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Abstract. In this note we study the relation between kR-spaces and k-spaces and prove
that a kR-space with a σ-hereditarily closure-preserving k-network consisting of compact
subsets is a k-space, and that a kR-space with a point-countable k-network consisting of
compact subsets need not be a k-space.
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1. Introduction

Suppose X is a topological space andP is a collection of subsets of X . A space X

is determined by P if U ⊂ X is open (closed) in X if and only if U ∩ P is open

(closed) in P for every P ∈ P . A space X is a k-space, if it is determined by the
cover consisting of all compact subsets of X . A space X is called a kR-space, if

X is completely regular and the necessary and sufficient condition for a real valued
function f onX to be continuous is that the restriction of f on each compact subset is

continuous. Obviously, every completely regular k-space is a kR-space. The converse
is false, as was first shown by an example of Katětov which appeared in a paper by

V. Pták (see [1]). What additional properties of a kR-space ensure it is a k-space
has attracted considerable attention, and some noticeable results have been obtained

in [2]–[5]. Such conditions were formulated using the notion of a k-network. P is
a k-network for X if whenever K ⊂ U with K compact and U open in X , then

K ⊂ ⋃
P ′ ⊂ U for some finite P ′ ⊂ P (see [6]). Suppose P is a k-network for X ,

then P is a compact k-network if P is compact in X for every P ∈ P . A family P
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of subsets in X is called locally countable (locally finite), if for each point x there

is a neighborhood of x which meets at most countably many (finite many) members
of P . A family P of subsets in X is called star countable, if each member of P

meets at most countably many other members of P . A family P of subsets in X is

called point-countable, if each single point meets at most countably many members
of P . A family {Aα : α ∈ I} of subsets of a space X is said to be hereditarily

closure-preserving (briefly, HCP) if
⋃

α∈J

Bα =
⋃

α∈J

Bα whenever J ⊂ I and Bα ⊂ Aα

for each α ∈ J . A collection P in X is σ-locally countable (locally finite, HCP)
if it is a collection that is the union of countably many locally countable (locally
finite, HCP) families. Let P be a k-network consisting of compact subsets in a

regular space X . Then P is locally countable ⇒ P is σ-locally countable ⇒ P is
star countable ⇒ P is point-countable. But the inverse implications are not true.

In 1973, Michael constructed an example of a kR-space which is not a k-space, but
has a countable k-network (see [2]). In 1991, S. Lin showed that a kR-space with a

star countable compact k-network is a k-space (see [3]), which answered affirmatively
a question posed in [4]. In 2000, Z. Yun proved in [5] that the following statements

are equivalent for a kR-space with a k-network P of compact subsets, and each of
them implies that X is a k-space:

(a) P is star countable.

(b) P is locally countable.

(c) P is σ-locally countable.

Therefore, the following question is raised naturally:

(1) If a kR-spaceX has a point-countable compact k-network, then is X a k-space?

It is known that locally finite families are HCP. Hence σ-locally finite families are
σ-HCP. Further, σ-locally finite families of compact sets are easily seen to be star

countable. Thus σ-HCP is a generalization of σ-locally finite in another direction
than star countable.

Therefore, the following question seems to be of some interest.

(2) If a kR-space X has a σ-HCP compact k-network, then is X a k-space?

In this paper, we show that question 1 has negative answer by the example below,

and question 2 has affirmative answer. In fact, a stronger result is proved—with a
k-cover instead of a k-network. A family P of subsets in X is a k-cover if for any

compact subset K, K ⊂ ⋃
P ′ for some finite P ′ ⊂ P (see [7]).

In this paper, all spaces are Hausdorff spaces, and � , � and � denote the set of
natural numbers, real numbers and rational numbers, respectively.
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2. Results

The following Lemma 1 is easy to show.

Lemma 1. Let X be a topological space, P an HCP-cover of X by closed sets.

(1) If P is a k-space for each P ∈ P , then so is X .

(2) If P is normal for each P ∈ P , then so is X .

Lemma 2. Suppose that X is a kR-space and X =
⋃

P , where P = {Xn : n ∈
� } and Xn is a closed normal k-space. If P is a k-cover for X , then X is a k-space.
	�
�����

. First we shall show that X is determined by P . Suppose not. There
is a set A which is not closed in X such that for any n ∈ � , A ∩ Xn is closed

in X . Taking a ∈ A \ A, we have a ∈ Xm for some m ∈ � . For i ∈ � , let
Yi =

⋃{Xn : n 6 m + i− 1}, then a ∈ Y1 ⊂ Yi ⊂ Yi+1. Yi is a normal k-subspace by

Lemma 1, and A∩Yi is closed in X . We can assume that A∩Y1 6= ∅. Since a 6∈ A∩Y1,
there is a continuous function f1 on Y1 such that f1(a) = 1, and f1(A ∩ Y1) = {0}.
We define g1 : A ∩ Y2 → � such that g1(A ∩ Y2) = {0}. Since Y1 and A ∩ Y2 are
closed in X , f1 is continuous on Y1, g1 is continuous on A ∩ Y2 and f1 = g1 on

Y1 ∩ (A ∩ Y2) = A ∩ Y1, we can define a real valued function h1 : Y1 ∪ (A ∩ Y2) → �
such that h1(x) = f1(x) if x ∈ Y1; h1(x) = g1(x) if x ∈ A ∩ Y2. So h1 is continuous

on Y1 ∪ (A ∩ Y2). Since Y2 is a normal space and Y1 ∪ (A ∩ Y2) is closed in Y2,
h1 can be expanded continuously to Y2, that is, we can define f2 : Y2 → � such that
f2 is continuous on Y2 with the restriction of f2 on Y1 being f1, i.e. f2

