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TRAVEL GROUPOIDS

Ladislav Nebeský, Praha

(Received December 4, 2003)

Abstract. In this paper, by a travel groupoid is meant an ordered pair (V, ∗) such that
V is a nonempty set and ∗ is a binary operation on V satisfying the following two conditions
for all u, v ∈ V :

(u ∗ v) ∗ u = u;

if (u ∗ v) ∗ v = u, then u = v.

Let (V, ∗) be a travel groupoid. It is easy to show that if x, y ∈ V , then x ∗ y = y if and
only if y ∗ x = x. We say that (V, ∗) is on a (finite or infinite) graph G if V (G) = V and

E(G) = {{u, v} : u, v ∈ V and u 6= u ∗ v = v}.

Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of
travel groupoids on graphs are studied.

Keywords: travel groupoid, graph, path, geodetic graph

MSC 2000 : 20N02, 05C38, 05C12

By a graph we mean here a (finite or infinite) undirected graph with no multiple

edges or loops. We will use the terminology of the book [1] but we extend it also to
infinite graphs here. By a geodetic graph we mean a connected graph G such that

there exists exactly one shortest u− v path in G for all u, v ∈ V (G).
The letters h− n will serve for denoting non-negative integers.

1. Travel groupoids

By a travel groupoid we will mean an ordered pair (V, ∗) such that V is a nonempty
set and ∗ is a binary operation on V satisfiyng the following axioms (t1) and (t2):

This work was supported by Grant Agency of the Czech Republic, grant No. 401/01/0218.
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(t1) (u ∗ v) ∗ u = u (for all u, v ∈ V );

(t2) if (u ∗ v) ∗ v = u, then u = v (for all u, v ∈ V ).

We say that a travel groupoid (V, ∗) is finite if V is finite. If (V, ∗) is a travel
groupoid, then we say that ∗ is a travel operation on V . Special kinds of travel

groupoids (or travel operations) were introduced in [2] and [3].

The idea of the proof of the next proposition can be found in the proof of Lemma 2

in [3].

Proposition 1. If (V, ∗) is a travel groupoid, then x ∗ x = x (for each x ∈ V ).

���������
. Let x ∈ V . As follows from (t1), (x ∗ x) ∗ x = x. This implies that

((x ∗ x) ∗ x) ∗ x = x ∗ x. By (t2), x ∗ x = x, which completes the proof. �

Proposition 2. Let (V, ∗) be a travel groupoid. Then

x ∗ y = y if and only if y ∗ x = x (for all x, y ∈ V ),(1)

x ∗ y = x if and only if x = y (for all x, y ∈ V )(2)

and

x ∗ (x ∗ y) = x ∗ y (for all x, y ∈ V ).(3)

���������
. Clearly, (1) follows from (t1) and (2) follows from Proposition 1 and

(t2).

Consider arbitrary x, y ∈ V . By (t1), (x ∗ y) ∗ x = x. As follows from (1),
x ∗ (x ∗ y) = x ∗ y. Thus (3) holds. �

Let (V, ∗) be a travel groupoid, and let G be a graph. We say that (V, ∗) is on G

or that G has (V, ∗) if V (G) = V and

E(G) = {{u, v} : u, v ∈ V and u 6= u ∗ v = v}.

As follows from Proposition 2, every travel groupoid is on exactly one graph.

Proposition 3. Let (V, ∗) be a travel groupoid on a graph G, let u, v ∈ V and

u 6= v. Then u and u ∗ v are adjacent vertices of G.

���������
. The proposition follows from (1) and (3). �
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Let (V, ∗) be a travel groupoid. If u, v ∈ V , then we define

u ∗0 v = u(4)

and

u ∗i+1 v = (u ∗i v) ∗ v for every i > 0.

It is clear that if j, k > 0, then (u ∗j v) ∗k v = u ∗j+k v.

Proposition 4. Let (V, ∗) be a travel groupoid, let u, v ∈ V , and let k > 1. If
u ∗k v 6= v, then u ∗k−1 v 6= v and the elements

u ∗k−1 v, u ∗k v, and u ∗k+1 v

are pairwise distinct.

���������
. Let u ∗k v 6= v. If u ∗k−1 v = v, then Proposition 1 implies that

u ∗k v = v; a contradiction. Thus u ∗k−1 v 6= v. Recall that u ∗k v = (u ∗k−1 v) ∗ v.
If ukv = u ∗k−1 v, then, by virtue of (2), u ∗k−1 v = v; a contradiction. Thus

u ∗k v 6= u ∗k−1 v. If u ∗k v = u ∗k+1 v, then it follows from (2) that u ∗k v = v;
a contradiction. Thus u ∗k v 6= u ∗k+1 v. If u ∗k+1 v = u ∗k−1 v, then, as follows
from (t2), u ∗k−1 v = v; a contradiction. Thus u∗k−1 6= u ∗k+1 v, which completes

the proof. �

Remark 1. Let (V, ∗) be a travel groupoid, and let u, v ∈ V . If there exists i > 0
such that u ∗i v = v, then, by virtue of (2), u ∗i+1 v = v. This implies that there

exists at most one k > 1 such that u ∗k−1 v 6= v and u ∗k v = v.

