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Abstract. For an `-cyclically ordered set M with the `-cyclic order C let P (M) be the
set of all monotone permutations on M . We define a ternary relation C on the set P (M).
Further, we define in a natural way a group operation (denoted by ·) on P (M). We prove
that if the `-cyclic order C is complete and C 6= ∅, then (P (M), ·, C) is a half cyclically
ordered group.
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0. Introduction

The notions of cyclic order and of partial cyclic order were studied by several
authors; we mention here Novák [12], Novák and Novotný [13], [14], Quilliot [15],

Fishburn and Woodall [5].

In this paper we apply the terminology and notation as in [10]. Some definitions
are recalled in Section 1 below.

Let M be an `-cyclically ordered set; the relation of cyclic order on M will be
denoted by C. Further, we denote by P (M) the set of all monotone permutations
on M .

We remark that the investigation of P (M) goes back to Droste, Giraudet and
Macpherson [4].

We define in a natural way the group operation on the set P (M). Next, let C be

the set of all triples (ϕ1, ϕ2, ϕ3) of elements of P (M) such that for each t ∈ M the
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relation

(ϕ1(t), ϕ2(t), ϕ3(t)) ∈ C

is valid.
The notion of a half cyclically ordered group was introduced in [10] generalizing

the notion of a half partially ordered group which had been studied by Giraudet and
Lucas [6] (cf. also Giraudet and Rach̊unek [7], Černák [1], [2], [3], Ton [16], Černák

and the author [11], the author [8], [9]).
In [10] the following result was proved.

Theorem (A). Let M be a finite `-cyclically ordered set with cardM > 3. Then
the structure (P (M), ·, C) is a half cyclically ordered group.

If the `-cyclically ordered set is infinite, then the set C can be empty and thus in

such case (P (M), ·, C) fails to be a half cyclically ordered group.
The following question has been left open in [10]:

Assume that M is an infinite `-cyclically ordered set such that C 6= ∅. Is
(P (M), ·, C) a half cyclically ordered group?
In this paper we show that the answer is ‘No’. Further, we prove

Theorem (B). Let M be an infinite `-cyclically ordered set such that

(i) the relation C on P (M) is nonempty,
(ii) the cyclic order C on M is complete.

Then (P (M), ·, C) is a half cyclically ordered group.

1. Preliminaries

For the following definition cf. Novák and Novotný [13], [14].

1.1. Definition. A nonempty set M endowed with a ternary relation C is said
to be cyclically ordered if the following conditions (I), (II) and (III) are satisfied:

(I) If (x, y, z) ∈ C, then (y, x, z) does not belong to C.

(II) If (x, y, z) ∈ C, then (y, z, x) ∈ C.
(III) If (x, y, z) ∈ C and (x, z, u) ∈ C, then (x, y, u) ∈ C.

The relation C is called a cyclic order on M .

1.1.1. Definition. Let (M ; C) be a cyclically ordered set. Suppose that the
following condition is satisfied:
(IV) Whenever x, y and z are mutually distinct elements of M , then either

(x, y, z) ∈ C or (z, y, x) ∈ C.
Then M is said to be `-cyclically ordered and C is called an `-cyclic order on M .
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Each nonempty subset of a cyclically ordered setM is considered cyclically ordered

(under the induced cyclic order).

1.2. Definition. Let G be a group. Suppose that G is, at the same time, a
cyclically ordered set satisfying the condition

(V) if (x1, x2, x3) ∈ C, a ∈ G, yi = axi, zi = xia (i = 1, 2, 3), then (y1, y2, y3) ∈
C and (z1, z2, z3) ∈ C.

Then G is called a cyclically ordered group. In particular, if C is an `-cyclic order,
then G is called an `c-group.

Now suppose that (G; ·) is a group and (G; C) is a cyclically ordered set. We
denote by G↑ (and G↓) the set of all x ∈ G such that, whenever (y1, y2, y3) ∈ C,

then (xy1, xy2, xy3) ∈ C (or (xy3, xy2, xy1) ∈ C, respectively).

