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Abstract. Let A = d/dθ denote the generator of the rotation group in the space C(Γ),
where Γ denotes the unit circle. We show that the stochastic Cauchy problem

(1) dU(t) = AU(t) + f dbt, U(0) = 0,

where b is a standard Brownian motion and f ∈ C(Γ) is fixed, has a weak solution if and
only if the stochastic convolution process t 7→ (f ∗ b)t has a continuous modification, and
that in this situation the weak solution has a continuous modification. In combination with
a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak
solution for all f ∈ C(Γ) outside a set of the first category.

Keywords: stochastic linear Cauchy problems, nonexistence of weak solutions, continuous
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Over the past decades, the theory of stochastic differential equations in Hilbert

spaces has been developed by many authors and is well documented in the mono-
graphs of Da Prato and Zabczyk [4], [5]. When trying to extend this theory to the

Banach space setting, one immediately encounters the fundamental problem of set-
ting up a theory of stochastic integration for Banach-space valued processes. For
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the class of Banach spaces with martingale type 2 (which includes, for example, the

Lp-spaces for 2 6 p < ∞) this problem has been successfully addressed and a sat-
isfactory theory of stochastic differential equations in these spaces is available. An
overview with references to the literature is given in [1].

A theory of stochastic integration for functions with values in arbitrary Banach
spaces which does not require any a priori geometric assumptions has been recently

put forward in [2], [11], where it has been applied to linear stochastic differential
equations driven by cylindrical Brownian motions. The main idea is to define the

stochastic integral in a weak sense and to prove a version of the Itô isometry in
which the L2-norm of the stochastic integral is replaced by the radonifying norm of

a certain integral operator canonically associated with the integrated function.
A problem that was left open in these works is that of the existence of a continuous

modification of solutions, even in the case when the equation is driven by a rank one
Brownian motion. In the Hilbert space case, the existence of a continuous version

of the solutions of linear equations driven by an arbitrary Brownian motion follows
from the factorization method of Da Prato, Kwapień and Zabczyk; see [4, Chapter 5].

The present paper grew out from an attempt to examine the situation in the Banach
space setting for certain special cases when the semigroup generated by A possesses

minimal smoothing properties. To explain the main idea, let C(Γ) denote the Banach
space of continuous real-valued functions on the unit circle Γ. In a recent paper [3],
Brzeźniak, Peszat and Zabczyk showed that for ‘most’ functions f ∈ C(Γ), the
stochastic convolution with a standard real-valued Brownian motion b = {bt}t>0,

t 7→ (f ∗ b)t =
∫ t

0

f(t− s mod2π) dbs,

fails to have a modification with continuous trajectories. Indeed, the authors showed
that the set of all f ∈ C(Γ) for which such a modification exists is of the first category
in C(Γ). The main ingredient is a deep regularity result for random trigonometric
series [7, Theorem 8.1]. This seems to suggest an approach towards a negative

solution of the continuous modification problem for stochastic equations in C(Γ). To
see why, let A = d/dθ denote the generator of the rotation group S = {S(t)}t>0

in C(Γ) and consider the problem

dU(t) = AU(t) dt + f dbt, t > 0,(2)

U(0) = 0,

where f ∈ C(Γ) is a given function. If this problem has a weak solution {Uf (t)}t>0

in C(Γ) (in the sense of [2], [11]), then for all t > 0 we have

〈Uf (t), δ0〉 =
∫ t

0

〈S(t− s)f, δ0〉 dbs =
∫ t

0

f(t− s mod2π) dbs
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almost surely, where δ0 denotes the Dirac measure at 0. By the Brzeźniak-Peszat-
Zabczyk result, the right-hand side fails to have a continuous modification for all
functions f outside a set of the first category in C(Γ). Interestingly, however, it turns
out that precisely for these f the above problem fails to have a weak solution. This

is the content of our main result, Theorem 1. This theorem shows that problem (2)
actually provides an example of nonexistence and, at the same time, some evidence

for an affirmative solution to the continuous modification problem.

Theorem 1. For a given function f ∈ C(Γ), problem (2) has a weak solution if
and only if the convolution process f ∗ b has a modification with continuous trajec-

tories, and in this situation the weak solution has a modification with continuous

trajectories.

Let (Ω, F ,
�
) be a probability space with a filtration {Ft}t∈[0,T ] and let H be a

real Hilbert space with an inner product [·, ·]H . A cylindrical H-Wiener process on
(Ω,

�
) indexed by the interval [0, T ] is a family � H = {W H

t }t∈[0,T ] of bounded linear

operators from H into L2(Ω) with the following properties:
(1) for all h ∈ H , {W H

t h}t∈[0,T ] is an adapted Brownian motion;

(2) for all s, t ∈ [0, T ] and g, h ∈ H we have

�
(W H

s g ·W H
t h) = (s ∧ t)[g, h]H .

