Czechoslovak Mathematical Journal

Lutz Volkmann; Stefan Winzen

Cycles with a given number of vertices from each partite set in regular multipartite tournaments

Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 3, 827-843
Persistent URL: http://dml.cz/dmlcz/128109

Terms of use:

© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CYCLES WITH A GIVEN NUMBER OF VERTICES FROM EACH PARTITE SET IN REGULAR MULTIPARTITE TOURNAMENTS

Lutz Volkmann, Stefan Winzen, Aachen

(Received February 11, 2004)

Abstract. If x is a vertex of a digraph D, then we denote by $d^{+}(x)$ and $d^{-}(x)$ the outdegree and the indegree of x, respectively. A digraph D is called regular, if there is a number $p \in \mathbb{N}$ such that $d^{+}(x)=d^{-}(x)=p$ for all vertices x of D.

A c-partite tournament is an orientation of a complete c-partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether c-partite tournaments with r vertices in each partite set contain a cycle with exactly $r-1$ vertices of every partite set. In 1982, Beineke and Little [2] solved this problem for the regular case if $c=2$. If $c \geqslant 3$, then we will show that a regular c-partite tournament with $r \geqslant 2$ vertices in each partite set contains a cycle with exactly $r-1$ vertices from each partite set, with the exception of the case that $c=4$ and $r=2$.

Keywords: multipartite tournaments, regular multipartite tournaments, cycles
MSC 2000: 05C40, 05C20

1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set and the arc set of a digraph D are denoted by $V(D)$ and $E(D)$, respectively. If $x y$ is an arc of a digraph D, then we write $x \rightarrow y$ and say x dominates y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. Furthermore, $X \leadsto Y$ denotes the fact that there is no arc leading from Y to X. For the number of arcs from X to Y we write $d(X, Y)$.

If D is a digraph, then the out-neighborhood $N_{D}^{+}(x)=N^{+}(x)$ of a vertex x is the set of vertices dominated by x and the in-neighborhood $N_{D}^{-}(x)=N^{-}(x)$ is the
set of vertices dominating x. Therefore, if the arc $x y \in E(D)$ exists, then y is an outer neighbor of x and x is an inner neighbor of y. The numbers $d_{D}^{+}(x)=d^{+}(x)=$ $\left|N^{+}(x)\right|$ and $d_{D}^{-}(x)=d^{-}(x)=\left|N^{-}(x)\right|$ are called the outdegree and the indegree of x, respectively. Furthermore, the numbers $\delta_{D}^{+}=\delta^{+}=\min \left\{d^{+}(x): x \in V(D)\right\}$ and $\delta_{D}^{-}=\delta^{-}=\min \left\{d^{-}(x): x \in V(D)\right\}$ are the minimum outdegree and the minimum indegree, respectively.

For a vertex set X of D, we define $D[X]$ as the subdigraph induced by X. If we replace in a digraph D every arc $x y$ by $y x$, then we call the resulting digraph the converse of D, denoted by D^{-1}.

If we speak of a cycle, then we mean a directed cycle, and a cycle of length n is called an n-cycle. The length of a cycle C is denoted by $L(C)$. A cycle in a digraph D is Hamiltonian if $L(C)=|V(D)|$. A cycle-factor of a digraph D is a spanning subdigraph consisting of disjoint cycles. A digraph D is called pancyclic if it contains cycles of length n for all $n \in\{3,4, \ldots,|V(D)|\}$, and even pancyclic if it contains cycles of all even lengths. If $x \in V(C)(x \in V(P)$, respectively) for a cycle C (a path P), then we denote the successor of x in the given cycle (path) by x^{+} and the predecessor by x^{-}. A digraph D is cycle complementary if there exist two vertex-disjoint cycles C and C^{\prime} such that $V(D)=V(C) \cup V\left(C^{\prime}\right)$.

A digraph D is strongly connected or strong if for each pair of vertices u and v, there is a path from u to v in D. A digraph D with at least $k+1$ vertices is k-connected if for any set A of at most $k-1$ vertices, the subdigraph $D-A$ obtained by deleting A is strong. The connectivity, denoted by $\kappa(D)$, is then defined to be the largest value of k such that D is k-connected. If $\kappa(D)=1$ and x is a vertex of D such that $D-x$ is not strong, then we say that x is a cut-vertex of D.

There are several measures of how much a digraph differs from being regular. In [18], Yeo defines the global irregularity of a digraph D by

$$
i_{g}(D)=\max _{x \in V(D)}\left\{d^{+}(x), d^{-}(x)\right\}-\min _{y \in V(D)}\left\{d^{+}(y), d^{-}(y)\right\}
$$

If $i_{g}(D)=0$, then D is regular and if $i_{g}(D) \leqslant 1$, then D is called almost regular.
A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices. If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of a c-partite tournament D and the vertex x of D belongs to the partite set V_{i}, then we define $V(x)=V_{i}$. If D is a c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant \ldots \leqslant\left|V_{c}\right|$, then $\left|V_{c}\right|=\alpha(D)$ is the independence number of D.

Let $B=B\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ be the following bipartite tournament, which will be useful later. Let $R_{1}, R_{2}, R_{3}, R_{4}$ be pairwise disjoint independent sets of vertices with
$\left|R_{i}\right|=r_{i}$ for $1 \leqslant i \leqslant 4$. Define $V(B)=R_{1} \cup R_{2} \cup R_{3} \cup R_{4}$ such that $R_{i} \rightarrow R_{i+1}$ for $i=1,2,3$ and $R_{4} \rightarrow R_{1}$.

There is extensive literature on cycles in multipartite tournaments, see e.g., BangJensen and Gutin [1], Guo [6], Gutin [7], Volkmann [13] and Yeo [17]. Many results are about the existence of cycles of a given length as e.g. the following result of Bondy [3].

Theorem 1.1 (Bondy [3]). Each strongly connected c-partite tournament contains a cycle of order m for each $m \in\{3,4, \ldots, c\}$.

Other articles treat the existence of cycles containing vertices of a given number of partite sets. A good example is the following theorem of Goddard and Oellermann [5].

Theorem 1.2 (Goddard, Oellermann [5]). If x is an arbitrary vertex of a strongly connected c-partite tournament D, then x belongs to a cycle that contains vertices from exactly q partite sets for each $q \in\{3,4, \ldots, c\}$.

An interesting question is now to find sufficient conditions for a multipartite tournament such that we are able to combine these two categories of results, that means to solve the following problem.