1.3. Definition. Let (G; ·, C) be as above. G is called a half cyclically ordered

group if the following conditions are satisfied:
1) the system C is nonempty;

2) if x ∈ G and (y1, y2, y3) ∈ C, then (y1x, y2x, y3x) ∈ C;
3) G = G↑ ∪ G↓;
4) if (x, y, z) ∈ C, then either {x, y, z} ⊆ G↑ or {x, y, z} ⊆ G↓.
1.4. Definition. Let (M ; C) be an `-cyclically ordered set. We denote

by P (M)(+) (and (P (M)(−)) the set of all permutations p on M such that,

whenever (x, y, z) ∈ C, then (p(x), p(y), p(z)) ∈ C (or (p(z), p(y), p(x)) ∈ C, respec-
tively). The elements of the set P (M) = P (M)(+) ∪ P (M)(−) are called monotone
permutations on M .

For ϕ1, ϕ2 ∈ P (M) we put ϕ1ϕ2 = ϕ, where ϕ(t) = ϕ1(ϕ2(t)) for each t ∈ T .

Then P (M) turns out to be a group.
Further, let C be the set of all triples (ϕ1, ϕ2, ϕ3) of elements of P (M) such that

(ϕ1(t), ϕ2(t), ϕ3(t)) ∈ C for each t ∈ M . The structure (P (M); C) is a cyclically
ordered set and we have

P (M)↑ = P (M)(+), P (M)↓ = P (M)(−).

Let (M ; C) be as in 1.4, C 6= ∅ and let a ∈ M . For x, y ∈ M we put x 6a y if

either x = a or (a, x, y) ∈ C. Then (M ; 6a) is a linearly ordered set with the least
element a. (Cf. Novák [12], Theorem 3.1 and Lemma 3.4.) If x1, x2, x3 ∈ M , then

(x1, x2, x3) ∈ C if and only if some of the following relations

x1 <a x2 <a x3, x2 <a x3 <a x1, x3 <a x1 <a x2

is valid.
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1.5. Lemma. Let (M ; C) be as above and let a, b ∈ M . The following conditions

are equivalent:

(i) Each nonempty upper-bounded subset of (M ; 6a) has a supremum in (M ; 6a).
(ii) Each nonempty upper-bounded subset of (M ; 6b) has a supremum in (M ; 6b).

The proof will be omitted. Also, if (i) holds, then each nonempty lower-bounded
subset of (M ; 6a) has an infimum in (M ; 6a).

1.6. Definition. Let (M ; C) be as in 1.5. If the condition (i) from 1.5 is satisfied,
then the cyclic order C on M is called complete.

Let X be a partially ordered set. We denote by C the set of all triples (x, y, z) of
elements of X such that some of the following conditions is valid:

(∗) x < y < z, y < z < x, z < x < y.

It is well-known that (X ; C) is a cyclically ordered set.

2. Auxiliary results

In this section we assume that (M ; C) is an `-cyclically ordered set. Let a ∈ M

and C 6= ∅. Our aim is to characterize the elements of P (M)↑ (and, similarly, the
elements of P (M)↓) by applying the linear order 6a on M .

2.1. Lemma. Let ϕ be a permutation on M such that ϕ(a) = a. Then the

following conditions are equivalent:

(i) ϕ ∈ P (M)↑;
(ii) ϕ is increasing with respect to the linear order 6a.
���������

. Let (i) be valid. Suppose that x, y ∈ M , x <a y. First assume
that x = a. Then a = ϕ(x) 6= ϕ(y), whence ϕ(x) <a ϕ(y). Next, suppose
that x 6= a. Then we have a <a x <a y, thus (a, x, y) ∈ C. This yields that
(ϕ(a), ϕ(x), ϕ(y)) ∈ C. Hence some of the relations

(1) ϕ(a) <a ϕ(x) <a ϕ(y), ϕ(x) <a ϕ(y) <a ϕ(a), ϕ(y) <a ϕ(a) <a ϕ(x)

is valid. Since ϕ(a) = a, we get that ϕ(y) <a ϕ(a) cannot hold; thus

ϕ(a) <a ϕ(x) <a ϕ(y).

