Czechoslovak Mathematical Journal

Zhe Dong
 Finite rank operators in Jacobson radical $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 287-298

Persistent URL: http://dml.cz/dmlcz/128067

Terms of use:

© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

FINITE RANK OPERATORS IN JACOBSON RADICAL $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$

Dong Zhe, Hangzhou
(Received June 20, 2003)

Abstract

In this paper we investigate finite rank operators in the Jacobson radical $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ of $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, where \mathcal{N}, \mathcal{M} are nests. Based on the concrete characterizations of rank one operators in $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$, we obtain that each finite rank operator in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ can be written as a finite sum of rank one operators in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and the weak closure of $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ equals $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if at least one of \mathcal{N}, \mathcal{M} is continuous.

Keywords: Jacobson radical, finite rank operator
MSC 2000: 47L75

1. Introduction

Finite rank operators and rank one operators have played a central role in the theory of nest algebras since the inception of that theory. For example, Ringrose make very effective use of the rank one operators in a nest algebra in his characterization of the radical of a nest algebra [10] and in his theorem that algebraic isomorphisms of nest algebras are necessarily spatial [11]. In a nest algebra, any finite rank operator is a finite sum of rank one operators from the nest algebra [2]. The theorem has been verified for special cases of reflexive algebras, namely algebras whose subspace lattice \mathcal{L} forms an atomic Boolean algebra [9] or \mathcal{L} is commutative and has finite width [6].

Recall that the Jacobson radical of a Banach algebra coincides with the elements T such that $A T$ is quasinilpotent for every A in the algebra. The Jacobson radical of a Banach algebra is a structural object that has been frequently studied over the years. In [10], Ringrose characterized the Jacobson radical of a nest algebra. In [1], Davidson and Orr pushed the characterization further to the case of all width two

Project supported by the Natural Science Foundation of China (No. 10401030) and the Zhejiang Nature Science Foundation (No. M103044).

CSL algebras. The result is essential to our paper. For a subspace lattice \mathcal{L}, we denote by $\mathcal{R}_{\mathcal{L}}$ the Jacobson radical of $\operatorname{Alg} \mathcal{L}$.

The main purpose of this paper is to study finite rank operators in the radical $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ of $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. As we know, each finite rank operator in the radical of a nest algebra can be written as a finite sum of rank one operators in this radical. This result owes much to the total order of \mathcal{N}. In the case of $\mathcal{N} \otimes \mathcal{M}$, the key to the main result is Lemma 4 which gives a concrete description of rank one operators in $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. As an application of Lemma 4, we give a simple proof of the tensor product formula in [3]. At last, we compute the weak closure of the radical $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and show that $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if at least one of \mathcal{N}, \mathcal{M} is continuous.

Let us introduce some notation and terminology. \mathcal{H} represents a complex Hilbert space, $\mathcal{B}(\mathcal{H})$ the algebra of bounded operators on \mathcal{H} and $\mathcal{F}(\mathcal{H})$ the set of finite-rank operators on \mathcal{H}. A sublattice \mathcal{L} of the projection lattice of $\mathcal{B}(\mathcal{H})$ is said to be a subspace lattice if it contains 0 and I and is strongly closed, where we identify projections with their ranges. If the elements of \mathcal{L} pairwise commute, \mathcal{L} is a commutative subspace lattice (CSL). A subspace lattice is completely distributive if distributive laws are valid for families of arbitrary cardinality (see [8]). A nest \mathcal{N} is a totally ordered subspace lattice. For $L \in \mathcal{L}$, we define

$$
L_{-}=\bigvee\{E \in \mathcal{L}: L \not \leq E\}
$$

In the case of nests, either N_{-}is the immediate predecessor of N or $N=N_{-}$. If $N=N_{-}$for any $N \in \mathcal{N}, \mathcal{N}$ is called a continuous nest. If \mathcal{L} is a subspace lattice, $\operatorname{Alg} \mathcal{L}$ denotes the set of operators in $\mathcal{B}(\mathcal{H})$ that leave the elements of \mathcal{L} invariant. If \mathcal{L} is a CSL, $\operatorname{Alg} \mathcal{L}$ is said to be a CSL algebra. If \mathcal{L} is a nest, $\operatorname{Alg} \mathcal{L}$ is said to be a nest algebra.

Let $\mathcal{H}_{i}(i=1,2)$ be complex Hilbert spaces. If $\mathcal{L}_{i} \subset \mathcal{B}\left(\mathcal{H}_{i}\right)(i=1,2)$ are subspace lattices, $\mathcal{L}_{1} \otimes \mathcal{L}_{2}$ is the subspace lattice in $\mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ generated by $\left\{L_{1} \otimes L_{2}: L_{i} \in\right.$ $\left.\mathcal{L}_{i}, i=1,2\right\}$. If $\mathcal{S}_{i} \subset \mathcal{B}\left(\mathcal{H}_{i}\right)(i=1,2)$ are subspaces, then $\mathcal{S}_{1} \otimes \mathcal{S}_{2}$ denotes the linear span of $\left\{S_{1} \otimes S_{2}: S_{i} \in \mathcal{S}_{i}\right\} ; \mathcal{S}_{1} \otimes_{w} \mathcal{S}_{2}$ denotes the weak closure of $\mathcal{S}_{1} \otimes \mathcal{S}_{2}$ in $\mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$.