Problem 1.3. Which conditions have to be fulfilled in order that a c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ contains a cycle with exactly r_{i} vertices of V_{i} for all $1 \leqslant i \leqslant c$ and given integers $0 \leqslant r_{i} \leqslant\left|V_{i}\right|$?

In 1997, A. Yeo [16] gave a solution of this problem for regular c-partite tournaments in the case that $r_{i}=\left|V_{i}\right|$ for all $1 \leqslant i \leqslant c$.

Theorem 1.4 (Yeo [16]). Every regular multipartite tournament D is Hamiltonian.

Since, according to the well known result of Moon [9] that every strongly connected tournament is vertex-pancyclic, a strongly connected tournament is Hamiltonian, we note that the next theorem also treats Problem 1.3.

Theorem 1.5 (Volkmann [12]). Let D be an almost regular c-partite tournament with $c \geqslant 4$. Then D contains a strongly connected subtournament of order p for every $p \in\{3,4, \ldots, c-1\}$.

In a recent article, the authors [15] settled a conjecture of Volkmann in affirmative by proving that Theorem 1.5 remains valid for $p=c$ when $c \geqslant 5$. Thus, we arrive at the following result.

Theorem 1.6 (Volkmann, Winzen [15]). Let D be an almost regular c-partite tournament with $c \geqslant 5$. Then D contains a strongly connected subtournament of order p for every $p \in\{3,4, \ldots, c\}$.

Hence, Theorem 1.6 presents a solution of Problem 1.3 for almost regular c-partite tournaments and the case that $r_{i}=1$ for all $1 \leqslant i \leqslant c$. In this article, we will treat the case that D is a regular c-tournament and $r_{i}=\left|V_{i}\right|-1$ for all $1 \leqslant i \leqslant c$. Since the vertices of a cycle in a bipartite tournament D alternate between the two partite sets of D, Beineke and Little [2] (for a stronger form, see also Zhang [19]) gave a solution to this problem if $c=2$.

Theorem 1.7 (Beineke, Little [2]). A bipartite tournament is even pancyclic if it is Hamiltonian and is not isomorphic to the bipartite tournament $B(r, r, r, r)$ with $r \geqslant 2$.

If we remove one vertex of each partite set in the bipartite tournament $B(r, r, r, r)$, then obviously the remaining bipartite tournament is not Hamiltonian. The case that $c=3$ is also solved if we pay attention to the next result.

Theorem 1.8 (Volkmann [14]). Let D be a regular 3-partite tournament with $|V(D)| \geqslant 6$. Then D contains two complementary cycles of length 3 and $|V(D)|-3$, unless D is isomorphic to the digraph $D_{3,2}$ of Fig. 1.

Figure 1. The 2-regular 3-partite tournament $D_{3,2}$
Since a 3 -cycle contains vertices of exactly 3 -partite sets and the digraph $D_{3,2}$ contains the cycle $x_{2} y_{2} u_{2} x_{2}$, we see that a regular 3-partite tournament with r vertices of each partite set always contains a cycle with exactly $r-1$ vertices of every partite set.

In the following, we will show that all regular c-partite tournaments with r vertices in every partite set contain a cycle with exactly $r-1$ vertices of each partite set provided $c \geqslant 5$ or $c=4$ and $r \geqslant 3$.

2. Preliminary results

The following results play an important role in our investigations.

Theorem 2.1 (Rédei [10]). Every tournament contains a Hamiltonian path.

Theorem 2.2 (Yeo [16]). If D is a multipartite tournament with $\kappa(D) \geqslant \alpha(D)$, then D is Hamiltonian.

Theorem 2.3 (Camion [4]). A tournament is strongly connected if and only if it is Hamiltonian.

Theorem 2.4 (Yeo [16]). Let D be a $(\lfloor q / 2\rfloor+1)$-connected c-partite tournament such that $\alpha(D) \leqslant q$. If D has a cycle-factor, then D is Hamiltonian.

Theorem 2.5 (Yeo [18]). Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a c-partite tournament D such that $\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant \ldots \leqslant\left|V_{c}\right|$. If

$$
i_{g}(D) \leqslant \frac{|V(D)|-\left|V_{c-1}\right|-2\left|V_{c}\right|+2}{2},
$$

then D is Hamiltonian.

Lemma 2.6 (Yeo [17], Gutin, Yeo [8]). A digraph D has no cycle-factor if and only if its vertex set $V(D)$ can be partitioned into four subsets Y, Z, R_{1} and R_{2} such that

$$
R_{1} \leadsto Y \quad \text { and } \quad\left(R_{1} \cup Y\right) \leadsto R_{2}
$$

where Y is an independent set and $|Y|>|Z|$.
Lemma 2.7 (Tewes, Volkmann, Yeo [11]). If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of a c-partite tournament D, then $\| V_{i}\left|-\left|V_{j}\right|\right| \leqslant 2 i_{g}(D)$ for $1 \leqslant i, j \leqslant c$.

Since we consider only the case that $i_{g}(D)=0$ in this article, we can note the following.

Remark 2.8. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament. Then Lemma 2.7 implies that $r=\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|$ and

$$
d^{+}(x), d^{-}(x)=\frac{(c-1) r}{2}
$$

for all $x \in V(D)$. That means especially that c is odd, if r is odd.

3. Main Results

Theorem 3.1. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament D with $c \geqslant 4$ and $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r \geqslant 2$. Furthermore, let X be an arbitrary subset of $V(D)$ consisting of m partite sets with exactly k vertices and $c-m$ partite sets with exactly $k-1$ vertices for $0<m \leqslant c$ and $1 \leqslant k \leqslant r-1$. If

$$
r \geqslant \begin{cases}\left\lceil\frac{2 k(c-1)-2}{c-3}\right\rceil+k & \text { and } m=c \\ \left\lceil\frac{2 k(c-1)-1}{c-3}\right\rceil+k & \text { and } m=c-1 \\ \left\lceil\frac{(2 k-3) c+3 m-2 k+3}{c-3}\right\rceil+k & \text { and } m \leqslant c-2\end{cases}
$$

then D contains a cycle C such that $V(C)=V(D)-X$.
Proof. Let $D^{\prime}=D-X$ with the partite sets $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{c}^{\prime}$ such that $\left|V_{1}^{\prime}\right| \leqslant$ $\left|V_{2}^{\prime}\right| \leqslant \ldots \leqslant\left|V_{c}^{\prime}\right| \leqslant\left|V_{1}^{\prime}\right|+1$. Since D is regular, it follows that

$$
i_{g}\left(D^{\prime}\right) \leqslant \begin{cases}k(c-1) & \text { if } c-1 \leqslant m \leqslant c \\ (k-1)(c-1)+m & \text { if } m \leqslant c-2\end{cases}
$$