Therefore (ii) is satisfied.
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Conversely, suppose that (ii) is valid. Let (x, y, z) ∈ C. Thus some of the relations

x <a y <a z, y <a z <a x, z <a x <a y

is valid. Hence, according to (ii), some of the conditions

ϕ(x) <a ϕ(y) <a ϕ(z), ϕ(y) <a ϕ(z) <a ϕ(x), ϕ(z) <a ϕ(x) <a ϕ(y)

is satisfied. Therefore (ϕ(x), ϕ(y), ϕ(z)) ∈ C. �

By analogous steps we obtain

2.2. Lemma. Let ϕ be a permutation on M such that ϕ(a) is the greatest
element of M under the linear order 6a. The following conditions are equivalent:

(i) ϕ ∈ P (M)↓;
(ii) ϕ is decreasing with respect to the linear order 6a.

Now suppose that ϕ is a permutation on M such that ϕ(a) 6= a. We denote

ϕ(a) = q, ϕ−1(a) = u. We also put

M1 = {t ∈ M : t <a u},
M2 = {t ∈ M : t >a u}.

2.3. Lemma. Let ϕ be a permutation on M such that ϕ(a) 6= a. The following

conditions are equivalent:

(i) ϕ ∈ P (M)↑;
(ii) with respect to the linear order 6a, ϕ is increasing on both the sets M1 and

M2; moreover, ϕ(x) <a q for each x ∈ M2.

���������
. Let (i) be valid.

a) Assume that x1 ∈ M , a <a x1 <a u. Then (a, x1, u) ∈ C, hence in view of (i)

we obtain (ϕ(a), ϕ(x1), ϕ(u)) ∈ C and therefore (q, ϕ(x1), a) ∈ C. This yields that
some of the following relations is valid:

q <a ϕ(x1) <a a, a <a q <a ϕ(x1), ϕ(x1) <a q <a a.

Since q � a a, we must have q <a ϕ(x1).
b) Assume that x1, x2 ∈ M1, x1 <a x2. Then by applying the result of a) and

using the method as in a) (we take x1, x2 instead of a, x) we obtain the relation
ϕ(x1) <a ϕ(x2). Hence ϕ is increasing on M1.
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c) Assume that x3 ∈ M , u <a x3. Thus (a, u, x3) ∈ C and then (i) yields

(ϕ(a), ϕ(u), ϕ(x3)) ∈ C. Therefore (q, a, ϕ(x3)) ∈ C. Hence some of the following
relations is valid:

q <a a <a ϕ(x3), ϕ(x3) <a q <a a, a <a ϕ(x3) <a q.

Since q � a a, we must have ϕ(x3) <a q.

d) Let x3, x4 ∈ M , u <a x3 <a x4. Hence (u, x3, x4) ∈ C and in view of (i),
(a, ϕ(x3), ϕ(x4)) ∈ C. Thus some of the relations

a <a ϕ(x3) <a ϕ(x4), ϕ(x4) <a a <a ϕ(x3), ϕ(x3) <a ϕ(x4) <a a

is valid. Since ϕ(x4) � a a, we must have ϕ(x3) <a ϕ(x4). This yields that ϕ is
increasing on M2.

e) Conversely, let (ii) be satisfied. Let (x, y, z) ∈ C. Thus without loss of generality
we can assume that x <a y <a z.