2. Finite Rank operators

In the sequel we suppose that \mathcal{N} and \mathcal{M} are nests on \mathcal{H}_{1} and \mathcal{H}_{2} respectively; and that $\mathcal{N} \otimes \mathcal{M}$ is the tensor product of \mathcal{N} and $\mathcal{M} . \mathcal{R}_{\mathcal{N}}, \mathcal{R}_{\mathcal{M}}$ and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ denote Jacobson radicals of $\operatorname{Alg} \mathcal{N}, \operatorname{Alg} \mathcal{M}$ and $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ respectively.

For $x, y \in \mathcal{H}$, the rank-one operator $x y^{*}$ is defined by the equation

$$
\left(x y^{*}\right)(z)=\langle z, y\rangle x \quad \forall z \in \mathcal{H}
$$

Lemma 1. Let \mathcal{L} be a subspace lattice and let $\left\{N_{\alpha}: \alpha \in \Lambda\right\}$ be a family of elements in \mathcal{L}. Then $\left(\bigvee_{\alpha \in \Lambda} N_{\alpha}\right)_{-}=\bigvee_{\alpha \in \Lambda}\left(N_{\alpha}\right)_{-}$.

Proof. For any $\alpha \in \Lambda$, since $N_{\alpha} \leqslant \bigvee_{\alpha \in \Lambda} N_{\alpha}$, it follows that if $F \nsupseteq N_{\alpha}$ then $F \nsupseteq \bigvee_{\alpha \in \Lambda} N_{\alpha}$; hence $\left(N_{\alpha}\right)_{-} \leqslant\left(\bigvee_{\alpha \in \Lambda} N_{\alpha}\right)_{-}$. So $\bigvee_{\alpha \in \Lambda}\left(N_{\alpha}\right)_{-} \leqslant\left(\bigvee_{\alpha \in \Lambda} N_{\alpha}\right)_{-}$.

Conversely, suppose that $F \nsupseteq \bigvee_{\alpha \in \Lambda} N_{\alpha}$. If $F \geqslant N_{\alpha}$ for each $\alpha \in \Lambda$, then $F \geqslant$ $\bigvee_{\alpha \in \Lambda} N_{\alpha}$; hence, there exists $\alpha_{0} \in \Lambda$ such that $F \nsupseteq N_{\alpha_{0}}$. Thus $F \leqslant \bigvee_{\alpha \in \Lambda}\left(N_{\alpha}\right)_{-}$. Thus, $\left(\bigvee_{\alpha \in \Lambda} N_{\alpha}\right)_{-}=\bigvee\left\{F: F \nsupseteq \bigvee_{\alpha \in \Lambda} N_{\alpha}\right\} \leqslant \bigvee_{\alpha \in \Lambda}\left(N_{\alpha}\right)_{-}$and we are done.

Set $\mathcal{N} \otimes I=\{N \otimes I: N \in \mathcal{N}\} ; \mathcal{N} \otimes I$ is a nest on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$.

Lemma 2. Suppose that $N \in \mathcal{N}$ and $M \in \mathcal{M}$, then $(N \otimes M)_{-}=\left(N_{-} \otimes I\right) \vee(I \otimes$ $\left.M_{-}\right)$and $(N \otimes M) \perp=N_{-}^{\perp} \otimes M_{-}^{\perp}$ in $\mathcal{N} \otimes \mathcal{M}$.

Proof. First, we prove the following assertion:

$$
(N \otimes M)_{-}=\bigvee\{F: F \nsupseteq N \otimes M\}=\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \nsupseteq N \otimes M\right\}
$$

Indeed, suppose that $F \nsupseteq N \otimes M$. For any $E_{1} \otimes E_{2} \leqslant F$ we have $E_{1} \otimes E_{2} \nsupseteq N \otimes M$. Thus,

$$
\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \leqslant F\right\} \subseteq\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \nsupseteq N \otimes M\right\} .
$$

Hence it follows from [3] Proposition 2.4 that

$$
F=\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \leqslant F\right\} \leqslant \bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \nsupseteq N \otimes M\right\}
$$

and

$$
(N \otimes M)_{-}=\bigvee\{F: F \nsupseteq N \otimes M\} \leqslant \bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \nsupseteq N \otimes M\right\}
$$