The following theorem motivates the terms “travel groupoids” and “travel opera-

tions”.

Theorem 1. Let (V, ∗) be a travel groupoid on a graph G, let u, v ∈ V , and let

k > 1. Assume that u ∗k−1 v 6= v. Then the sequence

(5) u ∗0 v, . . . , u ∗k−1 v, u ∗k v

is a walk in G. Moreover, if u ∗k v = v, then the sequence (5) is an u− v path in G.
���������

. Since u∗k−1 6= v, it follows from Proposition 4 that u∗hv 6= v for each h,

0 6 h 6 k − 1. By the definition, u ∗h+1 v = (u ∗h v) ∗ v for each h, 0 6 h 6 k − 1.
Thus, by virtue of Proposition 3, the sequence (5) is a walk in G.
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Let u ∗k v = v. Assume that there exist i and j, 1 6 i < j 6 k, such that

u∗i v = u∗j v. By virtue of Proposition 4, j < k. Thus v = u∗k v = (u ∗j v) ∗k−j v =
(u ∗i v) ∗k−j v = u∗k−(j−i)v 6= v; a contradiction. We see that the vertices u ∗0 v, . . . ,

u ∗k−1 v, u ∗k v are pairwise distinct. Hence the sequence (5) is an u − v path in G,

which completes the proof. �

Let G be a geodetic graph, and let d denote the distance function of G. Put

V = V (G). It is not difficult to see that if u, v ∈ V and u 6= v, then there exists
exactly one vertex AG(u, v) such that

d(u, AG(u, v)) = 1 and d(AG(u, v), v) = d(u, v) − 1.

Define a binary operation ∗ on V as follows:

x ∗ y = AG(x, y) if x 6= y

and

x ∗ y = x if x = y

for all x, y ∈ V . We will say that (V, ∗) is the proper groupoid of G.
It is clear that the proper groupoid of a geodetic graph G is a travel groupoid

on G. Thus every geodetic graph has at least one travel groupoid.

Obviously, every tree is a geodetic graph. (Note that the proper groupoid of a
finite tree was characterized in [3]).

Proposition 5. Every finite tree has exactly one travel groupoid.
���������

. Consider an arbitrary finite tree T . Put V = V (T ). Let (V, ∗) be the
proper groupoid of T . Suppose, to the contrary, that there exists a travel groupoid

(V, ◦) of T such that (V, ◦) is different from (V, ∗). Then there exist u, v ∈ V such
that u ◦ v 6= u ∗ v. By Proposition 3, both vertices u ∗ v and u ◦ v are adjacent to u

in T . Since u ◦ v 6= u ∗ v, we see that the vertices u ◦ v and u ∗ v belong to distinct
components of T − u. Recall that (V, ∗) is the proper groupoid of T . This implies

that the vertices u∗v and v belong to the same component of T −u. Since T contains
no cycle, then, by virtue of (t1) and (t2), the vertices

u ◦ v, u ◦2 v, u ◦3 v, . . .

are pairwise distinct, which contradicts the fact that V is finite. Thus the proposition
is proved. �
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2. Simple travel groupoids

We say that a travel groupoid (V, ∗) is simple if it satisfies the following axiom
(t3) if v ∗ u 6= u, then u ∗ (v ∗ u) = u ∗ v (for all u, v ∈ V ).

Note that the travel groupoids discussed in [2] are simple.

Remark 2. Let (V, ∗) be a simple travel groupoid, and let u, v ∈ V such that

v ∗ u 6= u. By (1), u ∗ v 6= v. Thus, by (t3), u ∗ (v ∗ u) = u ∗ v and v ∗ (u ∗ v) = v ∗ u.

The next remark gives an example of a travel groupoid which is not simple.

Remark 3. Let D be a directed cycle with |V (D)| = 2n, where n > 2. Put
V = V (D). Clearly, for every u ∈ V there exists exactly one vertex, say the vertex u′,

such that (u, u′) is a directed edge in D. Let C denote the underlying graph of D.
Obviously, C is a cycle of length 2n. Let d denote the distance function of C. We

denote by ∗ the binary operation on V defined as follows for all v, w ∈ V :

v ∗ w = v if d(v, w) = 0;
v ∗ w = v′ if d(v, w) = n;

v ∗ w is the only vertex t of C with the property that d(v, t) = 1 and d(t, w) =
d(v, w) − 1 if 0 < d(v, w) < n.