If either {x, y, z} ⊆ M1 or {x, y, z} ⊆ M2, then in view of (ii) we have

ϕ(x) <a ϕ(y) <a ϕ(z),

hence ((ϕ(x), ϕ(y), ϕ(z)) ∈ C.

Suppose that x, y ∈ M1 and z ∈ M2. Hence a 6a x <a y. Since ϕ is increasing
onM1 and ϕ(a) = q we get q 6a ϕ(a) <a ϕ(y). Further, since z ∈ M2, in view of (ii)

we have ϕ(z) <a q. Thus

ϕ(z) <a ϕ(x) <a ϕ(y),

hence (ϕ(z), ϕ(x), ϕ(y)) ∈ C and so (ϕ(x), ϕ(y), ϕ(z)) ∈ C.

Finally, suppose that x ∈ M1 and y, z ∈ M2. From a 6a x and from the fact that

ϕ is increasing on M1 we obtain q 6a ϕ(x). Since ϕ is increasing on M2 we have
ϕ(y) <a ϕ(z). Thus

ϕ(y) <a ϕ(z) <a ϕ(x).

Hence ((ϕ(y), ϕ(z), ϕ(x)) ∈ C and therefore ((ϕ(x), ϕ(y), ϕ(z)) ∈ C.

Summarizing, we conclude that ϕ belongs to P (M)↑. �

2.4. Corollary. Let ϕ be as in 2.3 and let the condition (i) from 2.3 be satisfied.
Then

ϕ(M1) = {x ∈ M : x >a q},
ϕ(M2) = {x ∈ M : x <a q}.
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Again, let ϕ be a permutation on M such that ϕ(a) 6= a, and let q, u be as above.

Denote
M ′

1 = {t ∈ M : a 6a t 6a u}, M ′
2 = {t ∈ M : t >a u}.

By a method analogous to the proof of 2.3 we obtain

2.5. Lemma. Let ϕ be a permutation onM such that ϕ(a) 6= a. Then ϕ belongs

to P (M)↓ if and only if the following conditions are satisfied:
(i) ϕ is decreasing on the set M ′

1;

(ii) if M ′
2 6= ∅, then ϕ is decreasing on M2 and q <a ϕ(x) for each x ∈ M ′

2.

3. The completeness condition

The aim of the present section is to prove the following result:

Theorem 3.0. Let M be an `-cyclically ordered set with the `-cyclic order such

that

(i) the relation C on (P (M)) is nonempty;
(ii) the `-cyclic order C on M is complete.

Then (P (M), ·, C) is a half cyclically ordered group.
���������

. By looking at Definition 1.3 we see that it suffices to show that the

condition 4) from 1.3 is valid in our case; thus we have to verify the validity of

(∗∗) if (x, y, z) ∈ C, then either {x, y, z} ⊆ P (M)↑ or {x, y, z} ⊆ P (M)↓.

By way of contradiction, assume that the condition (∗∗) does not hold. Then
it is easy to verify that without loss of generality we can suppose that there exist

x ∈ P (M)↓ and y ∈ P (M)↑ such that

(1) (e, x, y) ∈ C,

where e is the neutral element of the group P (M).
Let a and 6a be as in the previous section. To simplify the notation, we write in

the present section 6 and < instead of 6a or <a, respectively. Since a is the least

element of (M ; 6), the relation (1) yields

(2) a < x(a) < y(a).

Denote x(a) = p, u = x−1(a). Hence a < u and according to 2.4 we have

409



3.1. The partial mapping x|[a, u] is a dual isomorphism of the interval [a, u] onto
the interval [a, p].

We put

A = {t ∈ [a, u] : e(t) < x(t)}.

Then A 6= ∅, since a ∈ A. Moreover, u /∈ A, thus A is an upper-bounded subset

of M . Therefore, in view of the completeness condition, there exists

t0 = sup A

in M ; clearly a < t0 6 u.