The converse inequality is obvious.
Secondly, we show that $E_{1} \otimes E_{2} \geqslant N \otimes M$ if and only if $E_{1} \geqslant N$ and $E_{2} \geqslant M$. Suppose that $E_{1} \otimes E_{2} \geqslant N \otimes M$. If $E_{1}<N$, choose nonzero vectors $x_{1} \in N \ominus E_{1}$ and $x_{2} \in M$. Thus $x_{1} \otimes x_{2} \in N \otimes M \subseteq E_{1} \otimes E_{2}$. But $\left(E_{1} \otimes E_{2}\right)\left(x_{1} \otimes x_{2}\right)=0$ shows that $x_{1} \otimes x_{2} \notin E_{1} \otimes E_{2}$. This contradiction shows that $E_{1} \geqslant N$. Similarly, $E_{2} \geqslant M$.

The converse implication is obvious. Hence $E_{1} \otimes E_{2} \nsupseteq N \otimes M$ if and only if $E_{1} \nsupseteq N$ or $E_{2} \nsupseteq M$.

Therefore

$$
\begin{aligned}
(N \otimes M)_{-} & =\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \nsupseteq N \otimes M\right\} \\
& =\bigvee\left\{E_{1} \otimes E_{2}: E_{1}<N \text { or } E_{2}<M\right\} \\
& =\left(N_{-} \otimes I\right) \vee\left(I \otimes M_{-}\right) .
\end{aligned}
$$

We can easily prove that $\left(N_{-} \otimes I\right)^{\perp}=N_{-}^{\perp} \otimes I$, thus

$$
(N \otimes M)_{-}^{\perp}=\left(N_{-} \otimes I\right)^{\perp} \wedge\left(I \otimes M_{-}\right)^{\perp}=\left(N_{-}^{\perp} \otimes I\right) \wedge\left(I \otimes M_{-}^{\perp}\right)=N_{-}^{\perp} \otimes M_{-}^{\perp} .
$$

The following result of Longstaff [8] is essential to this paper.
Lemma 3. Let \mathcal{L} be a subspace lattice. Then $x y^{*} \in \operatorname{Alg} \mathcal{L}$ if and only if there is an element $L \in \mathcal{L}$ such that $x \in L$ and $y \in L_{-}^{\perp}$.

Lemma 4. The rank one operator $x y^{*}$ belongs to $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$.

Proof. Since $\mathcal{N} \otimes \mathcal{M}=(\mathcal{N} \otimes I) \vee(I \otimes \mathcal{M})$, so

$$
\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})=\operatorname{Alg}(\mathcal{N} \otimes I) \cap \operatorname{Alg}(I \otimes \mathcal{M})
$$

Now suppose that $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. Thus $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes I)$; by the definition of $\mathcal{N} \otimes I$ and Lemma 2 and Lemma 3, there is an element $N \in \mathcal{N}$ such that $x \in N \otimes I$ and $y \in(N \otimes I)_{\perp}^{\perp}=N_{-}^{\perp} \otimes I$. Similarly, there exists $M \in \mathcal{M}$ such that $x \in I \otimes M$ and $y \in I \otimes M_{-}^{\perp}$. Hence, $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$.

For the converse, if $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$ then, in particular, $x \in N \otimes I$ and $y \in N_{\perp}^{\perp} \otimes I$. Lemma 2 and Lemma 3 show that $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes I)$. Similarly, $x y^{*} \in \operatorname{Alg}(I \otimes \mathcal{M})$. Hence

$$
x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes I) \cap \operatorname{Alg}(I \otimes \mathcal{M})=\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})
$$

As an application of Lemma 4 we give a simple proof of the tensor product formula in [3].

Theorem $5\left([3]\right.$, Theorem 2.6). $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})=\operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}$.
Proof. Each of the operators which generate $\operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}$ leaves invariant each of the projections which generate $\mathcal{N} \otimes \mathcal{M}$; therefore

$$
\operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M} \subseteq \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})
$$

It remains to show that $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}) \subseteq \operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}$. It follows from [5, Theorem 10] that $\mathcal{N} \otimes \mathcal{M}$ is a completely distributive CSL. Thus, by virtue of [7, Theorem 3], $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ is weakly generated by the rank one operators in itself. So it suffices to show that each rank one operator in $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ belongs to $\operatorname{Alg} \mathcal{N} \otimes_{w}$ $\operatorname{Alg} \mathcal{M}$. Now for any $N \in \mathcal{N}, M \in \mathcal{M}$ and $x_{i}, y_{i} \in \mathcal{H}_{i}(i=1,2)$, we have that

$$
\begin{aligned}
(N \otimes M) & {\left[\left(x_{1} \otimes x_{2}\right)\left(y_{1} \otimes y_{2}\right)^{*}\right]\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right) } \\
& =(N \otimes M)\left[\left(x_{1} y_{1}^{*}\right) \otimes\left(x_{2} y_{2}^{*}\right)\right]\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right) \\
& =N\left(x_{1} y_{1}^{*}\right) N_{-}^{\perp} \otimes M\left(x_{2} y_{2}^{*}\right) M_{-}^{\perp} \in \operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}
\end{aligned}
$$

