

h Y ).

Then the Weil algebra of G is A/I . Since G is dominated by J r
h(Js

h), the ideal I is
(r + s− 1)-admissible. By Proposition 8 we have

(Jr
h(Js

h))r+s−1 = G.

III. Underlying functors of a general jet functor.

Proposition 11. Let F = (A, CA, iA) be an rth order jet functor on FM m.

Then we have

Fs = (As, (CA)s, (iA)s) where As = A/Ns+1
A .

���������
. By Proposition 8, it suffices to show that the ideal N s+1

A is s-admissible.

Clearly, this is true in the case of the holonomic jet functor J r
h for the ideal (N

r
m)s+1 ⊂

� r
m . The s-admissibility of (N r

m)s+1 means that N r,s
m ⊂ (Nr

m)s+1. For iA : � r
m → A

we have

iA(Nr
m)s+1 ⊂ Ns+1

A ,

so that also iA(Nr,s
m ) ⊂ Ns+1

A . Finally, since CA is the restriction of the action given

by composition of jets, the ideal N s+1
A is also strongly Gr,s

m -invariant. �

Corollary. We have
(J̃r

h)s = ((˜� r
m )s, C̃s, ĩs).

In the rest of this section we describe the functor (J̃r
h)r−1. The formula (7) defines

r projections ˜� r
m → ˜� r−1

m . Denoting by

T̃ r
mM = J̃r

0 ( � m , M)

the nonholonomic velocities functor, we have r projections qi : T̃ r
mM → T̃ r−1

m M ,
i = 1, . . . , r. Let

Br
mM = T̃ r

mM ×T̃ r−1
m M . . .×T̃ r−1

m M T̃ r
mM
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be a generalized fiber product with respect to r projections qi, i = 1, . . . , r, see [6].

This is a generalization of the bundle of boundaries, which was introduced by
J. E. White in [7]. By M. Kureš [6], we have (T̃ r

m)r−1 = Br−1
m , where the Weil

algebra of Br−1
m is

(˜� r
m )r−1 = ˜� r

m/(Ñr
m)r.

Write qY : J1
hY → Y for the jet projection and

βr = qJ̃r−1
h

Y : J̃r
hY → J̃r−1

h Y.

Then we have r projections J̃r
hY → J̃r−1

h Y of the form

βr, J
1
hβr−1, . . . , (J1

h . . . J1
h︸ ︷︷ ︸

r

)β1.

By Corollary,

(J̃r
h)r−1(Y ) = J̃r−1

h Y ×J̃r−2
h Y . . .×J̃r−2

h Y J̃r−1
h Y,

where on the right we have a generalized fiber product with respect to r projections

J̃r
hY → J̃r−1

h Y .

6. Affine structure on fiber product preserving

functors on FM m

One verifies directly the following assertion.

Lemma 4. Let E = P [S, `] be a bundle associated to the principal bun-
dle P (M, G). Let the fibre S be an affine space with the associated vector space V

and let ¯̀: G → GL(V ) be such a representation of the group G on V , that for

arbitrary a ∈ G, v ∈ V , s ∈ S we have

(10) `a(s) + ¯̀
a(v) = `a(s + v).

Then we have the canonical affine bundle structure on E with the associated vector

bundle E = P [V, ¯̀]. Moreover, the addition of two elements A ∈ Ex, B ∈ Ex is of

the form {u, s}+ {u, v} = {u, s + v}.

Consider an arbitrary r-functor F = (A, H, t) such that the ideal N r
A is (r − 1)-

admissible. By Proposition 8,

Fr−1 = (Ar−1, Hr−1, tr−1), Ar−1 = A/Nr
A.
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By [2], T AM → T Ar−1M is an affine bundle, whose associated vector bundle is

the pullback of TM ⊗ N r
A over T Ar−1M . Moreover, if p : Y → M is a fibered

manifold, then T Ap : T AY → T AM is an affine bundle morphism over T Ar−1p :
T Ar−1Y → T Ar−1M , whose associated vector bundle morphism is the pullback of

Tp⊗ idNr
A

: TY ⊗Nr
A → TM ⊗Nr

A. According to (2), FY ⊂ P rM [T AY ]. Clearly,
the fibres of this associated bundle are affine spaces. Hence we have

Lemma 5. P rM [T AY ] → P rM [T Ar−1Y ] is an affine bundle, whose associated
vector bundle is the pullback of P rM [TY ⊗Nr

A] over P rM [T Ar−1Y ].
���������

. Let H : Gr
m × T AY → T AY be the action of Gr

m. We have to define a
representation H : Gr

m → GL(V ), V = TY ⊗N r
A satisfying the condition (10). Since

T AY is an affine space, we have

Ha(y + v) = Ha(y) + v, y ∈ T AY, v, v ∈ V, a ∈ Gr
m.

Write Ha(v) = v, so that Ha(y + v) = Ha(y) + Ha(v). One evaluates easily that

Hab(v) = Hb(Ha(v)).

�

Proposition 12. Let F = (A, H, t) be an r-functor. Then FY → Fr−1Y is an

affine bundle, whose associated vector bundle is the pullback of P rM [V Y ⊗Nr
A] over

Fr−1Y .
���������

. Consider the expression (2). If v ∈ V := TY ⊗N r
A, then T Ap(Z + v) ∈

T AM . Hence we have

(11) T Ap(Z + v) = T Ap(Z) + w,

where w ∈ TM ⊗N r
A is of the form

w = (Tp⊗ idNr
A
)(v).

Clearly, w = 0 if and only if v ∈ V Y ⊗N r
A. Then (11) reads

T Ap(Z + v) = T Ap(Z) = tM (u).

So for {u, Z} ∈ FY and v ∈ V Y ⊗N r
A we have {u, Z + v} ∈ FY , which proves our

claim. �

As an example we obtain the well known result that J rY → Jr−1Y is an affine
bundle whose associated vector bundle is the pullback of V Y ⊗SrT ∗M over Jr−1Y .

915



References

[1] M. Doupovec and I. Kolář: Iteration of fiber product preserving bundle functors.
Monatsh. Math. 134 (2001), 39–50.

[2] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99–106.
[3] I. Kolář: A general point of view to nonholonomic jet bundles. Cahiers Topo. Geom.
Diff. Categoriques XLIV (2003), 149–160.

[4] I. Kolář, P.W. Michor and J. Slovák: Natural Operations in Differential Geometry.
Springer-Verlag, 1993.

[5] I. Kolář and W.M. Mikulski: On the fiber product preserving bundle functors. Diff.
Geom. Appl. 11 (1999), 105–115.

[6] M. Kureš: On the simplicial structure of some Weil bundles. Rend. Circ. Mat. Palermo,
Serie II, Suppl. 63 (2000), 131–140.

[7] J.E. White: The Method of Iterated Tangents with Applications in Local Riemannian
Geometry. Pitman Press, 1982.

Author’s address: Institute of Mathematics, Brno University of Technology, FSI VUT
Brno, Technická 2, 616 69 Brno, Czech Republic, e-mail: doupovec@fme.vutbr.cz.

916


		webmaster@dml.cz
	2020-07-03T15:36:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