3.2. A is an ideal of the lattice [a, u].
���������

. Let t1 ∈ A, t2 ∈ [a, u], t2 < t1. Then

(3) e(t2) < e(t1) < x(t1) < x(t2),

whence t2 ∈ A. �

3.3. For each t1, t2 ∈ A, x(t1) > t2.

���������
. The case t2 = t1 is obvious. If t2 < t1, then it suffices to apply (3). Let

t2 > t1. We get x(t1) > x(t2) > t2. �

The completeness condition also yields that there exists

p1 = inf{x(t) : t ∈ A}

in the interval [a, p]. Then from 3.1 we conclude

3.4. p1 = x(t0).

3.5. t0 ∈ A.

���������
. In view of 3.3 we have

inf{x(t) : t ∈ A} > sup{t1 : t1 ∈ A},

whence x(t0) > t0. If x(t0) > t0, then t0 ∈ A. Otherwise we would have x(t0) =
t0 = e(t0) and this contradicts the relation (1). �
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We denote

A′ = {t ∈ [u, a] : x(t) < e(t)}.

We have u ∈ A′ and a /∈ A′. Hence A′ is nonempty and lower-bounded. In view of

the completeness condition there exists t′0 ∈ [a, u] such that

t′0 = inf A′.

By analogous steps as above we obtain

3.6. t′0 ∈ A′.

If x, y are elements of a lattice L such that x < y and there is no z ∈ L with

x < z < y, then [x, y] is a prime interval in L.

From 3.5 and 3.6 we conclude

3.7. t0 < t′0.

3.8. [t0, t′0] is a prime interval of the lattice [a, u].
���������

. If [t0, t′0] fails to be a prime interval, then there exists t ∈ [t0, t′0] with
t0 6= t 6= t′0. Suppose that t has this property.

If x(t) > t, then t 6 t0, which is impossible. Similarly, if x(t) < t, then t > t′0,

which cannot hold. Hence x(t) = t = e(t); in view of (1) we arrive at a contradiction.
�

Let z1 and z2 be elements of a lattice such that [z1, z2] is a prime interval; we
express this fact by writing z1 ≺ z2.

In view of 3.8 we have t0 ≺ t′0. Then according to 3.1, x(t′0) ≺ x(t0). Since M is

linearly ordered, 3.5 yields t0 6 x(t′0). Further, according to 3.6, x(t′0) < t′0. Then
we must have x(t′0) = t0. Therefore x(t′0) ≺ t′0. Hence we obtain

3.9. x(t′0) ≺ e(t′0).

The relation (1) yields

(e(t′0), x(t′0), y(t′0)) ∈ C.

Since x(t′0) < e(t′0), we get

x(t′0) < y(t′0) < e(t′0).

In view of 3.9 we arrive at a contradiction. Thus the relation (∗∗) must hold. �
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As a corollary, we obtain that Theorem (B) is valid.

Now let (M ; C) be an `-cyclically ordered set such that M is finite. Since
each nonempty subset of a finite linearly ordered set has a supremum, in view

of 1.5 we conclude that the `-cyclic order C is complete. Further, suppose that
cardM > 3, cardM = n. Then without loss of generality we can assume that

M = {0, 1, 2, . . . , n− 1} with the natural linear order < and that C is the set of
all triples (x, y, z) such that one of the relations (∗) in Section 1 is valid (cf. the
quotation from [12] in Section 1). For t ∈ M we define ϕ1(t), ϕ2(t) and ϕ3(t) as
follows: ϕ1(t) = t; ϕ2(t) = x, where x ∈ M and x ≡ t + 1 (mod n); ϕ3(t) = y,

where y ∈ M and y ≡ t + 2 (mod n). Then (ϕ1(t), ϕ2(t), ϕ3(t)) ∈ C for each t ∈ M ,
whence (ϕ1, ϕ2, ϕ3) ∈ C and thus C 6= ∅.
Therefore Theorem 3.0 includes also Theorem (A).