(It is routine to verify that $\left(x_{1} \otimes x_{2}\right)\left(y_{1} \otimes y_{2}\right)^{*}=\left(x_{1} y_{1}\right)^{*} \otimes\left(x_{2} y_{2}^{*}\right)$. .)
For any rank one operator $z w^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, it follows from Lemma 4 that there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $z \in N \otimes M$ and $w \in N_{-}^{\perp} \otimes M_{-}^{\perp}$. Since $z, w \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$, there exist sequences $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ such that

$$
z_{n} \xrightarrow{\|\cdot\|} z \quad \text { and } \quad w_{n} \xrightarrow{\|\cdot\|} w,
$$

where $\left\{z_{n}\right\},\left\{w_{n}\right\}$ are finite linear combinations of simple tensors. Thus,

$$
(N \otimes M)\left(z_{n} w_{n}^{*}\right)\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right) \xrightarrow{\|\cdot\|}(N \otimes M)\left(z w^{*}\right)\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right)=z w^{*} .
$$

The above paragraph shows that

$$
(N \otimes M)\left(z_{n} w_{n}^{*}\right)\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right) \in \operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}
$$

so $z w^{*} \in \operatorname{Alg} \mathcal{N} \otimes_{w} \operatorname{Alg} \mathcal{M}$. This completes the proof.
Lemma 6. If $\left(N \ominus N_{-}\right) \otimes\left(M \ominus M_{-}\right) \neq 0$, then it is an atom of $\mathcal{N} \otimes \mathcal{M}$.
Proof. Recall that an atom P of $\mathcal{N} \otimes \mathcal{M}$ is an interval projection from $\mathcal{N} \otimes \mathcal{M}$ such that for any $E \in \mathcal{N} \otimes \mathcal{M}$, either $P \leqslant E$ or $P E=0$ (see [4]). Set $P=$ $\left(N \ominus N_{-}\right) \otimes\left(M \ominus M_{-}\right) . \quad P=N \otimes M-\left[\left(N_{-} \otimes M\right) \vee\left(N \otimes M_{-}\right)\right]$is an interval projection. For any $E=E_{1} \otimes E_{2} \in \mathcal{N} \otimes \mathcal{M}$, since \mathcal{N} is totally ordered, either $E_{1} \leqslant N_{-}$or $E_{1} \geqslant N$. If $E_{1} \leqslant N_{-}$then $P\left(E_{1} \otimes E_{2}\right)=0$; if $E_{1} \geqslant N$, since \mathcal{M} is also
totally ordered, either $E_{2} \leqslant M_{-}$or $E_{2} \geqslant M$. If $E_{2} \leqslant M_{-}$then $P\left(E_{1} \otimes E_{2}\right)=0$; and if $E_{2} \geqslant M$ then $P \leqslant E_{1} \otimes E_{2}$. Hence for any $E=E_{1} \otimes E_{2}$, either $P \leqslant E_{1} \otimes E_{2}$ or $P\left(E_{1} \otimes E_{2}\right)=0$.

Now for any $E \in \mathcal{N} \otimes \mathcal{M}$, by virtue of [3, Proposition 2.4] we have

$$
E=\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \leqslant E\right\}
$$

If $P\left(E_{1} \otimes E_{2}\right)=0$ for any $E_{1} \otimes E_{2} \leqslant E$, then $P E=0$; if there exist E_{1}, E_{2} with $E_{1} \otimes E_{2} \leqslant E$ such that $P\left(E_{1} \otimes E_{2}\right) \neq 0$ then it follows from the result of the above paragraph that $P \leqslant E_{1} \otimes E_{2}$ and $P \leqslant E$.

Proposition 7. If a rank-one operator $x y^{*}$ belongs to $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, then the following statements are equivalent:

1) $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$;
2) there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$.

Proof. 1) $\Rightarrow 2)$ Since $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, it follows from Lemma 4 that there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$. Set $G_{1}=\left(N \ominus N_{-}\right) \otimes\left(M \ominus M_{-}\right), G_{2}=(N \otimes M) \ominus G_{1}=\left(N_{-} \otimes M\right) \vee\left(N \otimes M_{-}\right)$and $G_{3}=\left(N_{-}^{\perp} \otimes M_{-}^{\perp}\right) \ominus G_{1}=\left(N^{\perp} \otimes M_{-}^{\perp}\right) \vee\left(N_{-}^{\perp} \otimes M^{\perp}\right)$. If $G_{1}=0$ then $N \ominus N_{-}=0$ or $M \ominus M_{-}=0$. In this case $L=N \otimes M$ satisfies the condition in 2). Now we suppose that $G_{1} \neq 0$. Since $N \otimes M=G_{1}+G_{2}$ and $N_{-}^{\perp} \otimes M_{-}^{\perp}=G_{1}+G_{3}$, we have

$$
\begin{aligned}
x y^{*} & =\left(G_{1}+G_{2}\right)\left(x y^{*}\right)\left(G_{1}+G_{3}\right) \\
& =(N \otimes M)\left(x y^{*}\right) G_{3}+G_{2}\left(x y^{*}\right) G_{1}+G_{1}\left(x y^{*}\right) G_{1} .
\end{aligned}
$$