∣∣Y1 = f1, and
f2(A ∩ Y2) = {0}. By induction, we can define a sequence of real valued continuous
functions fn : Yn → � such that fn(A ∩ Yn) = {0} and fn

∣∣Yn−1 = fn−1. Define
f : X → � by f

∣∣Yn = fn, then f(A) = {0} and f(a) = 1. From the fact a ∈ A we

know that f(A) 6⊂ f(A), and hence f is not continuous on X . On the other hand,
for any compact subset K ⊂ X there exists n ∈ � such that K ⊂ Yn. f is continuous

on K because f is continuous on Yn. Since X is a kR-space, f is continuous on X .
This is a contradiction. Hence X is determined by P . Next, let F ⊂ X be such

that F ∩ K is closed in K for each compact set K ⊂ X . As each Xn is a k-space,
(F ∩Xn)∩K = (F ∩K)∩Xn = F ∩K is closed in K for each compact set K ⊂ Xn,
so F ∩Xn is closed in Xn for each n ∈ � . Since X is determined by P , F is closed

in X . Hence X is a k-space. �

Theorem 3. A kR-space with a σ-HCP k-cover consisting of compact subsets is

a k-space.
	�
�����

. Suppose X is a kR-space and has a σ-HCP k-cover consisting of com-
pact subsets. Let P =

⋃ {Pn : n ∈ � } be a σ-HCP k-cover, where each Pn is a
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HCP collection consisting of compact subsets. For any n ∈ � , put Xn =
⋃

Pn.

Clearly each Xn is closed in X . By Lemma 1, each Xn is a normal k-space. By
Lemma 2, X is a k-space. �

Corollary 4. A kR-space with a σ-HCP compact k-network is a k-space.

As for point-countable compact k-networks, we have

Example 5. There exists a kR-space X with a point-countable compact k-net-
work, such that X is not a k-space.

Let X be the plane and τ0 its usual topology. Let A ⊂ X be the x-axis. For each

x ∈ A, let U(x) be the vertical line through x; also let V (x) be the collection of
all V ⊂ X of the form V = B(x, δ) −H(x), where B(x, δ) is an open disc centered
at x with radius δ and H(x) is a τ0-closed subspace of X − {x} which is disjoint
from U(x). Let ∧ be the topology on X with the following open neighborhood

system: an open neighborhood of a point p ∈ X−A is an open disc centered at p; an
open neighborhood of a point q ∈ A is a set which results from picking a V (x) ∈ V (x),
for each q1−ε < x1 < q1 +ε, and forming the union of these V (x); it will be denoted
by B(q, ε, {V (x)}). In [8], R. Borges proved that (X,∧) is homeomorphic to the
space (X, τ) of Example 1.1 in [2]. Recall that τ is the coarsest topology on X

which makes every function f : X → � (the real line) τ0-continuous on X − A and

τ0-separately continuous at each x ∈ A, (i.e., for each x ∈ A, f
∣∣U(x) and f

∣∣x-axis
are continuous). In [2], Michael showed that (X, τ) is a σ-space and a cosmic kR-
space which is not a k-space. By the construction of the topological space (X, τ), the
subspaces A and X \A of X have their usual topology, and so they have a countable
k-network consisting of compact subsets in A and X \ A, which are denoted by α,

β, respectively. For every x = (x1, 0) ∈ A and every p, q ∈ � , we denote F (x, p, q) =
{(x1, y2) ∈ X : p 6 y2 6 q}. Since the space {x1} × � has its usual topology,
F (x, p, q) is compact in X . Let P = α∪ β ∪ {F (x, p, q) : x = (x1, 0) ∈ A, p, q ∈ � }.
Clearly P is a point-countable cover consisting of compact subsets in X . We shall

show P is a k-network for X . Assume that C and U are respectively compact and
open in X and such that C ⊂ U . Since C ∩ A ⊂ U ∩ A and C ∩ A is compact and

U ∩ A open in A, there exists a finite α′ ⊂ α such that C ∩ A ⊂ ⋃
α′ ⊂ U ∩ A. By

Lemma 3.4 in [2], a compact subset of X has the following property:

If C is compact in X , then there are ε > 0 and a finite A′ ⊂ A such that for
y = (y1, y2) ∈ C and 0 < |y2| < ε, there is x = (x1, x2) ∈ A′ with y1 = x1.

Take m ∈ � with 1/m < ε. Let L = {(x1, x2) ∈ X : x1 ∈ � and |x2| 6 1/m}.
Then L is closed in X , C \ int(L) ⊂ U \ A with C \ int(L) compact in X \ A and

U \ A open in X \ A, thus C \ int(L) ⊂ ⋃
β′ ⊂ U \ A for some finite β′ ⊂ β.

For every x = (x1, 0) ∈ A′, since F (x1,−1/m, 1/m) ∩ C ⊂ ({x1} × � ) ∩ U and

944



F (x1,−/m, 1/m) ∩ C are compact and ({x1} × � ) ∩ U is open in {x1} × � , and
{F (x, p, q) : p, q ∈ � } is a k-network for {x1} × � , there is a finite γx ⊂ {F (x, p, q) :
p, q ∈ � } such that F (x,−1/m, 1/m) ∩ C ⊂ ⋃

γx ⊂ ({x1} × � ) ∩ U . Clearly
C ⊂ ⋃

(α′ ∪ β′ ∪ {γx : x ∈ A′}) ⊂ U , and α′ ∪ β′ ∪ {γx : x ∈ A′} is a finite subfamily
of P . Thus P is a k-network for X .
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