4. An example

We denote by 	 the set of all reals with the natural linear order. Further, let 
 be
the set of all rationals.

Let us apply the following notation. Suppose that u, v ∈ 	 , u < v and that g is a
real function defined on the set


 1 = {t ∈ 
 : u 6 t 6 v}.

If for each sequence (tn) such that tn ∈ 
 1 and the sequence (tn) converges to u (in

the usual sense), the corresponding sequence (g(tn)) converges to a real r, then we
write

lim
t→u+

g(t) = r.

The notation

lim
t→v−

g(t) = r1

has an analogous meaning.

For x, y ∈ 	 with x < y we put

[x, y] � = {t ∈ 
 : x 6 t 6 y}, (x, y) � = {t ∈ 
 : x < t < y};

the meaning of the symbols [x, y) � and (x, y] � is analogous.
We choose reals p, q, u, v, u1, v1 such that

0 < u < v < p < u1 < v1 < q < 1, p, q, u, u1 ∈ 
 and v, v1 ∈ 	 \ 
 .
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We denote

A1 = [0, u) � , A2 = [u, v) � , A3 = (v, u1] � ,

A4 = (u1, v1) � , A5 = (v1, 1) � .

We put e(t) = t for each t ∈ [0, 1) � .
For each i ∈ {1, 2, 3, 4, 5} there exist functions xi and yi from Ai to [0, 1) � such

that

(i) the function xi is decreasing on Ai;
(ii) the function yi is increasing on Ai;

(iii) the following conditions are satisfied (cf. Fig. 1):

0

1

q

p

u v u1 v1 1

Fig. 1

1) x1(0) = p, x1(u) > v, y1(0) = q,

lim
t→u−

y1(t) = 1;

2) x2(u) = x1(u), y2(u) = 0, y2(t) < t < x2(t) for each t ∈ A2,

lim
t→v−

x2(t) = lim
t→v−

y2(t) = v;

3) x3(u1) = 0, x3(t) < y3(t) < t for each t ∈ A3,

lim
t→v+

x3(t) = lim
t→v+

y3(t) = v;

4) y4(t) < t < x4(t) for each t ∈ A4,

lim
t→u1+

x4(t) = 1, lim
t→v1−

y4(t) = v1;
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5) lim
t→v1+

x5(t) = v1, lim
t→1−

x5(t) = p, lim
t→v1+

y5(t) = v1, lim
t→1−

y5(t) = q,

p < x5(t) < y5(t) < t and y5(t) < q for each t ∈ A5.

Put M = [0, 1) � . We define a mapping x of M into M by putting

x(t) = xi(t) whenever t ∈ Ai (i = 1, 2, 3, 4, 5);

analogously we define a mapping y of M into M .

Then we have

1a) e(t) < x(t) < y(t) for each t ∈ A1,

2a) y(t) < e(t) < x(t) for each t ∈ A2,

3a) x(t) < y(t) < e(t) for each t ∈ A3,

4a) y(t) < e(t) < x(t) for each t ∈ A4,

5a) x(t) < y(t) < e(t) for each t ∈ A5.

Thus for each i ∈ {1, 2, 3, 4, 5} and for each t ∈ Ai the relation

(1) (e(t), x(t), y(t)) ∈ C

is valid.

Moreover, x is decreasing on the sets

A1 ∪ A2 ∪ A3 and A4 ∪ A5;

y is increasing on the sets

A1 and A2 ∪ A3 ∪A4 ∪ A5.

Consider the cyclic order C on M defined as in (∗) of Section 1. From the defini-
tions of x, y and e, from the results of Section 2 and from (1) we obtain

4.1. Lemma. The functions e and y belong to P (M)↑, x belongs to P (M)↓.
Moreover, (e, x, y) ∈ C.

In view of 4.1 and according to the condition 4) of 1.3 we conclude that the
structure (P (M); ·, C) fails to be a half cyclically ordered group.
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