Since $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and G_{1} is an atom of $\mathcal{N} \otimes \mathcal{M}$, it follows from [1, Theorem 4.8] that $G_{1}\left(x y^{*}\right) G_{1}=0$. Hence $x \in G_{1}^{\perp}$ or $y \in G_{1}^{\perp}$. If $x \in G_{1}^{\perp}$ then $x \in G_{2}$ and $y \in G_{1}+G_{3}=N_{-}^{\perp} \otimes M_{-}^{\perp} \subseteq G_{2}^{\perp}$; if $y \in G_{1}^{\perp}$, then $y \in G_{3} \subseteq(N \otimes M)^{\perp}$ and $x \in N \otimes M$.
$2) \Rightarrow 1)$ If there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$, then for any $T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ we have $L^{\perp} T L=0$ and

$$
\left[\left(x y^{*}\right) T\right]^{n}=\left[L\left(x y^{*}\right) L^{\perp} T\right]^{n}=0 \quad \forall n \geqslant 2 .
$$

So $\left(x y^{*}\right) T$ is quasinilpotent. It follows from the definition of $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and from $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ that $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Theorem 8. Each finite rank operator in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ can be written as a finite sum of rank one operators in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Proof. Suppose that F is a finite rank operator in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$. Since $F \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}} \subseteq$ $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, it follows from $[6$, Corollary 7$]$ that F can be written as a finite sum of rank one operators in $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. Write

$$
F=\sum_{i=1}^{n} x_{i} y_{i}^{*}, \quad \text { where } \quad x_{i} y_{i}^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}) \quad \text { for } i=1, \ldots, n
$$

For any fixed $i(1 \leqslant i \leqslant n)$, since $x_{i} y_{i}^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, it follows from Lemma 4 that there exist $N_{i} \in \mathcal{N}$ and $M_{i} \in \mathcal{M}$ such that

$$
x_{i} \in N_{i} \otimes M_{i} \quad \text { and } \quad y_{i} \in N_{i-}^{\perp} \otimes M_{i-}^{\perp} .
$$

If $N_{i}=N_{i-}$ or $M_{i}=M_{i-}$, Proposition 7 shows that $x_{i} y_{i}^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$. Without loss of generality, we can suppose that $N_{i} \neq N_{i-}$ and $M_{i} \neq M_{i-}$. Set

$$
\begin{aligned}
G_{i}^{(1)} & =\left(N_{i} \ominus N_{i-}\right) \otimes\left(M_{i} \ominus M_{i-}\right), \\
G_{i}^{(2)} & =\left(N_{i} \otimes M_{i}\right) \ominus G_{i}^{(1)}, \\
G_{i}^{(3)} & =\left(N_{i-}^{\perp} \otimes M_{i-}^{\perp}\right) \ominus G_{i}^{(1)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
x_{i} y_{i}^{*} & =\left(G_{i}^{(1)}+G_{i}^{(2)}\right)\left(x_{i} y_{2}^{*}\right)\left(G_{i}^{(1)}+G_{i}^{(3)}\right) \\
& =\left(N_{i} \otimes M_{i}\right)\left(x_{i} y_{i}^{*}\right) G_{i}^{(3)}+G_{i}^{(2)}\left(x_{i} y_{i}^{*}\right) G_{i}^{(1)}+G_{i}^{(1)}\left(x_{i} y_{i}^{*}\right) G_{i}^{(1)}
\end{aligned}
$$

Since $N_{i} \otimes M_{i} \perp G_{i}^{(3)}, G_{i}^{(2)} \perp G_{i}^{(1)}$ and $x_{i} y_{i}^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, so $\left(N_{i} \otimes M_{i}\right)\left(x_{i} y_{i}^{*}\right) G_{i}^{(3)}$ and $G_{i}^{(2)}\left(x_{i} y_{i}^{*}\right) G_{i}^{(1)}$ belong to $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ by Proposition 7 . Now we consider the operator $G_{i}^{(1)}\left(x_{i} y_{i}^{*}\right) G_{i}^{(1)}$.