It is obvious that (V, ∗) is a travel groupoid. Consider arbitrary x, y ∈ V such that
d(x, y) = n. Then d(x ∗ y, x ∗ (y ∗ x)) = 2. Thus (V, ∗) is not simple.

Lemma 1. Let (V, ∗) be a simple travel groupoid, let u, v, w ∈ V , and let k > 1.
Assume that u ∗k−1 w 6= w and

(6) v ∗ u = w.

Then

u ∗i v = u ∗i w(7)

and

v ∗ (u ∗i w) = w(8)

for each i, 0 6 i 6 k, and

u ∗k−1 v 6= v.

���������
. We will first prove that (7) and (8) hold for each i, 0 6 i 6 k. We

proceed by induction on i. Let first i = 0. Obviously, u ∗0 v = u = u ∗0 w. By (6),
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v ∗ (u ∗0 w) = w. Let now 1 6 i 6 k. By the induction hypothesis,

u ∗i−1 v = u ∗i−1 w(9)

and

v ∗ (u ∗i−1 w) = w.(10)

Since u ∗k−1 w 6= w, Proposition 4 implies that u ∗i−1 w 6= w. By virtue of (10),
v ∗ (u ∗i−1 w) = w 6= u ∗i−1 w. As follows from (t3) and Remark 2,

(u ∗i−1 w) ∗ v = (u ∗i−1 w) ∗ (v ∗ (u ∗i−1 w))(11)

and

v ∗ (u ∗i−1 w) = v ∗ ((u ∗i−1 w) ∗ v).(12)

Obviously, u∗iv = (u∗i−1v)∗v. It follows from (9), (11) and (10) that (u∗i−1v)∗v =
(u ∗i−1 w) ∗ v = (u ∗i−1 w) ∗ (v ∗ (u ∗i−1 w)) = (u ∗i−1 w) ∗ w. Thus u ∗i v = u ∗i w

and (7) holds.

Next, as follows from (7), (9), (12) and (10), v ∗ (u ∗i w) = v ∗ (u ∗i v) =
v ∗ ((u ∗i−1 v) ∗ v) = v ∗ ((u ∗i−1 w) ∗ v) = v ∗ (u ∗i−1 w) = w. Thus (8) holds.

We want to prove now that u∗k−1 v 6= v. Suppose, to the contrary, that u∗k−1 v =
v. By (7), u ∗k−1 v = u ∗k−1 w, and thus w 6= u ∗k−1 w = v. As follows from (8) and

Proposition 1, w = v ∗ (u ∗k−1 w) = v ∗ v = v, which completes the proof. �

Proposition 6. Let (V, ∗) be a simple travel groupoid, and let k > 1. If x, y ∈ V ,

x ∗k−1 y 6= y, and x ∗k y = y, then y ∗k−1 x 6= x and

(13) y ∗j x = x ∗k−j y

for each j, 0 6 j 6 k.
���������

. We proceed by induction on k.
Let first k = 1. Consider arbitrary x, y ∈ V such that x ∗0 y 6= y and x ∗1 y = y.

Then x 6= y. We have y ∗0 x 6= x. Obviously, (13) holds for j = 0. As follows
from (1), (13) holds also for j = 1.
Let now k > 2. Consider arbitrary x, y ∈ V such that x ∗k−1 y 6= y and x ∗k y = y.

Since x ∗k−1 y 6= y, it follows from (2) that x 6= y. Put z = x ∗ y. Then z ∗k−2 y 6= y

and z ∗k−1 y = y. By the induction hypothesis, y ∗k−2 z 6= z and

(14) y ∗j z = z ∗(k−1)−j y = (x ∗ y) ∗(k−1)−j y = x ∗k−j y
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for each j, 0 6 j 6 k − 1. Since y ∗k−2 z 6= z and x ∗ y = z, Lemma 1 implies that

(15) y ∗j x = y ∗j z

for each j, 0 6 j 6 k − 1. Combining (14) and (15) for each j, 0 6 j 6 k − 1, we
get (13) for each j, 0 6 j 6 k − 1 This means that y ∗k−1 x = x ∗ y. Since x 6= y, (2)
implies that y ∗k−1 x 6= x. Moreover, by (t1), y ∗k x = (y ∗k−1 x)∗x = (x∗y)∗x = x.
Hence (13) holds also for j = k, which completes the proof. �

Corollary 1. Let (T, ∗) be a simple travel groupoid, let u, v ∈ V , and let k > 1
If u ∗k v = v, then v ∗k u = u.
���������

. The case of u = v is obvious. Let u 6= v. Then u ∗0 v 6= v. Since
u∗k v = v, we see that there exists i, 1 6 i 6 k, such that u∗i−1 v 6= v and u∗i v = v.