The noise term in (2) fits into this framework as follows:

Example 2. Suppose E is a real Banach space and let x ∈ E be a fixed nonzero
element. Let H denote the one-dimensional subspace spanned by x, endowed with

the norm ‖cx‖H := |c|. If b = {bt}t∈[0,T ] is a standard real-valued Brownian motion,
then

W H
t (cx) := cbt, c ∈ � ,

defines a cylindrical H-Wiener process.

The ‘only if’ part of the theorem is a consequence of the following result, which
gives some further support towards an affirmative solution to the continuous modi-

fication problem.

Proposition 3. Let A be the generator of a C0-group {S(t)}t>0 on a real Banach

space E. Furthermore, let {W H
t }t>0 be a cylindrical H-Wiener process, where H is a

separable real Hilbert space, and let B : H → E be a bounded operator. If {U(t)}t>0
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is a weak solution of the stochastic Cauchy problem

dU(t) = AU(t) dt + B dW H
t , t > 0,(3)

U(0) = 0,

then {U(t)}t>0 has a modification with continuous trajectories.

The proof below is based upon the trivial observation that the group property
implies that for all 0 6 t 6 T we have

(4)
∫ t

0

S(t− s)B dW H
s = S(t− T )

∫ t

0

S(T − s)B dW H
s .

This identity enables one to deduce properties of the stochastic convolution process

from the corresponding properties of the stochastic integral process. The same idea
was applied in [6] to the unitary dilations of Hilbert space contraction semigroups

to obtain a maximal inequality for stochastic convolution of such semigroups with
respect to a Hilbert-space valued Brownian motion.

Before turning to the proof of the proposition we need to give a meaning to the
stochastic integrals in (4). We do this in two steps. First, the stochastic integral of a

step function in f ∈ L2(0, T ; H)with respect to a cylindricalH-Wiener process � H is
defined in the obvious way, and by the Itô isometry

� ∣∣∣∣
∫ T

0

f(t) dW H
t

∣∣∣∣
2

=
∫ T

0

‖f(t)‖2
H dt

this definition extends to arbitrary functions f ∈ L2(0, T ; H). Second, an operator-
valued function Φ: (0, T ) → L (H, E) is said to be H-weakly L2 if Φ∗(·)x∗ ∈
L2(0, T ; H) for all x∗ ∈ E∗, and stochastically integrable with respect to � H if it

is H-weakly L2 and for every measurable set A ⊆ (0, T ) there exists a strongly
measurable E-valued random variable XA such that for all x∗ ∈ E∗ we have

〈XA, x∗〉 =
∫ T

0

1A(t)Φ∗(t)x∗ dW H
t

almost surely. The random variable XA, if it exists, is determined uniquely almost
everywhere and Gaussian. We call XA the stochastic integral of Φ over A, notation

XA =
∫ T

0

1A(t)Φ(t) dW H
t .

For a systematic development of this integral we refer to [11], where it is shown
that in the above definition it suffices to consider the set A = (0, T ). Note that if
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Φ is stochastically integrable on (0, T ), then Φ is stochastically integrable on every
subinterval (0, t) and we have

∫ t

0 Φ(s) dW H
s =

∫ T

0 1(0,t)(s)Φ(s) dW H
s almost surely.

Let us now assume that H is separable and fix an orthonormal basis (hn)∞n=1

for H . After identifying L ( � , E) with E in the canonical way, for each n > 1 the
E-valued function Φ(·)hn is stochastically integrable with respect to the cylindrical

� -Wiener process (i.e., real Brownian motion) � H
(·)hn and we have the ‘coordinate

expansion’ [11, Theorem 4.2]

(5) XA =
∞∑

n=1

∫ T

0

1A(t)Φ(t)hn dW H
t hn,

where the series converges unconditionally in L2(Ω; E).

Lemma 4. Let H be separable and let Φ: (0, T ) → L (H, E) be stochastically
integrable with respect to the cylindrical H-Wiener process � H . Then the E-valued

process

Yt :=
∫ t

0

Φ(s) dW H
s , t ∈ [0, T ],

is a martingale which has a modification with continuous trajectories.

�����	��

. The martingale property is evident. To prove the existence of a contin-

uous modification we fix an orthonormal basis (fm)∞m=1 in L2(0, T ) and an orthonor-
mal basis (hn)∞n=1 in H . For N > 1 we put

Y (N) :=
N∑

m,n=1

∫ T

0

fm(s)Φ(s)hn ds

∫ T

0

fm(s) dW H
s hn,

where the first of these integrals exists as a Pettis integral; the Pettis integrability

of the functions t 7→ f(t)Φ(t)h for f ∈ L2(0, T ) and h ∈ H follows from the fact [11,
Theorem 2.3] that the stochastic integrability of t 7→ Φ(t)h implies the existence of
a bounded operator IΦ,h : L2(0, T ) → E which satisfies

〈IΦ,hf, x∗〉 =
∫ T

0

f(t)〈Φ(t)h, x∗〉 dt, f ∈ L2(0, T ), x∗ ∈ E∗.