Set $\Lambda_{i}=\left\{j: G_{j}^{(1)}=G_{i}^{(1)}\right\}$. Since $G_{i}^{(1)}$ is an atom of $\mathcal{N} \otimes \mathcal{M}$ and $G_{i}^{(1)} \in \operatorname{Alg}(\mathcal{N} \otimes$ $\mathcal{M})$, we have

$$
G_{i}^{(1)} F G_{i}^{(1)}=\sum_{j \in \Lambda_{i}} G_{j}^{(1)}\left(x_{j} y_{j}^{*}\right) G_{j}^{(1)} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}
$$

By virtue of [1, Theorem 4.8], $G_{i}^{(1)} F G_{i}^{(1)}=0$. Owing to the arbitrariness of i, we obtain that

$$
\sum_{j=1}^{n} G_{j}^{(1)}\left(x_{j} y_{j}^{*}\right) G_{j}^{(1)}=0
$$

Hence

$$
F=\sum_{i=1}^{n} x_{i} y_{i}^{*}=\sum_{i=1}^{n}\left(N_{i} \otimes M_{i}\right)\left(x_{i} y_{i}^{*}\right) G_{i}^{(3)}+G_{i}^{(2)}\left(x_{i} y_{i}^{*}\right) G_{i}^{(1)}
$$

Thus, F can be written as a finite sum of rank one operators in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Lemma 9. Suppose that \mathcal{U}_{τ} is a weakly closed $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$-module determined by an order homomorphism τ from $\mathcal{N} \otimes \mathcal{M}$ into itself. Then a rank one operator $x y^{*}$ belongs to \mathcal{U}_{τ} if and only if there exists an element $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L_{\sim}^{\perp}$, where $L_{\sim}=\bigvee\{G: L \not \leq \tau(G)\}$.

Proof. Suppose that there exists an element $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L \stackrel{\sim}{\sim}$. For any $G \in \mathcal{N} \otimes \mathcal{M}$, if $L \leqslant \tau(G)$ then

$$
\left(x y^{*}\right) G=L\left(x y^{*}\right) L_{\sim}^{\perp} G \leqslant L \leqslant \tau(G) ;
$$

if $L \not \leq \tau(G)$, then $G \leqslant L_{\sim}$ and

$$
\left(x y^{*}\right) G=L\left(x y^{*}\right) L_{\sim}^{\perp} G=(0) \subseteq \tau(G)
$$

Thus the rank one operator $x y^{*}$ belongs to \mathcal{U}_{τ}.
Conversely, suppose that $x y^{*} \in \mathcal{U}_{\tau}$. Set $L=\bigwedge\{G \in \mathcal{N} \otimes \mathcal{M}: G x=x\}$, certainly $x \in L$. For any $G \in \mathcal{N} \otimes \mathcal{M}$ and $L \not \leq \tau(G)$, it follows from the definition of L that $\tau(G) x \neq x$. If $G y \neq 0$, since $\left(x y^{*}\right) G=\tau(G)\left(x y^{*}\right) G$, we have that

$$
\left[\left(x y^{*}\right) G\right](G y)=\left[\tau(G)\left(x y^{*}\right) G\right](G y)
$$

and

$$
\|G y\|^{2} x=\|G y\|^{2} \tau(G) x
$$

This contradicts $\tau(G) x \neq x$, so $G y=0$. From the definition of L_{\sim} we have $L_{\sim} y=0$ and $y \in L_{\sim}^{\perp}$.

Lemma 10. Let $\mathcal{U}=\left\{T \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right): T L \subseteq L_{-} \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}$. Then a rank one operator $x y^{*}$ belongs to \mathcal{U} if and only if there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$.

Proof. Necessity. It follows from Lemma 9 that if $x y^{*} \in \mathcal{U}$ then there is $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L_{\sim}^{\perp}$, where $L_{\sim}=\bigvee\left\{E: L \not \leq E_{-}\right\}$. Now we compute L_{\sim}. Since $L=\bigvee\left\{L_{1} \otimes L_{2}: L_{1} \otimes L_{2} \leqslant L\right\}$, it is easy to show that

$$
\left\{E: L \not \leq E_{-}\right\}=\bigcup_{L_{1} \otimes L_{2} \leqslant L}\left\{E: L_{1} \otimes L_{2} \not \leq E_{-}\right\} .
$$

Since $E=\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \leqslant E\right\}$, it follows from Lemma 1 that

$$
E_{-}=\bigvee\left\{\left(E_{1} \otimes E_{2}\right)_{-}: E_{1} \otimes E_{2} \leqslant E\right\}
$$

We first verify the following assertion:

$$
\bigvee\left\{E: L_{1} \otimes L_{2} \not \leq E_{-}\right\}=\bigvee\left\{N \otimes M: L_{1} \otimes L_{2} \nsucceq(N \otimes M)_{-}\right\} .
$$