If

$$
\left\{\begin{array}{ll}
k(c-1) & \text { if } c-1 \leqslant m \leqslant c \\
(k-1)(c-1)+m
\end{array} \leqslant \frac{\left|V\left(D^{\prime}\right)\right|-\left|V_{c-1}^{\prime}\right|-2\left|V_{c}^{\prime}\right|+2}{2} \quad \text { if } m \leqslant c-2, ~ l\right.
$$

then Theorem 2.5 implies that D^{\prime} is Hamiltonian, and hence the desired result. To show this, let us note that

$$
\frac{\left|V\left(D^{\prime}\right)\right|-\left|V_{c-1}^{\prime}\right|-2\left|V_{c}^{\prime}\right|+2}{2}= \begin{cases}\frac{(c-3)(r-k)+2}{2} & \text { if } m=c \\ \frac{(c-3)(r-k)+1}{2} & \text { if } m=c-1 \\ \frac{(c-3)(r-k)+c-m-1}{2} m \leqslant c-2\end{cases}
$$

If we distinguish the cases $m=c, m=c-1$ and $m \leqslant c-2$, then, noticing that $r \in \mathbb{N}$, equivalent transformations yield the bounds for r as in the assumptions of this theorem. This completes the proof of the theorem.

In the following, we will treat only the case that $m=c$ and $k=1$. In this case Theorem 3.1 leads to the next corollary.

Corollary 3.2. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament D such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r$. Furthermore, let $x_{i} \in V_{i}$ be arbitrary for all $1 \leqslant i \leqslant c$. If $c \geqslant 5$ and $r \geqslant 4$ or $c=4$ and $r \geqslant 6$, then there exists a cycle C in D such that $V(C)=\bigcup_{i=1}^{c}\left(V_{i}-x_{i}\right)$.

The next example shows that the condition of Corollary 3.2 that $r \geqslant 4$, if $c \geqslant 5$, is the best possible.

Example 3.3. Let D be a regular ($2 p+1$)-partite tournament with $r=3$ vertices in each partite set. If D consists of three regular disjoint subtournaments H_{1}, H_{2}, H_{3} of order $2 p+1$ such that $H_{1} \leadsto H_{2} \leadsto H_{3} \leadsto H_{1}$, then $D^{\prime}=D-V\left(H_{1}\right)$ contains no Hamiltonian cycle.

Nevertheless, if $r=3$ and thus, according to Remark 2.8, $c=2 p+1$, then there exist vertices $x_{1}, x_{2}, \ldots, x_{c}$ with $x_{i} \in V_{i}$ such that D contains a cycle C with $V(C)=\bigcup_{i=1}^{c}\left(V_{i}-x_{i}\right)$, as the following theorem demonstrates.

Theorem 3.4. Let $V_{1}, V_{2}, \ldots, V_{2 p+1}$ be the partite sets of a regular $(2 p+1)$ partite tournament with $p \geqslant 2$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{2 p+1}\right|=3$. Then D contains a cycle with exactly 2 vertices of each partite set.

Proof. Suppose that D contains no cycle with exactly 2 vertices of each partite set. Let T_{1} be a subtournament of D with $\left|V\left(T_{1}\right)\right|=2 p+1$. Then we define $D^{\prime}=D-V\left(T_{1}\right)$. Since D is regular, Remark 2.8 with $r=3$ implies $d^{+}(x), d^{-}(x)=3 p$ and thus $d_{D^{\prime}}^{+}(x), d_{D^{\prime}}^{-}(x) \geqslant p$.

First, let D^{\prime} be 2-connected. Because of $\alpha\left(D^{\prime}\right)=2$, Theorem 2.2 yields that D^{\prime} is Hamiltonian, a contradiction.

Secondly, let D^{\prime} be not strong. Then D^{\prime} can be partitioned into strong components $D_{1}, D_{2}, \ldots, D_{t}$ such that $D_{i} \leadsto D_{j}$ for $i<j$. The fact that $d_{D_{1}}^{-}(x) \geqslant p$ for all $x \in V\left(D_{1}\right)$ implies $\left|V\left(D_{1}\right)\right| \geqslant 2 \delta_{D_{1}}^{-}+1 \geqslant 2 p+1$. Analogously, we observe that $\left|V\left(D_{t}\right)\right| \geqslant 2 p+1$. Since $\left|V\left(D_{1}\right)\right|+\left|V\left(D_{2}\right)\right|+\ldots+\left|V\left(D_{t}\right)\right|=4 p+2$, we deduce that $t=2$ and $\left|D_{1}\right|=\left|D_{2}\right|=2 p+1$. This is possible only if $D_{2} \leadsto T_{1} \leadsto D_{1}$ and D_{1}, D_{2}, T_{1} are regular tournaments. Hence, D is the multipartite tournament from Example 3.3. If $a_{1} a_{2} \ldots a_{2 p+1} a_{1}$ is a Hamiltonian cycle of $T_{1}, v_{1} \in V\left(D_{1}\right) \cap$ $V\left(a_{1}\right)$ and $b_{1} b_{2} \ldots b_{2 p+1} b_{1}$ is a Hamiltonian cycle of D_{2} such that $b_{1} \in V\left(a_{1}\right)$, then $a_{1} a_{2} \ldots a_{2 p+1} v_{1} b_{2} b_{3} \ldots b_{2 p+1} a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction.

Thirdly, let D^{\prime} be exactly 1-connected. This yields that D^{\prime} contains a cut-vertex u such that $D^{\prime}-\{u\}$ consists of strong components $D_{1}, D_{2}, \ldots, D_{t}$ with the property that $D_{i} \leadsto D_{j}$ for $i<j$. Furthermore, there are vertices $v_{1} \in V\left(D_{1}\right)$ and $v_{t} \in V\left(D_{t}\right)$
such that $v_{t} \rightarrow u \rightarrow v_{1}$. Since $d_{D_{1}}^{-}(x) \geqslant p-1$ for all $x \in V\left(D_{1}\right)$, we conclude that $\left|V\left(D_{1}\right)\right| \geqslant 2 \delta_{D_{1}}^{-}+1 \geqslant 2 p-1$. Analogously, we see that $\left|V\left(D_{t}\right)\right| \geqslant 2 p-1$. Without loss of generality, let $\left|V\left(D_{1}\right)\right| \leqslant\left|V\left(D_{t}\right)\right|$, since otherwise we use the converse D^{-1} of D. Now we distinguish the two possible cases $\left|V\left(D_{1}\right)\right|=2 p-1$ and $\left|V\left(D_{1}\right)\right|=2 p$.

