
Czechoslovak Mathematical Journal

Petra Konečná
Polynomial orbits in finite commutative rings

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 711–719

Persistent URL: http://dml.cz/dmlcz/128099

Terms of use:
© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128099
http://dml.cz


Czechoslovak Mathematical Journal, 56 (131) (2006), 711–719

POLYNOMIAL ORBITS IN FINITE COMMUTATIVE RINGS

Petra Konečná, Ostrava

(Received January 9, 2004)

Abstract. Let R be a finite commutative ring with unity. We determine the set of all
possible cycle lengths in the ring of polynomials with rational integral coefficients.
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1. Introduction

Let R be a commutative ring with unity, k ∈ � 0 , l ∈
�
and let f be a polynomial

over the ring R. By a finite orbit of f in R with precycle length k and cycle length l
we mean a sequence (x1, x2, . . . , xk+l) of distinct elements of R such that

f(xi) = xi+1 for all i ∈ {1, 2, . . . , k + l − 1}, and f(xk+l) = xk+1.

The elements xk+1, . . . , xk+l are called fixpoints of f of order l. Let j ∈
�

0 . By the
j-iterate of f in R we mean the polynomial f0(x) = x if j = 0 or the polynomial
fj(x) = f(fj−1(x)) if j > 0.
The following lemma shows useful properties of cycles and iterations.

Lemma 1 ([6]). Let R be a ring. If a ∈ R, fn(a) = a and j is the smallest integer

satisfying fj(a) = a, then j divides n. Cyclic elements of order n of f coincide

with those fixpoints of fn which are not fixpoints of fd, where d runs over all proper

divisors of n.

In the study of polynomial orbits we are especially interested in their lengths,
more precisely in their cycle lengths. In this paper we shall determine the set of all
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possible cycle lengths in finite commutative rings with unity. First, we make this

determination for some special rings, specifically for the ring of circulant matrices
over a finite field and for semisimple rings. In the last part we will solve this problem
for the general case of an arbitrary finite commutative ring with unity. The set of

all possible cycle lengths in a finite commutative ring with unity R of polynomials
with rational integral coefficients is denoted by the symbol Cycl(R/ � ).
In our investigation we will make use of the following three propositions. The first

proposition gives the set of all possible cycle lengths of polynomials over some finite
field F in a finite extension K of F . This set is denoted by the symbol Cycl(K/F ).

Proposition 1 ([4]). Let F be a finite field, n ∈ �
and N the number of ir-

reducible monic polynomials of degree n over F . Let K/F be a field extension of

degree n. Then the set of all possible cycle lengths in K of polynomials over F is

given by

Cycl(K/F ) = {dm : 1 6 d 6 N, 1 6 m | n}.

The following propositions determine the set of all possible cycle lengths in the

direct sum of finite extensions of a finite field F that are induced by polynomials
over F . Proposition 2 gives this determination for the special case when the direct

sum is given by the k-th power of a finite field and Proposition 3 solves this problem
for an arbitrary direct sum of finite fields.

Proposition 2 ([5]). Let F be a finite field, K its algebraic extension of degree n,
N the number of irreducible monic polynomials of degree n over F and s ∈ � . Then
the set of all possible cycle lengths of polynomials over F in the direct sum Ks with

the property that elements of these cycles do not belong to any proper subfield ofK is

given by Cycl(Ks/F ) = {m·lcm(d1, . . . , dt) : t 6 s, d1, . . . , dt are different, d1+. . .+
dt 6 N and m | n}.

Proposition 3 ([5]). Let K1,K2, . . . ,Kr be finite extensions of a finite field F ,

s1, . . . , sr, r ∈
�
. Then

Cycl(Ks1
1 ⊕ . . .⊕Ksr

r /F ) = {lcm(li) : li ∈ Cycl(Ksi

i /F ) for i = 1, . . . , r}.
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2. Polynomial cycles in the ring of circulant matrices

We determine the set of all possible cycle lengths in the ring of circulant matrices

over a finite field F of polynomials from F [x]. We have to observe that this ring is
very important in the coding theory.

Definition ([1]). By a circulant matrix of order r is meant a square matrix of
the form

C =




c0 c1 c2 . . . cr−1

cr−1 c0 c1 . . . cr−2

cr−2 cr−1 c0 . . . cr−3

. . .
. . .

. . .
. . .

. . .

c1 c2 c3 . . . c0



.

It is denoted by C = circ(c0, . . . , cr−1).