For all t ∈ [0, T ],

Y
(N)
t :=

�
(Y (N)|Ft) =

N∑

m,n=1

∫ T

0

fm(s)Φ(s)hn ds

∫ t

0

fm(s) dW H
s hn.
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In particular, for each N > 1 the process t 7→ Y
(N)
t has a version with continuous

trajectories.

We claim that for each t ∈ [0, T ] we have lim
N→∞

Y
(N)
t = Yt in L2(Ω; E). For the

reader’s convenience we outline the proof, which follows an argument from [11]. By
expanding [Φ∗(·)x∗, hn]H with respect to the basis (fm)∞m=1 and using (5), for all

x∗ ∈ E∗ we have

〈Yt, x
∗〉 =

∞∑

n,m=1

∫ T

0

fm(s)〈Φ(s)hn, x∗〉 ds

∫ t

0

fm(s) dW H
s hn

with convergence in L2(Ω); this convergence is unconditional since (h � (n))n>1 is
an orthonormal basis for every permutation π of positive integers. The Itô-Nisio
theorem [9, Theorem 2.1.1 (i)⇔(v) and Theorem 2.2.1] now implies that

Yt =
∞∑

n,m=1

∫ T

0

fm(s)Φ(s)hn ds

∫ t

0

fm(s) dW H
s hn

unconditionally in L2(Ω; E), and the claim follows.
The existence of a continuous modification of Y now follows from a standard

application of Doob’s inequality. �
�����	��


of Proposition 3. Fix T > 0. It is sufficient to show that the process
{U(t)}t∈[0,T ] has a continuous modification.

We know from [2], [11] that if a weak solution {U(t)}t>0 exists, it is unique, for
every t > 0 the L (H, E)-valued function s 7→ S(t− s)B is stochastically integrable
on (0, t), and {U(t)}t>0 is given by

U(t) =
∫ t

0

S(t− s)B dW H
s = S(t− T )

∫ t

0

S(T − s)B dW H
s , t ∈ [0, T ].

By Lemma 4, the right-hand side has a continuous modification on [0, T ]. �
�����	��


of Theorem 1. Using the construction in Example 2 we see that (2) is

a special case of (3) by taking H = span{x} and W H
t (cx) = cbt, and defining

Bf : H → C(Γ) by Bf (cx) := cf . By Proposition 3 and the observations at the

beginning of the paper, (2) fails to have a weak solution whenever the convolution
of f with b fails to have a continuous modification.

Let us now assume that, conversely, the convolution process f ∗ b has a continuous

modification. Then the convolution process t 7→ (f∗b̃)t has a continuous modification
as well, where b̃t := b2 � +t−b2 � . Indeed, this may be deduced from [8, Lemma 3.24] or
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from a general comparison result for Gaussian processes [10, Theorem 12.16]. Now

define, for θ ∈ Γ,

(6) Xf (θ) :=
∫ 2 � +θ

0

f(2π + θ − s mod 2π) dbs −
∫ θ

0

f(θ − s mod 2π) db̃s,

where on the right-hand side we take the continuous modifications, and notice that

Xf (θ) =
∫ 2 �

0

f(θ − s mod 2π) dbs

almost surely. Hence by the Pettis measurability theorem and the stochastic Fubini

theorem, (6) defines a centred C(Γ)-valued Gaussian random variable Xf , and for
any finite Borel measure µ ∈ (C(Γ))∗ the variance of 〈Xf , µ〉 is given by

� 〈Xf , µ〉2 =
� (∫ 2 �

0

∫ 2 �

0

f(θ − s mod2π) dbs dµ(θ)
)2

=
� (∫ 2 �

0

∫ 2 �

0

f(θ − s mod2π) dµ(θ) dbs

)2

=
∫ 2 �

0

(∫ 2 �

0

f(θ − s mod 2π) dµ(θ)
)2

ds = 〈Qfµ, µ〉.

Here, the operator Qf ∈ L (C(Γ)∗, C(Γ)) is defined by

Qfµ :=
∫ 2 �

0

S(t)BfB∗
fS∗(t)µ dt.

The existence of a global weak solution Uf now follows from [11, Corollary 7.2],

cf. also [2, Theorem 5.3]. �

Remark 5. It is not hard to see that the solution Uf is given by Uf (t, θ) =∫ t

0 f(t + θ − s mod 2π) dbs almost surely.

Remark 6. Also in the space Lp(Γ) with 1 6 p < 2, the problem (2) fails to have
a weak solution for ‘most’ functions f ∈ Lp(Γ). More precisely, as a consequence of
the Kahane-Khinchine inequalities it was shown in [11] that in this situation a weak
solution exists if and only if f ∈ L2(Γ).

Remark 7. We have seen in Proposition 3 that the existence of a weak solution U

to problem (3) implies the existence of a continuous modification of U whenever A is
the generator of a C0-group on E. Another situation where this is known to happen

is the case when A generates an analytic C0-semigroup on E; see [2, Proposition 4.3,
Theorem 6.1].
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