Case 1. Suppose that $\left|V\left(D_{1}\right)\right|=2 p-1$. This is possible only if D_{1} is a $(p-1)$ regular tournament with $u \rightarrow V\left(D_{1}\right), V\left(T_{1}\right) \leadsto V\left(D_{1}\right)$ and $2 p-1 \leqslant\left|V\left(D_{t}\right)\right| \leqslant 2 p+2$. Let $C=a_{1} a_{2} \ldots a_{2 p-1} a_{1}$ be a Hamiltonian cycle of D_{1}.

Subcase 1.1. Let $\left|V\left(D_{t}\right)\right|=2 p-1$. As above, we deduce that D_{t} is a regular tournament with a Hamiltonian cycle $\tilde{C}=b_{1} b_{2} \ldots b_{2 p-1} b_{1}$ such that $V\left(D_{t}\right) \leadsto V\left(T_{1}\right)$ and $V\left(D_{t}\right) \rightarrow u$. The fact that $\left|V\left(D_{2}\right)\right|+\left|V\left(D_{3}\right)\right|+\ldots+\left|V\left(D_{t-1}\right)\right|=3$ implies that $t=3$ or $t=5$.

First, let $t=3$. In this case, D_{2} is a 3 -cycle $c_{1} c_{2} c_{3} c_{1}$. Without loss of generality, we may suppose that $a_{2 p-1} \notin V\left(c_{1}\right)$ and $b_{1} \notin V\left(c_{3}\right)$. Now, $a_{1} a_{2} \ldots a_{2 p-1} c_{1} c_{2} c_{3} b_{1} b_{2} \ldots$ $b_{2 p-1} u a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction.

Secondly, let $t=5$. This yields that $\left|D_{2}\right|=\left|D_{3}\right|=\left|D_{4}\right|=1$ so that $D_{2}=\left\{v_{2}\right\}$, $D_{3}=\left\{v_{3}\right\}$ and $D_{4}=\left\{v_{4}\right\}$. If $v_{2} \notin V\left(v_{3}\right)$ and $v_{3} \notin V\left(v_{4}\right)$, then the vertices of $V(C)$ and $V(\tilde{C})$ can be chosen so that $a_{2 p-1} \notin V\left(v_{2}\right)$ and $b_{1} \notin V\left(v_{4}\right)$. Now, $a_{1} a_{2} \ldots a_{2 p-1} v_{2} v_{3} v_{4} b_{1} b_{2} \ldots b_{2 p-1} u a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction. If $v_{2} \in V\left(v_{3}\right)$ and $v_{2}^{\prime} \in V\left(T_{1}\right) \cap V\left(v_{3}\right)$, then, without loss of generality, the numbering of the cycles C and \tilde{C} can be chosen so that $v_{4} \notin V\left(b_{2}\right)$ and $a_{2 p-1} \notin V\left(b_{1}\right)$. In this case we see that $b_{1} u a_{1} v_{3} v_{4} b_{2} b_{3} \ldots b_{2 p-1} v_{2}^{\prime} a_{2} a_{3} \ldots a_{2 p-1} b_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction. Analogously, we arrive at a contradiction if $v_{3} \in V\left(v_{4}\right)$.

Subcase 1.2. Assume that $\left|V\left(D_{t}\right)\right|=2 p$ and thus $t=4$ and $\left|V\left(D_{2}\right)\right|=$ $\left|V\left(D_{3}\right)\right|=1$. Let $D_{2}=\left\{v_{2}\right\}$ and $D_{3}=\left\{v_{3}\right\}$.

Subcase 1.2.1. Suppose that D_{4} is Hamiltonian with a Hamiltonian cycle $C^{\prime}=$ $b_{1} b_{2} \ldots b_{2 p} b_{1}$.

First, let $v_{2} \notin V\left(v_{3}\right)$. Because of

$$
2 p^{2} \leqslant \sum_{x \in V\left(D_{4}\right)} d_{D^{\prime}}^{+}(x) \leqslant \frac{2 p(2 p-1)}{2}+d\left(D_{4}, u\right)=2 p^{2}-p+d\left(D_{4}, u\right)
$$

we deduce that $d\left(D_{4}, u\right) \geqslant p \geqslant 2$. Hence, there exists a vertex $b_{i} \in V\left(C^{\prime}\right)$ such that $b_{i} \rightarrow u$ and $b_{i}^{+} \notin V\left(v_{3}\right)$. Now the vertices of C can be numbered so that $a_{2 p-1} \notin V\left(v_{2}\right)$ and $a_{1} a_{2} \ldots a_{2 p-1} v_{2} v_{3} b_{i}^{+} \ldots b_{i}^{-} b_{i} u a_{1}$ is a Hamiltonian cycle of D^{\prime}, a contradiction.

Secondly, let $v_{2} \in V\left(v_{3}\right)$. This implies that D_{4} is a tournament. Let $v_{2}^{\prime} \in V\left(T_{1}\right) \cap$ $V\left(v_{3}\right)$. If $v_{2}^{\prime} \rightarrow D_{4}$, then we observe that $d_{D_{4}}^{+}(y) \geqslant 3 p-\left(\left|V\left(T_{1}\right)\right|-2\right)-|\{u\}|=p$ for all $y \in V\left(D_{4}\right)$, and thus

$$
2 p^{2}-p=\left|E\left(D_{4}\right)\right| \geqslant 2 p^{2}
$$

a contradiction. Let $\left\{v_{2}^{\prime}, u\right\}=\{x, y\}$ and $x \rightarrow y$. If $y^{\prime} \in N^{-}(x) \cap V\left(D_{4}\right)$, then let $y^{\prime} b_{2} b_{3} \ldots b_{2 p} y^{\prime}$ be a Hamiltonian cycle of D_{4}. Summarizing our results, we see that $a_{1} a_{2} \ldots a_{2 p-1} v_{2} b_{2} b_{3} \ldots b_{2 p} y^{\prime} x y a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction.

Subcase 1.2.2. Let D_{4} be not Hamiltonian. Since D_{4} is strongly connected, Theorem 2.3 implies that D_{4} is no tournament. The fact that D_{1} is a tournament and $u \rightarrow D_{1}$ yields that D_{4} consists of vertices of exactly $2 p-1$ partite sets, and thus $v_{2} \notin V\left(v_{3}\right)$.