By virtue of Proposition 6, v ∗i u = u ∗0 v = u and therefore

v ∗k u = (v ∗i u) ∗k−i u = u ∗k−i u = u,

which completes the proof. �

Theorem 2. Let (V, ∗) be a simple travel groupoid on a graph G, let u, v ∈ V

and let k > 1. Assume that u ∗k−1 v 6= v and u ∗k v = v. Then the sequence

v ∗0 u, . . . , v ∗k−1 u, v ∗k u

is a v − u path in G.
���������

. Combining Theorem 1 and Proposition 6, we get the theorem. �

The next two lemmas will be used in Section 3.

Lemma 2. Let (V, ∗) be a simple travel groupoid, let u, v ∈ V , and let j > 1.
Assume that v ∗j u 6= u. Then u ∗ (v ∗j u) = u ∗ v.
���������

. We proceed by induction on j. The case of j = 1 immediatelly follows
from the definition of a simple travel groupoid. Let j > 2. Since v ∗j u 6= u, it follows

from Proposition 4 that v ∗j−1 u 6= u. By the induction hypothesis,

(16) u ∗ (v ∗j−1 u) = u ∗ v.

Obviously, v ∗j u = (v ∗j−1 u) ∗ u. Since (v ∗j−1 u) ∗ u 6= u, (t3) implies that

(17) u ∗ ((v ∗j−1 u) ∗ u) = u ∗ (v ∗j−1 u).

Combining (16) and (17), we get u ∗ (v ∗j u) = u ∗ ((v ∗j−1 u) ∗ u) = u ∗ v, which
completes the proof. �
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Lemma 3. Let (V, ∗) be a simple travel groupoid, let u, v ∈ V , and let k > 2.
Assume that u ∗k−1 v 6= v and u ∗k v = v. Then

u ∗i (v ∗ u) = u ∗i v

for each i, 0 6 i 6 k − 1.
���������

. Proposition 6 implies that v ∗k−1 u 6= u and v ∗k u = u. Put w = v ∗ u.
Then w ∗k−2 u 6= u and w ∗k−1 u = u. By Proposition 6 again, u ∗k−2 w 6= w.

Lemma 1 implies that u ∗i v = u ∗i w = u ∗i (v ∗ u) for each i, 0 6 i 6 k − 1, which
completes the proof. �

Remark 4. Let (V, ∗) be a simple travel groupoid on a finite graph G. It was

proved in [2] and [4] that G is a geodetic graph and (V, ∗) is its proper groupoid if
and only if G is connected and (V, ∗) satisfies the following axiom
(tg) if w ∗ v = v and u ∗ v 6= u ∗ w, then w ∗ (u ∗ v) = v (for all u, v, w ∈ V ).

The assumption that G is connected can not be deleted. There exists a simple
travel goupoid satisfying (tg) on a finite disconnected graph (see Remark 2 in [2]).

3. Non-confusing travel groupoids

Let (V, ∗) be a travel groupoid, and let u, v ∈ V such that u 6= v. By (2), u∗ v 6= u

and by (t2), u ∗2 v 6= u. If there exists i > 3 such that u ∗i v = u, then we say that

the ordered pair (u, v) is a confusing pair in (V, ∗).
The next lemma will be used the in the next section.

Lemma 4. Let (V, ∗) be a travel groupoid, let u, v ∈ V , u 6= v, and let i > 3 such
that u∗i v = u. Then there exists j, 3 6 j 6 i, such that u∗j v = u and the elements

u ∗0 v, . . . , u ∗j−2 v, and u ∗j−1 v

are pairwise distinct.
���������

. Since u 6= v, (t2) implies that there exists j, 3 6 j 6 i such that

u ∗j v = u and all the elements

u ∗1 v, u ∗2 v, . . . , u ∗j−1 v

are different from u. Assume that there exist k and m, 1 6 k < m 6 j−1, such that
u ∗k v = u ∗m v. Then m > k + 2. It is clear that

u ∗n v ∈ {u ∗k v, u ∗k+1 v, . . . , u ∗m−1 v} for all n > m,

and therefore u ∗i v 6= u, which is a contradiction. Thus the lemma is proved. �
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Remark 5. Let (V, ∗) be a travel groupoid on a finite graph G. It is clear that if

G is not connected, then (V, ∗) has a confusing pair.

We say that a travel groupoid (V, ∗) is non-confusing if there exists no confusing
pair in (V, ∗).

Proposition 7. Let (V, ∗) be a finite non-confusing travel groupoid, and let
u, v ∈ V and u 6= v. Then there exists exactly one k > 1 such that u ∗k−1 v 6= v and

u ∗k v = v.

���������
. Define

ui = u ∗i v for all i > 0.