For $E \in \mathcal{N} \otimes \mathcal{M}$ and $L_{1} \otimes L_{2} \not \leq E_{-}=\vee\left\{\left(E_{1} \otimes E_{2}\right)_{-}: E_{1} \otimes E_{2} \leqslant E\right\}$, we have

$$
L_{1} \otimes L_{2} \not \leq\left(E_{1} \otimes E_{2}\right)_{-} \quad \text { for any } E_{1} \otimes E_{2} \leqslant E .
$$

Thus

$$
E_{1} \otimes E_{2} \in\left\{N \otimes M: L_{1} \otimes L_{2} \not \leq(N \otimes M)_{-}\right\}
$$

and

$$
E=\bigvee\left\{E_{1} \otimes E_{2}: E_{1} \otimes E_{2} \leqslant E\right\} \leqslant \bigvee\left\{N \otimes M: L_{1} \otimes L_{2} \not \leq(N \otimes M)_{-}\right\}
$$

Hence

$$
\bigvee\left\{E: L_{1} \otimes L_{2} \not \leq E_{-}\right\} \leqslant \bigvee\left\{N \otimes M: L_{1} \otimes L_{2} \not \leq(N \otimes M)_{-}\right\}
$$

The converse inequality is obvious. Thus, we have

$$
\begin{aligned}
L_{\sim}=\bigvee\left\{E: L \not \leq E_{-}\right\} & =\bigvee \bigcup_{L_{1} \otimes L_{2} \leqslant L}\left\{E: L_{1} \otimes L_{2} \not \leq E_{-}\right\} \\
& =\bigvee_{L_{1} \otimes L_{2} \leqslant L} \bigvee\left\{E: L_{1} \otimes L_{2} \not \leq E_{-}\right\} \\
& =\bigvee_{L_{1} \otimes L_{2} \leqslant L} \bigvee\left\{N \otimes M: L_{1} \otimes L_{2} \not \leq(N \otimes M)_{-}\right\} \\
& =\bigvee_{L_{1} \otimes L_{2} \leqslant L} \bigvee\left\{N \otimes M: N_{-}<L_{1} \quad \text { or } \quad M_{-}<L_{2}\right\} \\
& =\bigvee\left\{\left(L_{1} \otimes I\right) \vee\left(I \otimes L_{2}\right): L_{1} \otimes L_{2} \leqslant L\right\} \\
& \geqslant \bigvee\left\{L_{1} \otimes L_{2}: L_{1} \otimes L_{2} \leqslant L\right\}=L .
\end{aligned}
$$

The fourth equality follows from $(N \otimes M)_{-}=\left(N_{-} \otimes I\right) \vee\left(I \otimes M_{-}\right)$. Hence $L_{\sim}^{\perp} \leqslant L^{\perp}$.
Sufficiency. Suppose that there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$. For any $M \in \mathcal{N} \otimes \mathcal{M}$, if $M \leqslant L$, then $\left(x y^{*}\right) M=L\left(x y^{*}\right) L^{\perp} M=(0) \subseteq M_{-}$; if $M \not \leq L$, then $\left(x y^{*}\right) M \subseteq L \leqslant M_{-}$. Thus, by the definition of $\mathcal{U}, x y^{*} \in \mathcal{U}$.

Theorem 11.

$$
\begin{aligned}
\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w} & =\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T(N \otimes M) \subseteq(N \otimes M)_{-} \quad \forall N \in \mathcal{N}, \quad M \in \mathcal{M}\right\} \\
& =\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T L \subseteq L_{-} \quad \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}
\end{aligned}
$$

Proof. By [3, Proposition 2.4], $L=\bigvee\{N \otimes M: N \otimes M \leqslant L\}$ for all $L \in \mathcal{N} \otimes \mathcal{M}$. It follows from Lemma 1 that $L_{-}=\bigvee\left\{(N \otimes M)_{-}: N \otimes M \leqslant L\right\}$. Thus it is routine to prove that $\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T(N \otimes M) \subseteq(N \otimes M)_{-} \forall N \in \mathcal{N}, M \in \mathcal{M}\right\}=$ $\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T L \subseteq L_{-} \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}$.

Suppose that $T \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and let $\mathcal{F}_{\mathcal{N} \otimes \mathcal{M}}$ be the linear span of rank one operators in $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$. It follows from [7, Theorem 3] that there exists a net $\left\{F_{\alpha}\right\} \subseteq \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ such that

$$
F_{\alpha} \xrightarrow{w} I,
$$

where F_{α} is a finite linear combination of rank one operators in $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. Thus

$$
F_{\alpha} T \xrightarrow{w} T
$$

and $F_{\alpha} T$ belongs to $\mathcal{F}_{\mathcal{N} \otimes \mathcal{M}}$. Hence

$$
\mathcal{F}_{\mathcal{N} \otimes \mathcal{M}}^{w} \supseteq \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}
$$