Let $x \in V\left(T_{1}\right)$ be arbitrary. Then we observe that

$$
\begin{aligned}
6 p^{2}= & \sum_{y \in V\left(D_{4}\right)} d^{+}(y) \leqslant \sum_{y \in V\left(D_{4}\right)} d_{D_{4}}^{+}(y)+d\left(D_{4}, u\right)+d\left(D_{4}, T_{1}\right) \\
\leqslant & 2 p^{2}-p-1+2 p-\left|V(u) \cap V\left(D_{4}\right)\right|-\left|N^{+}(u) \cap V\left(D_{4}\right)\right| \\
& +4 p^{2}-\left|N^{+}(x) \cap V\left(D_{4}\right)\right|
\end{aligned}
$$

and it follows that

$$
\begin{equation*}
\left|V(u) \cap V\left(D_{4}\right)\right|+\left|N^{+}(x) \cap V\left(D_{4}\right)\right|+\left|N^{+}(u) \cap V\left(D_{4}\right)\right| \leqslant p-1 \tag{1}
\end{equation*}
$$

Theorem 1.2 implies that D_{4} contains a cycle C^{\prime} with vertices of all the $2 p-1$ partite sets of D_{4}, and thus $L\left(C^{\prime}\right)=2 p-1$. Let $\left\{v_{4}\right\}=V\left(D_{4}\right)-V\left(C^{\prime}\right)$ and $v_{4}^{\prime} \in V\left(T_{1}\right) \cap V\left(v_{4}\right)$. If $C^{\prime}=b_{1} b_{2} \ldots b_{2 p-1} b_{1}$ then, according to (1), there are at least $\left|V\left(C^{\prime}\right)\right|-(p-1)=p \geqslant 2$ vertices $b_{i}, b_{j} \in V\left(C^{\prime}\right)-\left(V(u) \cup N^{-}\left(v_{4}^{\prime}\right) \cup N^{-}(u)\right)$ such that $\left\{b_{i}, b_{j}\right\} \rightarrow u$ and $\left\{b_{i}, b_{j}\right\} \leadsto v_{4}^{\prime}$. Let $b_{j} \rightarrow v_{4}^{\prime}$. If $v_{3} \notin V\left(b_{i}^{+}\right)$, then the vertices of C can be numbered so that $a_{2 p-1} \notin V\left(b_{j}^{+}\right)$and $a_{2 p-2} \notin V\left(v_{2}\right)$, and we see that $a_{1} a_{2} \ldots a_{2 p-2} v_{2} v_{3} b_{i}^{+} \ldots b_{j} v_{4}^{\prime} a_{2 p-1} b_{j}^{+} \ldots b_{i}^{-} b_{i} u a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction. If $v_{3} \in V\left(b_{i}^{+}\right)$and thus $v_{2} \notin V\left(b_{i}^{+}\right), v_{3} \notin V\left(b_{j}^{+}\right)$ and $V(C) \rightarrow v_{3}$, then the vertices of C can be numbered so that $a_{2 p-2} \notin V\left(v_{2}\right)$. This implies that $a_{1} a_{2} \ldots a_{2 p-2} v_{2} b_{i}^{+} \ldots b_{j} v_{4}^{\prime} a_{2 p-1} v_{3} b_{j}^{+} \ldots b_{i}^{-} b_{i} u a_{1}$ is a cycle with exactly two vertices from every partite set, again a contradiction.

Subcase 1.3. Assume that $\left|V\left(D_{t}\right)\right|=2 p+1$. This implies $t=3$ and $\left|V\left(D_{2}\right)\right|=1$. Let $V\left(D_{2}\right)=\left\{v_{2}\right\}$.

Subcase 1.3.1. Suppose that D_{3} is Hamiltonian with a Hamiltonian cycle $C^{\prime}=$ $b_{1} b_{2} \ldots b_{2 p+1} b_{1}$. Let $u^{\prime} \in V\left(T_{1}\right) \cap V(u)$. If $\left|N^{-}(u) \cap V\left(D_{3}\right)\right|=1$ and $\mid N^{-}\left(u^{\prime}\right) \cap$ $V\left(D_{3}\right) \mid \leqslant 1$, then we conclude that $d\left(D_{3}, u\right) \leqslant 1$ and $\left|N^{+}\left(u^{\prime}\right) \cap V\left(D_{3}\right)\right| \geqslant 2 p-1$, and thus

$$
\begin{aligned}
(2 p+1) 3 p & =\sum_{y \in V\left(D_{3}\right)} d^{+}(y)=\sum_{y \in V\left(D_{3}\right)} d_{D_{3}}^{+}(y)+d\left(D_{3}, u\right)+d\left(D_{3}, T_{1}\right) \\
& \leqslant 2 p^{2}+p+1+(2 p+1) 2 p-(2 p-1)=6 p^{2}+p+2,
\end{aligned}
$$

a contradiction to $p \geqslant 2$. Hence, it follows that $\left|N^{-}(u) \cap V\left(D_{3}\right)\right| \geqslant 2$ or $\left|N^{-}\left(u^{\prime}\right) \cap V\left(D_{3}\right)\right| \geqslant 2$. If $\left|N^{-}(u) \cap V\left(D_{3}\right)\right| \geqslant 2$, then the vertices of C^{\prime} can be numbered so that $b_{2 p+1} \rightarrow u$ and $b_{1} \notin V\left(v_{2}\right)$. Let $a_{2 p-1} \notin V\left(v_{2}\right)$. Then $a_{1} a_{2} \ldots a_{2 p-1} v_{2} b_{1} b_{2} \ldots b_{2 p+1} u a_{1}$ is a cycle with exactly 2 vertices of every partite set, a contradiction. Analogously, the case that $\left|N^{-}\left(u^{\prime}\right) \cap V\left(D_{3}\right)\right| \geqslant 2$ leads to a contradiction.

Subcase 1.3.2. Let D_{3} be not Hamiltonian. Since D_{3} is strongly connected, Theorem 2.3 implies that D_{3} is not a tournament. Since $\{u\} \cup V\left(D_{1}\right)$ consists of $2 p$ partite sets, it follows that D_{3} consists of the vertices of exactly $2 p$ partite sets and $v_{2} \rightarrow D_{3}$. Analogously to Subcase 1.2 .2 , we see that

$$
\begin{equation*}
\left|V(u) \cap V\left(D_{3}\right)\right|+\left|N^{+}(x) \cap V\left(D_{3}\right)\right|+\left|N^{+}(u) \cap V\left(D_{3}\right)\right| \leqslant 2 p \tag{2}
\end{equation*}
$$

for an arbitrary vertex $x \in V\left(T_{1}\right)$. Theorem 1.2 implies that D_{3} contains a cycle C^{\prime} with the vertices of all the $2 p$ partite sets of D_{3}.