Suppose, to the contrary, that

ui 6= v for all i > 0.

Since V is finite, there exist j and m, 0 6 j < m, such that um = uj . We have

um = uj ∗m−j v = uj .

Thus m − j > 3 and (uj , v) is a confusing pair in (V, ∗), which is a contradiction.
We have prove that there exists k > 1 such that u ∗k−1 v 6= v and u ∗k v = v. By

Remark 1, k is defined uniquely. Thus the theorem is proved. �

Theorem 3. Let (V, ∗) be a finite travel groupoid on a graph G. Then (V, ∗) is
non-confusing if and only if the following statement holds for all distinct u, v ∈ V :

there exists k > 1 such that the sequence

u ∗0 v, . . . , u ∗k−1 v, u ∗k v

is an u− v path in G.

���������
. Combining Theorem 1 and Proposition 7, we obtain the theorem. �

The next remark gives an example of a simple travel groupoid on a finite geodetic

graph. This travel groupoid has a confusing pair.

Remark 6. Let m, n > 3 be odd, and let u0, u1, . . . , um−1, v, w0, w1, . . . , wn−1

are pairwise distinct elements. Put

U = {u0, u1, . . . , um−1, v} and W = {w0, w1. . . . , wn−1, v}.
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Obviously, U ∩ W = {v}. Define um = u0 and wn = w0. Let GU be the graph

with V (GU ) = U and

E(GU ) = {u0u1, . . . , um−2um−1, um−1um, u0v}.

Moreover, let GW be the graph with V (GW ) = W and

E(GW ) = {w0w1, . . . , wn−2wn−1, wn−1wn, w0v}.

Since m and n are odd, we see that both GU and GW are geodetic graphs. At the
end of Section 1, the mapping AG was defined for a geodetic graph G. In the same

way, we define the mappings AGU and AGW for the geodetic graphs GU and GW

respectively.

Put V = U∪W . We denote by ∗ the binary operation on V defined for all x, y ∈ V

as follows:
x ∗ y = x if x = y;

x ∗ y = AGU (x, y) if x, y ∈ U and x 6= y;

x ∗ y = AGW (x, y) if x, y ∈ W and x 6= y;

x ∗ y = ui if x = ui−1 and y ∈ W \ {v} for each i, 0 6 i 6 m − 1;
x ∗ y = wj if x = wj−1 and y ∈ U \ {v} for each j, 0 6 j 6 n − 1.

It is easy to see that (V, ∗) is a simple travel groupoid. The ordered pair (u0, w0)
is an example of a confusing pair in (V, ∗). Let G0 denote the graph of (V, ∗). It is
easy to see that G is a geodetic graph.

Proposition 8. Let (V, ∗) be a finite simple non-confusing travel groupoid, let
u, v ∈ V . Then (u ∗i v) ∗i u = u for each i > 0.
���������

. The case of u = v follows immediately from Proposition 1. Assume

that u 6= v. According to Proposition 7, there exists k > 1 such that u ∗k−1 v 6= v

and u ∗k v = v. Recall that (V, ∗) is simple. If i > k, then u ∗i v = v and, by virtue

of Corollary 1, (u ∗i v) ∗i u = v ∗i u = u. Let i < k. By Proposition 6, v ∗k u = u and
v ∗k−i u = u ∗i v. Thus (u ∗i v) ∗i u = (v ∗k−i u) ∗i u = v ∗k u = u, which completes

the proof. �

Proposition 9. Let (V, ∗) be a finite simple non-confusing travel groupoid, and
let u, v, w ∈ V such that u 6= v. Assume that there exists k > 1 such that u∗k−1w 6= v

and u ∗k w = v. Then u ∗k−1 v 6= v and u ∗k v = v.
���������

. We see that u 6= w (otherwise, u ∗k w = u 6= v; a contradiction). By
Proposition 7, there exists exactly onem > 1 such that u∗m−1w 6= w and u∗mw = w.
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If k > m, then u ∗k−1 w = u ∗k w; a contradiction. Thus k 6 m. As follows from

Proposition 6, w ∗m−1 u 6= u and w ∗m−j u = u ∗j w for each j, 0 6 j 6 m. Thus
w ∗m u = u. Since u ∗k w = v, we get v = w ∗m−k u. Hence

v ∗k−1 u = (w ∗m−k u) ∗k−1 u 6= u and v ∗k u = (w ∗m−k u) ∗k u = u.

If we apply Proposition 6 again, we get u∗k−1 v 6= v and u∗k v = v, which completes

the proof. �

Let (V, ∗) be a finite travel groupoid on a graph G, and let x, y ∈ V . Clearly, x

and y are distinct and non-adjacent vertices of G if and only if x ∗ y 6= y.