and

$$
\mathcal{F}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}
$$

If $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}} \subseteq \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, then there exists $E \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in E$ and $y \in E^{\perp}$ by Proposition 7. For any $L \in \mathcal{N} \otimes \mathcal{M}$, if $L \leqslant E$ then $\left(x y^{*}\right) L=$ $E\left(x y^{*}\right) E^{\perp} L=(0)$; if $L \not \leq E$ then $\left(x y^{*}\right) L=E\left(x y^{*}\right) E^{\perp} L \subseteq E \subseteq L_{-}$. Thus

$$
x y^{*} \in\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T L \subseteq L_{-} \quad \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}
$$

and

$$
\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\mathcal{F}_{\mathcal{N} \otimes \mathcal{M}}^{w} \subseteq\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T L \subseteq L_{-} \quad \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}
$$

Conversely, set $\mathcal{U}=\left\{T \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right): T L \subseteq L_{-}\right\}$. Then $\mathcal{U} \cap \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ is a weakly closed module of $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$. Just like in the above paragraph, we can show that $\mathcal{U} \cap \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ is weakly generated by rank one operators in itself. For any rank one operator $x y^{*} \in \mathcal{U} \cap \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}) \subseteq \mathcal{U}$, it follows from Lemma 10 that
there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$. Since $x y^{*} \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$, so $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ by Proposition 7. Hence

$$
\mathcal{U} \cap \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}) \subseteq \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}
$$

and

$$
\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\left\{T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}): T L \subseteq L_{-} \quad \forall L \in \mathcal{N} \otimes \mathcal{M}\right\}
$$

Corollary 12. $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}$ have the same rank one operators.
Proof. If $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}$, it follows from Lemma 10 and Theorem 11 that there exist $L \in \mathcal{N} \otimes \mathcal{M}$ and $x \in L$ and $y \in L^{\perp}$. By Proposition 7, $x y^{*} \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Corollary 13. $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if at least one of \mathcal{N}, \mathcal{M} is continuous.

Proof. Without loss of generality, we suppose that \mathcal{N} is continuous. It follows from Lemma 2 that for any $T \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ and $N \in \mathcal{N}, M \in \mathcal{M}$, we have

$$
T(N \otimes M) \subseteq N \otimes M \subseteq(N \otimes I) \vee\left(I \otimes M_{-}\right)=(N \otimes M)_{-} .
$$

So $T \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}$ by Theorem 11 and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$.
Conversely, suppose that $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}=\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ and \mathcal{N}, \mathcal{M} are not continuous. Thus there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $N \neq N_{-}$and $M \neq M_{-}$. Thus we can choose non-zero vectors $x_{1} \in N \ominus N_{-}$and $x_{2} \in M \ominus M_{-}$. By virtue of Lemma 4, the rank one operator $\left(x_{1} \otimes x_{2}\right)\left(x_{1} \otimes x_{2}\right)^{*}$ belongs to $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})=\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^{w}$. But it follows from Lemma 10 and Theorem 11 that there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x_{1} \otimes x_{2} \in L$ and $x_{1} \otimes x_{2} \in L^{\perp}$. This contradiction shows that at least one of \mathcal{N}, \mathcal{M} is continuous.

References

[1] K. Davidson, J. Orr: The Jacobson radical of a CSL algebra. Trans. Amer. Math. Soc. 344 (1994), 925-947.

Zbl 0812.47046
[2] J. A. Erdos: On finite rank operators in nest algebras. J. London Math. Soc. 43 (1968), 391-397.

Zbl 0169.17501
[3] F. Gilfeather, A. Hopenwasser, and D. Larson: Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation. J. Funct. Anal. 55 (1984), 176-199.

Zbl 0564.47021
[4] A. Hopenwasser: The radical of a reflexive algebra. Pacific J. Math. 65 (1976), 375-392. Zbl 0321.46054
[5] A. Hopenwasser, R. Moore: Finite rank operators in reflexive operator algebras. J. London Math. Soc. 27 (1983), 331-338.

Zbl 0488.47004
[6] C. Laurie, W. Longstaff: A note on rank-one operators in reflexive algebras. Proc. Amer. Math. Soc. 89 (1983), 293-297.

Zbl 0569.47009
[7] W. Longstaff: Strongly reflexive lattices. J. London Math. Soc. 11 (1975), 491-498.
[8] W. Longstaff: Operators of rank one in reflexive algebras. Canadian J. Math. 28 (1976), 19-23.

Zbl 0317.46052
[9] J. R. Ringrose: On some algebras of operators. Proc. London Math. Soc. 15 (1965), 61-83.

Zbl 0135.16804
[10] J. R. Ringrose: On some algebras of operators II. Proc. London Math. Soc. 15 (1965), 61-83.

Zbl 0156.14301

Author's address: Department of Mathematics, Zhejiang University, Hangzhou, 310027, P.R. China, e-mail: dongzhe@zju.edu.cn.