Hence, let $L\left(C^{\prime}\right)=2 p$ for $C^{\prime}=b_{1} b_{2} \ldots b_{2 p} b_{1}$. Let us define $\left\{v_{3}\right\}=V\left(D_{3}\right)-V\left(C^{\prime}\right)$ and $\left\{v_{3}^{\prime}\right\}=V\left(T_{1}\right) \cap V\left(v_{3}\right)$.

Assume that $u \leadsto C^{\prime}$. Since $N^{-}(u) \cap V\left(D_{3}\right) \neq \emptyset$, it follows that $v_{3} \rightarrow u$. Furthermore, (2) yields that $C^{\prime} \leadsto v_{3}^{\prime}$. If $\left\{\tilde{v}_{3}\right\}=V\left(C^{\prime}\right) \cap V\left(v_{3}\right)$, then let the vertices of C be numbered so that $a_{2 p-1} \notin V\left(v_{2}\right)$. In this case $a_{1} v_{3} u a_{2} a_{3} \ldots a_{2 p-1} v_{2} \tilde{v}_{3}^{+} \ldots \tilde{v}_{3}^{-} v_{3}^{\prime} a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction. Hence, let $N^{-}(u) \cap V\left(C^{\prime}\right) \neq \emptyset$ and $b_{i} \rightarrow u$.

Suppose now that $v_{3}^{\prime} \leadsto C^{\prime}$. This yields that $v_{2} \rightarrow v_{3}^{\prime}$, since otherwise we observe that

$$
3 p=d^{+}\left(v_{3}^{\prime}\right) \geqslant\left|V\left(D_{1}\right)\right|+\left|V\left(C^{\prime}\right)\right|-1+\left|\left\{v_{2}\right\}\right|=4 p-1,
$$

a contradiction to $p \geqslant 2$. If the vertices of C are numbered so that $a_{2 p-2} \notin V\left(v_{2}\right)$ and $a_{2 p-1} \notin V\left(b_{i}^{+}\right)$, then $a_{1} a_{2} \ldots a_{2 p-2} v_{2} v_{3}^{\prime} a_{2 p-1} b_{i}^{+} \ldots b_{i}^{-} b_{i} u a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction. Consequently, let $N^{-}\left(v_{3}^{\prime}\right) \cap V\left(C^{\prime}\right) \neq \emptyset$.

Let $\{x, y\}=\left\{u, v_{3}^{\prime}\right\}$ such that $x \rightarrow y$ and $b \in V\left(C^{\prime}\right)$ with $b \rightarrow x$. If $a_{2 p-1} \notin V\left(v_{2}\right)$, then we see that $a_{1} a_{2} \ldots a_{2 p-1} v_{2} b^{+} \ldots b^{-} b x y a_{1}$ is a cycle with exactly 2 vertices of each partite set, a contradiction.

Subcase 1.4. Assume that $\left|V\left(D_{t}\right)\right|=2 p+2$. This implies that $t=2$.
Subcase 1.4.1. Suppose that D_{2} is Hamiltonian with a Hamiltonian cycle $C^{\prime}=$ $b_{1} b_{2} \ldots b_{2 p+2} b_{1}$. It is easy to see that the vertices of C and C^{\prime} can be numbered so that $b_{2 p+2} \rightarrow u$ and $a_{2 p-1} \notin V\left(b_{1}\right)$. Now, we observe that $a_{1} a_{2} \ldots a_{2 p-1} b_{1} b_{2} \ldots b_{2 p+2} u a_{1}$ is a Hamiltonian cycle of D^{\prime}, a contradiction.

Subcase 1.4.2. Let D_{2} be not Hamiltonian. Since D_{1} is a tournament and $u \notin V(x)$ for all $x \in V\left(D_{1}\right)$, we conclude that D_{2} contains the vertices of exactly $2 p+1$ partite sets. Theorem 1.2 implies that D_{2} contains a cycle C^{\prime} with vertices of all the $2 p+1$
partite sets of D_{2}. If $L\left(C^{\prime}\right)=2 p+2$, then D_{2} is Hamiltonian and Subcase 1.4.1 yields a contradiction.

Consequently, it remains to consider the case that $L\left(C^{\prime}\right)=2 p+1$ with $C^{\prime}=$ $b_{1} b_{2} \ldots b_{2 p+1} b_{1}$. Let us define $\left\{v_{2}\right\}=V\left(D_{2}\right)-V\left(C^{\prime}\right)$ and $\left\{v_{2}^{\prime}\right\}=V\left(T_{1}\right) \cap V\left(v_{2}\right)$. If $N^{-}(u) \cap V\left(C^{\prime}\right)=\emptyset$, then we observe that

$$
3 p=d^{+}(u) \geqslant\left|V\left(D_{1}\right)\right|+\left|V\left(C^{\prime}\right)\right|-1=2 p-1+2 p=4 p-1,
$$

a contradiction to $p \geqslant 2$. Hence, there exists a vertex $b_{i} \in V\left(C^{\prime}\right)$ such that $b_{i} \rightarrow u$. Analogously, we see that there exists a vertex $b_{j} \in V\left(C^{\prime}\right)$ such that $b_{j} \rightarrow v_{2}^{\prime}$.

Noticing that either $u \rightarrow v_{2}^{\prime}$ or $v_{2}^{\prime} \rightarrow u$ and that the vertices of C can be numbered so that $a_{2 p-1} \notin V\left(b_{i}^{+}\right) \cup V\left(b_{j}^{+}\right)$, we observe that either $a_{1} a_{2} \ldots a_{2 p-1} b_{i}^{+} \ldots b_{i}^{-} b_{i} u v_{2}^{\prime} a_{1}$ or $a_{1} a_{2} \ldots a_{2 p-1} b_{j}^{+} \ldots b_{j}^{-} b_{j} v_{2}^{\prime} u a_{1}$ is a cycle of D with exactly 2 vertices of every partite set, a contradiction.