Let (V, ∗) be a simple non-confusing travel groupoid, and let x, y ∈ V such that
x ∗ y 6= y. By virtue of Proposition 7, there exists exactly one k > 2 such that

(18) x ∗k−1 y 6= y and x ∗k y = y.

As follows from Proposition 6,

(19) y ∗k−1 x 6= x and y ∗k x = x.

Put

(20) y = x′ and x = y′.

Consider arbitrary u, v ∈ V such that u ∈ {x, y}. Assume that there exists j > 1
such that u ∗j−1 v 6= u′ and u ∗j v = u′. By virtue of Remark 1 and Proposition 9,
j = k. Moreover, Proposition 9 implies that

(21) if u ∗k v = u′, then u ∗k−1 v 6= u′.

By the xy-strengthening of ∗ on V we mean the binary operation ◦ on V defined for
all u, v ∈ V as follows:

u ◦ v = u ∗k v if u ∈ {x, y} and u ∗k v = u′;

u ◦ v = u ∗ v otherwise.

This means that w ◦ w = w for every w ∈ V .
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Lemma 5. Let (V, ∗) be a finite simple non-confusing travel groupoid on a
graph G, let x, y ∈ V such that x ∗ y 6= y, and let ◦ be the xy-strengthening of ∗
on V . Then (V, ◦) is a simple non-confusing travel groupoid on G + xy.

���������
. There exists exactly one k > 2 such that (18) holds. Moreover, we

have (19). Use the convention (20).

We first show that (V, ◦) satisfies the axioms (t1), (t2), and (t3) and that (V, ◦) is
non-confusing. Consider arbitrary r, s ∈ V .

Verification of (t1). Put t = (r ◦ s) ◦ r. We will show that t = r. If r = s, then
r ◦ s = r and therefore t = r ◦ r = r. Assume that r 6= s. Then there exists i ∈ {1, k}
such that r ◦ s = r ∗i s. Since r 6= s and (V, ∗) is non-confusing, we get r ∗i s 6= r.
There exists j ∈ {1, k} such that t = (r ∗i s) ◦ r = (r ∗i s) ∗j r. If i = 1, then (t1) and
Proposition 1 imply that t = r. Assume that i = k. Then r ∈ {x, y} and r ∗i s = r′.
This implies that j = k. We get t = (r ∗k s) ∗k r = r again.

Verification of (t2). Obviously, there exist i, j ∈ {1, k} such that (r ◦ s) ◦ s =
(r ∗i s) ∗j s = r ∗i+j s. Let (r ◦ s) ◦ s = r. Since (V, ∗) is non-confusing, we get r = s.

We see that (V, ◦) is a travel groupoid.
Verification of (t3). Assume that s ◦ r 6= r. As follows from (2), s 6= r. We will

prove that r ◦ (s ◦ r) = r ◦ s. If r, s ∈ {x, y}, then s ∗k r = r and therefore s ◦ r = r,

which is a contradiction. Thus

(22) at most one of r and s belongs to {x, y}.

Since (V, ∗) is non-confusing, Proposition 7 implies that there exists m > 1 such that
r ∗m−1 s 6= s and r ∗m s = s. Recall that k > 2. Since (V, ∗) is simple, it follows from
Lemma 3 that

(23) if k < m, then r ∗k (s ∗ r) = r ∗k s.

Recall that s ◦ r 6= r. Since s ◦ r = s ∗k r or s ∗ r, Remark 1 implies that s ∗ r 6= r.
By (t3),

r ∗ (s ∗ r) = r ∗ s.

Let first r ∈ {x, y} and r ∗k s = r′. Then r ◦ s = r ∗k s = r′. By (22), s 6= r′. Then
k < m and s ◦ r = s ∗ r. It follows from (23) that r ∗k (s ∗ r) = r′ and therefore

r ◦ (s ◦ r) = r ◦ (s ∗ r) = r ∗k (s ∗ r) = r ∗k s = r′ = r ◦ s.

Let now r ∈ {x, y} and r ∗k s 6= r′. Then r ◦ s = r ∗ s. By (22), s 6= r′ and thus
s ◦ r = s ∗ r. Assume that r ∗k (s ∗ r) = r′. Then r ◦ (s ∗ r) = r ∗k (s ∗ r). As follows
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from (21), r ∗k−1 (s ∗ r) 6= r′. By virtue of Lemma 1, r ∗k s = r ∗k (s ∗ r) = r′, which

is a contradiction. Thus r ◦ (s ∗ r) = r ∗ (s ∗ r) and therefore r ◦ (s ◦ r) = r ∗ s = r ◦ s.