The following lemma is a well known fact.

Lemma 2. Circulant matrices of order r over a finite field F form a ring R which
is isomorphic to the ring of polynomials F [x]/(xr − 1).

Theorem 1. Let F be a finite field of characteristic p, and R a ring of circulant
matrices of order r over F , where p is a prime and r is a positive integer such that

gcd(p, r) = 1. Then the set of all possible cycle lengths of polynomials over F in the
ring R is given by

Cycl(R/F ) = Cycl
( k⊕

i=1

F (xi)/F
)
,

where k is a positive integer such that k 6 r and

k∑

i=1

[F (xi) : F ] = r.

�������	�
. Consider a finite field F of characteristic p and a positive integer r such

that gcd(r, p) = 1.
By Lemma 2 we know that the ring R of circulant matrices of order r over the

finite field F is isomorphic to the finite polynomial algebra

GF(q)[x]/(xr − 1).
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For every i ∈ {1, . . . , k}, where k 6 r, denote by g(i) ∈ F [x] the irreducible
polynomial of degree δi over F such that

(xr − 1) =
k∏

i=1

g(i).

Then

R ' GF(q)[x]/(xr − 1) = GF(q)
/ k∏

i=1

g(i).

Owing to the fact that r is coprime with the characteristic p of the field F , the

polynomial xr − 1 does not have multiple roots and thus

R '
k⊕

i=1

GF(qδi).

Using Proposition 2 and Proposition 3, we obtain our assertion

Cycl(R/F ) = Cycl
( k⊕

i=1

F (xi)/F
)
.

�

Example. Consider the ring R of circulant matrices over a finite field GF(23) of
degree 3. Then it is isomorphic to the ring GF(23)[x]/(x3 − 1). The decomposition
of the polynomial x3 − 1 into irreducible polynomials over GF(23) is

(x3 − 1) = (x− 1)(x2 + x+ 1),

so if we use the notation of Theorem 1, we obtain

k = 2, g(1)(x) = (x− 1), δ1 = 1, g(2)(x) = (x2 + x+ 1), δ2 = 2.

Then

Cycl(R/GF(2)) = Cycl(GF(23)⊕GF(26)/GF(2))

and this set is given by

{lcm(l1, l2) : l1 ∈ Cycl(GF(23)/GF(2)), l2 ∈ Cycl(GF(26)/GF(2))}.

We have
Cycl(GF(23)/GF(2)) = {1, 2, 3, 6}
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and

Cycl(GF(26)/GF(2)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 21,

24, 27, 30, 36, 42, 48, 54}.

Clearly

Cycl(GF(23)/GF(2)) ⊆ Cycl(GF(26)/GF(2)).

Therefore

Cycl(R/GF(2)) = Cycl(GF(26)/GF(2)).

3. Polynomial cycles in semisimple finite commutative rings

Definition. A finite ring R is called semisimple iff it has zero radical, i.e., iff

Rad(R) =
⋂

I∈max(R)

I = 0,

where max(R) is the set of all maximal ideals of the ring R.

Recall that two ideals I and J of a ring R are coprime iff I + J = R. Then we
can formulate the Chinese remainder theorem for ideals as the following lemma.

Lemma 3. Let R be a commutative ring with unity, Pi / R, i = 1, . . . , k, be

coprime ideals of the ring R. Then
k⋂

i=1

Pi =
k∏

i=1

Pi and there exists an isomorphism

R

/ k∏

i=1

Pi →
k∏

i=1

R/Pi

such that for all x ∈ R

x+
k∏

i=1

Pi 7→ (x+ P1, . . . , x+ Pk).
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Theorem 2. Let R be a finite commutative semisimple ring. Then the set of all
possible cycle lengths in the ring R of polynomials with rational integral coefficients

is given by

Cycl(R/ � ) = Cycl
( k⊕

i=1

R/Pi

)
,

where P1, . . . Pk are prime ideals of the ring R.
�������	�

. Let R be a finite commutative ring. Then for every i = 1, . . . k the
prime ideal Pi of R satisfies that R/Pi is a finite integral domain, thus it must be
a finite field. So, every ideal Pi is maximal. Prime ideals P1, . . . , Pk are pairwise

coprime, thus Rad(R) =
k⋂

i=1

Pi =
k∏

i=1

Pi.

The ring R is semisimple, thus Rad(R) = 0 and by Lemma 3 it is isomorphic to
the direct sum of finite fields R/Pi

R = R

/ n∏

i=1

Pi '
n⊕

i=1

R/Pi.