Case 2. Assume that $\left|V\left(D_{1}\right)\right|=2 p$. This implies that $\left|V\left(D_{t}\right)\right|=2 p$ and $t=3$ or $\left|V\left(D_{t}\right)\right|=2 p+1$ and $t=2$. Let D_{1} consist of the vertices of exactly k partite sets with $p \leqslant k \leqslant 2 p$. It follows that

$$
\begin{aligned}
6 p^{2}= & \sum_{y \in V\left(D_{1}\right)} d^{-}(y)=\sum_{y \in V\left(D_{1}\right)} d_{D_{1}}^{-}(y)+d\left(u, D_{1}\right)+d\left(T_{1}, D_{1}\right) \\
\leqslant & \frac{2(2 p-k)(2 p-2)+(2 k-2 p)(2 p-1)}{2}+2 p-\left|V(u) \cap V\left(D_{1}\right)\right| \\
& -\left|N^{-}(u) \cap V\left(D_{1}\right)\right|+4 p^{2}-\sum_{x \in V\left(T_{1}\right)}\left|N^{-}(x) \cap V\left(D_{1}\right)\right| \\
= & 6 p^{2}+k-p-\left|V(u) \cap V\left(D_{1}\right)\right|-\left|N^{-}(u) \cap V\left(D_{1}\right)\right| \\
& -\sum_{x \in V\left(T_{1}\right)}\left|N^{-}(x) \cap V\left(D_{1}\right)\right|,
\end{aligned}
$$

and thus

$$
\begin{equation*}
\left|N^{-}(u) \cap V\left(D_{1}\right)\right|+\sum_{x \in V\left(T_{1}\right)}\left|N^{-}(x) \cap V\left(D_{1}\right)\right| \leqslant k-p-\left|V(u) \cap V\left(D_{1}\right)\right| . \tag{3}
\end{equation*}
$$

Let $y_{1} \in V\left(D_{2}\right) \cup \ldots \cup V\left(D_{t}\right)$ be an arbitrary vertex. We will show that there exists a Hamiltonian path in $D_{1} \cup\left\{u, y_{1}\right\}$ with the initial vertex u and the terminal vertex y_{1}. Suppose that this is not true.

First, let D_{1} be Hamiltonian with a Hamiltonian cycle $C=a_{1} a_{2} \ldots a_{2 p} a_{1}$. If $\left|N^{+}(u) \cap V\left(D_{1}\right)\right| \geqslant 2$, then, without loss of generality, let $u \rightarrow a_{1}$ and $a_{2 p} \notin V\left(y_{1}\right)$. But now $u a_{1} a_{2} \ldots a_{2 p} y_{1}$ is a Hamiltonian path in $D_{1} \cup\left\{u, y_{1}\right\}$, a contradiction. Hence,
let $\left|N^{+}(u) \cap V\left(D_{1}\right)\right|=1$. Together with (3), this implies

$$
\begin{aligned}
p-\left|V(u) \cap V\left(D_{1}\right)\right| & \geqslant k-p-\left|V(u) \cap V\left(D_{1}\right)\right| \\
& \geqslant\left|N^{-}(u) \cap V\left(D_{1}\right)\right| \geqslant 2 p-1-\left|V(u) \cap V\left(D_{1}\right)\right|,
\end{aligned}
$$

a contradiction to $p \geqslant 2$.
Secondly, let D_{1} be not Hamiltonian, and thus, according to Theorem 2.3, $k \neq 2 p$. Theorem 1.2 implies that D_{1} contains a cycle with vertices of all the k partite sets. Let $C=a_{1} a_{2} \ldots a_{l} a_{1}$ be a cycle which fulfils this condition and which has the maximal cardinality of all cycles that contain vertices of all the k partite sets of D_{1}. If $L(C)=2 p$, then D_{1} is Hamiltonian and as above, we arrive at a contradiction. Hence, let $L(C)<2 p$ and $T_{1}^{\prime}=D_{1}-V(C)$. It is obvious that T_{1}^{\prime} is a tournament and, according to Theorem 2.1, T_{1}^{\prime} contains a Hamiltonian path $P=b_{1} b_{2} \ldots b_{2 p-l}$.

If $\left|N^{+}(u) \cap V(C)\right| \leqslant p-1$, then it follows that $\left|N^{-}(u) \cap V(C)\right| \geqslant k-p+1-$ $|V(u) \cap V(C)|$, a contradiction to (3). Hence, we conclude that

$$
\begin{equation*}
\left|N^{+}(u) \cap V(C)\right| \geqslant p(\geqslant 2) . \tag{4}
\end{equation*}
$$

Let $u \rightarrow a_{i}$. If $a_{i}^{-} \rightarrow b_{1}$ then, noticing that $P \rightarrow y_{1}, u a_{i} a_{i}^{+} \ldots a_{i}^{-} b_{1} b_{2} \ldots b_{2 p-l} y_{1}$ is a Hamiltonian path in $D_{1} \cup\left\{u, y_{1}\right\}$, a contradiction. Consequently, let $b_{1} \leadsto a_{i}^{-}$. Suppose that $b_{j} \rightarrow b_{1}$ for some $j \geqslant 3$. Let $j_{\max }=\max \left\{j \geqslant 3: b_{j} \rightarrow b_{1}\right\}$.

First, let $a_{i}^{-} \in V\left(b_{1}\right)$. If $b_{1} \rightarrow a_{i-2}$, then, because of the maximality of C, we deduce that $b_{1} \leadsto C$, and thus

$$
p-1 \leqslant d_{D_{1}}^{-}\left(b_{1}\right) \leqslant\left|V\left(T_{1}^{\prime}\right)\right|-2 \quad \Rightarrow \quad\left|V\left(T_{1}^{\prime}\right)\right| \geqslant p+1
$$

a contradiction. Hence, let $a_{i-2} \rightarrow b_{1}$. Now, the maximality of C implies that $a_{i}^{-} \rightarrow$ $\left\{b_{2}, b_{3}, \ldots, b_{2 p-l}\right\}$. If $j_{\max } \neq 2 p-l$ then $u a_{i} a_{i}^{+} \ldots a_{i}^{-} b_{2} b_{3} \ldots b_{j_{\max }} b_{1} b_{j_{\max }+1} \ldots b_{2 p-l} y_{1}$ is a Hamiltonian path of $D_{1} \cup\left\{u, y_{1}\right\}$ and if $j_{\max }=2 p-l$ then $u a_{i} a_{i}^{+} \ldots a_{i}^{-} b_{2} b_{3} \ldots$ $b_{2 p-l} b_{1} y_{1}$ is a Hamiltonian path of $D_{1} \cup\left\{u, y_{1}\right\}$, in both cases a contradiction.