Finally, let r 6∈ {x, y}. Then r ◦ s = r ∗ s and r ◦ (s ◦ r) = r ∗ (s ◦ r). Assume that
s ∈ {x, y} and s ∗k r = s′. Then s ◦ r = s ∗k r. Since s ∗k r 6= r, Lemma 2 implies
that r ◦ (s ◦ r) = r ∗ (s ∗k r) = r ∗ s = r ◦ s. If

s 6∈ {x, y} or (s ∈ {x, y} and s ∗k r 6= s′),

then s ◦ r = s ∗ r and therefore r ◦ (s ◦ r) = r ∗ (s ∗ r) = r ∗ s = r ◦ s.

Thus (V, ◦) is simple.
Assume that r 6= s and there exists i > 1 such that r ◦i s = r. Clearly, there exists

m > i such that r ◦i s = r ∗m s. We have that r ∗m s = r, which contradicts the fact

that (V, ∗) is non-confusing. Thus (V, ◦) is non-confusing, too.
Recall that x 6= y and x ◦ y = y. We can see that (V, ◦) is a simple non-confusing

travel groupoid on G + xy, which completes the proof of the lemma. �

Theorem 4. For every finite connected graph G there exists a simple non-

confusing travel groupoid on G.

���������
. Put V = V (G) and β(G) = |E(G)| − |V |+ 1. We proceed by induction

on β(G). Obviously, β(G) > 0. Let first β(G) = 0. Then G is a tree. It is easy to

see that its proper groupoid is simple and non-confusing. Let now β(G) > 1. Then
there exist distinct x, y ∈ V such that x and y are adjacent in G and G − xy is
connected. By the induction hypothesis, there exists a simple non-confusing travel

groupoid (V, ∗) on G−xy. Lemma 5 implies that there exists a simple non-confusing
groupoid on G, which completes the proof. �

4. Smooth and semi-smooth travel groupoids

We say that a travel groupoid (V, ∗) is smooth if it satisfies the following axiom
(t4) if u ∗ v = u ∗ w, then u ∗ (w ∗ v) = u ∗ v (for all u, v, w ∈ V ).

Moreover, we say that a travel groupoid (V, ∗) is semi-smooth if it satisfies the
following axiom

(t5) if u ∗ v = u ∗ w, then u ∗ (v ∗ w) = u ∗ v or u ∗ ((v ∗ w) ∗ w) = u ∗ v (for all

u, v, w ∈ V ).
Obviously, every smooth travel groupoid is semi-smooth.
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Proposition 10. Every semi-smooth travel groupoid is non-confusing.
���������

. Let (V, ∗) be a semi-smooth travel groupoid. Obviously, there exists
a graph G such that (V, ∗) is on G. Suppose, to the contrary, that there exists a
confusing pair in (V, ∗). As follows from Lemma 4, there exist u, w ∈ V and k > 3
such that u 6= w and u ∗k w = u, and the vertices u ∗0 w, . . . , u ∗k−2 w and u ∗k−1 w

are pairwise distinct. Define

ui = u ∗i w for i = 0, 1, . . . , k.

Hence u0 6= u1 6= uk−1 6= uk = u0. Obviously, u0∗u1 = u1 and u0∗uk = u0∗u0 6= u1.

Moreover, u0∗uk−1 = uk∗uk−1 = (uk−1∗w)∗uk−1 and thus, by (t1), u0∗uk−1 = uk−1.
This implies that there exist j, 0 6 j 6 k−2, such that u0 ∗uj = u1 and u0 ∗uj+1 6=
u1 6= u0 ∗uj+2. We have u0 ∗w = u1 = u0 ∗uj, u0 ∗ (uj ∗w) = u0 ∗uj+1 6= u0 ∗uj , and
u0 ∗ ((uj ∗w) ∗w) = u0uj+2 6= u0 ∗ uj , which contradicts (t5). Thus the proposition

is proved. �

Proposition 11. Every complete bipartite graph has a simple smooth travel
groupoid.
���������

. Let G be complete bipartite graph. Put V = V (G). There exist
nonempty sets U and U ′ such that U ∩ U ′ = ∅, U ∪ U ′ = V and the following
statement holds for all distinct v, w ∈ V :

v and w are adjacent in G if and only if |{v, w} ∩ U | = 1 = |{v, w} ∩ U ′|.

Recall that U and U ′ are nonempty. Choose a vertex u ∈ U and a vertex u′ ∈ U ′.

We denote by ∗ the binary operation on V defined as follows:
x ∗ y = x if x = y;

x ∗ y = y if x and y are adjacent in G;
x ∗ y = u′ if x, y ∈ U and x 6= y;

x ∗ y = u if x, y ∈ U ′ and x 6= y.
It can be easily verified that (V, ∗) satisfies (t1), (t2), (t3), and (t4). Hence (V, ∗) is
a simple smooth travel groupoid. �

Recall that every tree is a geodetic graph and that the proper groupoid of every
geodetic graph is a simple travel groupoid.