Therefore we get

Cycl(R/ � ) = Cycl
( k⊕

i=1

R/Pi

)
.

�

Example. Consider the ring of residue classes modulo 6 R = � /6 � . This ring
has two maximal ideals M1 = {0, 2, 4} and M2 = {0, 3}, whose intersection is the
zero. Therefore R is semisimple. The following holds

R ' GF(2)⊕GF(3).

Thus

Cycl(R/ � ) = Cycl(GF(2)⊕GF(3)/ � ) = {1, 2, 3, 6}.

4. Polynomial cycles in finite commutative rings

Definition. A finite commutative ring R with unity is called local iff it has only
one maximal ideal.

Lemma 4 ([2]). Let R be a finite commutative ring. Then R decomposes (up to
order of summands) uniquely as a direct sum of local rings.

716



Theorem 3. Let R be a finite commutative local ring, P its prime ideal. Let
p be the characteristic of the ring R/P with pn elements. Then cycle lengths of

polynomials with rational integral coefficients in the ring R can be from the set

Cycl(R/ � )⊆
{
kl∗,where k 6 |R|

pn
, l∗ ∈ Cycl(GF(pn)/GF(p))

}
.

�������	�
. Let R be a local finite ring with |R| elements. We know that this ring

has only one maximal ideal, denote it by P . Then the factor ring R/P is a finite

field with q = |R|/|P | elements and so it is isomorphic to the Galois field GF(q) with
the same number of elements q = pn, where p is the characteristic of this field. Then

there is an epimorphism ψ : R→ GF(q).

Let (x1, . . . , xl) be a cycle of the length l in R of a polynomial f ∈ � [x]. Then by
definition

fl(xj) = xj for every j = 1, . . . , l.

Consider the image of this cycle in the field GF(q), which is isomorphic to the factor
ring R/P . We have

ψ((x1, . . . , xl)) = (ψ(x1), . . . , ψ(xl)).

Then this image is a cycle in the field GF(q) Let l∗ be the least positive integer such
that

fl∗(ψ(xj)) = ψ(xj) for every j = 1, . . . , l.

Then by Lemma 1

l∗ | l with l∗ ∈ Cycl((R/P )/ � ) = Cycl(GF(q)/GF(p)).

Therefore, with utilization of Proposition 1, for every l ∈ Cycl(R/ � )

l = kl∗ = kmd, where
|R|
pn

> k ∈ � , m | n, 1 6 d 6 N.

�
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Corollary. Let R be a finite commutative ring. Let P1, . . . , Pk be maximal ideals

of this ring and let m be a positive integer such that
k⋂

i=1

Pm = 0.

Then the set of all possible cycle lengths of polynomials with rational integral

coefficients is given by the set Cycl(R/ � ) which is equal to the set

Cycl
(( k⊕

i=1

R/Pm
i

)
/ �

)
⊆ {lcm(li), where li ∈ Cycl((R/Pm

i )/ � ) for i = 1, . . . , k}.

�������	�
. By Lemma 4 the finite ring R is isomorphic to the direct sum of local

rings
k⊕

i=1

R/Pm
i with maximal ideals Pi/P

m
i , where P1, . . . , Pk are maximal ideals of

the ring R and m is a positive integer such that
k⋂

i=1

Pm = 0. Let l be a cycle length

of a polynomial with rational integral coefficients in the ring R. This is possible if

and only if there exists a cycle (x̄1, . . . , x̄l) of that polynomial, where x̄j ∈
k⊕

i=1

R/Pm
i ,

that can be decomposed to basic cycles of the polynomial f

(x(i)
1 , . . . , x

(i)
li

), where i = 1, . . . , k, x(i)
j ∈ R/Pm

i and li ∈ Cycl((R/Pm
i )/ � ).

From Lemma 1 it follows that for every i = 1, . . . , k there holds li | l, therefore
l = lcm(li). �

Example. Consider the ring R = � /8 � of residue classes modulo 8. The maximal
ideal is M = (2). Thus the factor ring R/(2) is a finite field with two elements, that
is

R→ R/(2) ' GF(2).

Thence cycle lengths of polynomials with rational integral coefficients belong to
the set

Cycl(R/ � )⊆ {1, 2, 3, 4, 6, 8}.

Above that it was shown in [3] that in this particular case Cycl(R/ � ) = {1, 2, 4, 8}.
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