Proposition 12. The proper groupoid of every tree is a smooth travel groupoid.
���������

is easy. �

Note that every complete graph is geodetic. Obviously, the proper groupoid of
every complete graph is a smooth travel groupoid.
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Theorem 5. Let G be a geodetic graph of diameter two, and let (V, ∗) be the
proper groupoid on G. Then (V, ∗) is a smooth travel groupoid.
���������

. Clearly, (V, ∗) is a simple travel groupoid such that

(24) x ∗2 y = y for all x, y ∈ V.

We will prove that (V, ∗) is smooth. Suppose, to the contrary, that (V, ∗) is not
smooth. Then there exist u, v, w ∈ V such that u ∗ v = u ∗w and

(25) u ∗ (v ∗ w) 6= u ∗ v.

This implies that v 6= v ∗ w 6= w. By (24), v ∗2 w = w. Recall that (V, ∗) is simple.
Since v ∗w 6= w, Proposition 6 implies that w ∗ v 6= v, w ∗2 v = v, and w ∗ v = v ∗w.

Thus the sequence
v, v ∗ w = w ∗ v, w

is a shortest v − w path in G.
Put t = u ∗ v. Then t = u ∗ w. As follows from (24), t ∗ v = v and t ∗ w = w.

By (1), v ∗ t = t. If t = v, then u ∗ w = v and therefore u ∗2 w = v ∗ w 6= w; a
contradiction. Thus t 6= v. Since v ∗ t = t, we see that v and t are adjacent in G.
Let t = w. Since t ∗ v = v, we get w ∗ v = v; a contradiction. Thus t 6= w. Since

t ∗ w = w, we see that t is adjacent to w. Thus the sequence

v, t, w

is a shortest v − w path in G.

Assume that t = v ∗ w. Using (3), we see that u ∗ (v ∗ w) = u ∗ (u ∗ v) = u ∗ v,
which contradicts (25). Thus u ∗ v 6= v ∗w. We see that G has two distinct shortest

v−w paths in G. This means that G is not a geodetic graph, which is a contradiction.
Thus the theorem is proved. �

We pose two questions.

Question 1. Does there exists a geodetic graph G such that the proper groupoid
of G is not smooth? (If so, does there exists a geodetic groupoid G such that the

proper groupoid of G is not semi-smooth?)

Question 2. Does there exists a connected graph G such that G has no smooth

travel groupoid? (If so, does there exists a connected graph G such that G has no
semi-smooth travel groupoid?)

673



5. Graphs with travel groupoids

Recall that, by Theorem 4, every finite connected graph has a simple non-confusing

travel groupoid.

Theorem 6. Let G be a finite graph. Then G has a travel groupoid if and only

if G is connected or G is disconnected and no component of G is a tree.

���������
. Assume that G is connected or G is disconnected and no component

of G is a tree. If G is connected, then, by Theorem 4, there exists a travel groupoid
on G. Let G be disconnected. Then every component of G contains a cycle. It is

easy to see that there exists a mapping f of V (G) into itself such that the following
statements hold for every u ∈ V (G):

u and f(u) are adjacent vertices in G

and

u 6= f(f(u)).

By virtue of Theorem 4, every component F of G has a travel groupoid, say a travel
groupoid (V (F ), ∗F ). For all x, y ∈ V (G), we define

x ∗ y = x ∗H y if there exists a component H of G such that x, y ∈ V (H)

and

x ∗ y = f(x) if x and y belong to distinct components of G.

It is easy to see that (V (G), ∗) satisfies (t1) and (t2). Hence G has a travel groupoid.

Conversely, assume that G is disconnected and at least one component T of G

is a tree. Suppose, to the contrary, that G has a travel groupoid, say a travel
groupoid (V, ∗), where V = V (G). Consider u ∈ V (T ) and v ∈ V (G) \ V (T ). Since
V (T ) is finite and T contains no cycle, we see that there exists k > 1 such that
u ∗k+1 v = u ∗k−1 v. We have ((u ∗k−1 v) ∗ v) ∗ v = u ∗k−1 v, and thus, by (t2),

uk−1v = v. Proposition 3 implies that u and v belong to the same component of G,
which is a contradion. Thus the theorem is proved. �

Question 3. Does there exist an infinite graph G with no finite components such
that G has no travel groupoid?
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Remark 7. Let (V, ∗) be a finite travel groupoid. Put

X = {(u, v, w) : u, v, w ∈ V and v = u ∗ w}.

Then (V, X) is a signpost system in the sense of [5]. We say that (V, X) is the
signpost system of (V, ∗).

The signpost systems of travel groupoids create a special subclass of the class of

all signpost systems. The terms “simple”, “non-confusing” and “smooth” introduced
in the present paper for travel groupoids are inspired by the same terms used for

signpost systems in [5].
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