Consequently, it remains to consider the case that $b_{1} \rightarrow a_{i}^{-}$. If $a_{p} \in V\left(b_{1}\right) \cap V(C)$, then the maximality of C implies that $b_{1} \rightarrow\left\{a_{p+1}, a_{p+2}, \ldots, a_{i}^{-}\right\}$and thus $p \neq i$. If $b_{1} \rightarrow a_{p-1}$, then analogously as above we see that $b_{1} \leadsto C$, a contradiction. Again the maximality of C yields that $a_{p} \rightarrow\left\{b_{2}, b_{3}, \ldots b_{2 p-l}\right\}$. If $j_{\max } \neq 2 p-l$, then $b_{2} b_{3} \ldots b_{j_{\max }} b_{1} b_{j_{\max }+1} \ldots b_{2 p-l}$ is a Hamiltonian path of T_{1}^{\prime} and if $j_{\max }=2 p-l$, then $b_{2} b_{3} \ldots b_{2 p-l} b_{1}$ is a Hamiltonian path of T_{1}^{\prime}. Both the Hamiltonian paths have the initial vertex b_{2}. Analogously as above, we see that $b_{2} \rightarrow a_{i}^{-}, b_{2} \rightarrow\left\{a_{q+1}, a_{q+2}, \ldots, a_{i}^{-}\right\}$ and $a_{q} \rightarrow\left\{b_{1}, b_{3}, b_{4}, \ldots, b_{2 p-l}\right\}$ if $a_{q} \in V\left(b_{2}\right) \cap V(C)(q \neq i)$. Without loss of generality, we may suppose that $i>q>p$ (modulo l). But now, the fact that $a_{q} \rightarrow b_{1}$ and $b_{1} \rightarrow\left\{a_{p+1}, a_{p+2}, \ldots, a_{i-1}\right\}$ yields a contradiction.

Summarizing our results, we see that $b_{1} \rightarrow\left\{b_{2}, b_{3}, \ldots, b_{2 p-l}\right\}$. Now, suppose that $u \rightarrow b_{1}$. Let $a_{w} \in V\left(y_{1}\right) \cap V(C)$ (or $a_{w} \in V(C)-V\left(b_{2 p-l}\right)$ arbitrary if $V(C) \cap V\left(y_{1}\right)=$ $\emptyset)$. Then it follows that $a_{w} \rightarrow b_{2 p-l}$, since otherwise $u b_{1} b_{2} \ldots b_{2 p-l} a_{w} a_{w}^{+} \ldots a_{w}^{-} y_{1}$ is a Hamiltonian path in $D_{1} \cup\left\{u, y_{1}\right\}$, a contradiction. The maximality of C implies that $a_{w+1} \leadsto b_{2 p-l}$. If $m \notin\{1,2, \ldots, l\}-\{w, w+1\}$ and $b_{2 p-l} \rightarrow a_{m}$, then $u b_{1} b_{2} \ldots b_{2 p-l} a_{m} a_{m}^{+} \ldots a_{m}^{-} y_{1}$ is a Hamiltonian path of $D_{1} \cup\left\{u, y_{1}\right\}$, a contradiction. Altogether, we have $C \leadsto b_{2 p-l}$. If $a_{n} \in V\left(b_{2 p-l}\right)$, then we conclude that $a_{n} \rightarrow b_{2 p-l-1}$, since otherwise

$$
\begin{equation*}
u b_{1} b_{2} \ldots b_{2 p-l-1} a_{n} a_{n}^{+} \ldots a_{n}^{-} b_{2 p-l} y_{1} \tag{5}
\end{equation*}
$$

is a Hamiltonian path in $D_{1} \cup\left\{u, y_{1}\right\}$. The maximality of D_{1} yields that $a_{n+1} \leadsto$ $b_{2 p-l-1}$. To get no contradiction as in (5), we deduce that $C \leadsto b_{2 p-l-1}$. Successively, it follows that $C \leadsto\left\{b_{1}, b_{2}, \ldots, b_{2 p-l}\right\}$, a contradiction to the strong connectivity of D_{1}.

Consequently, let $b_{1} \rightarrow u$ and thus $d_{D_{1}}^{-}\left(b_{1}\right) \geqslant p$. Furthermore, using (4) and the results above, we conclude that

$$
\begin{aligned}
\left|N_{D_{1}}^{+}\left(b_{1}\right)\right| & \geqslant\left|N^{+}(u) \cap V(C)\right|-\left|V\left(b_{1}\right) \cap V(C)\right|+\left|V\left(T_{1}^{\prime}\right)-\left\{b_{1}\right\}\right| \\
& \geqslant\left|N^{+}(u) \cap V(C)\right|-1 \geqslant p-1 .
\end{aligned}
$$

Altogether, we arrive at the contradiction

$$
2 p=\left|V\left(D_{1}\right)\right|=d_{D_{1}}^{+}\left(b_{1}\right)+d_{D_{1}}^{-}\left(b_{1}\right)+2 \geqslant 2 p+1 .
$$

Hence, for an arbitrary vertex $y_{1} \in V\left(D_{1}\right) \cup \ldots \cup V\left(D_{t}\right)$ there exists a Hamiltonian path of $D_{1} \cup\left\{u, y_{1}\right\}$ with the initial vertex u and the terminal vertex y_{1}.

Subcase 2.1. Assume that $\left|V\left(D_{t}\right)\right|=2 p$ and thus $t=3$ and $D_{2}=\left\{v_{2}\right\}$. Observing the converse D^{-1} of D, we see that for an arbitrary vertex $y_{2} \in V\left(D_{1}\right) \cup V\left(D_{2}\right)$ there exists a Hamiltonian path of $D_{2} \cup\left\{u, y_{2}\right\}$ with the initial vertex y_{2} and the terminal vertex u. Choosing $y_{1}=y_{2}=v_{2}$, we get a Hamiltonian cycle of D^{\prime}, a contradiction.

Subcase 2.2. Suppose that $\left|V\left(D_{t}\right)\right|=2 p+1$ and thus $t=2$. According to (3), we have

$$
\sum_{x \in V\left(T_{1}\right)}\left|N^{-}(x) \cap V\left(D_{1}\right)\right| \leqslant k-p
$$

We conclude that there are at least $k-(k-p)=p \geqslant 2$ vertices in $V\left(T_{1}\right)$ belonging to the partite sets represented in $V\left(D_{1}\right)$ such that they (weakly) dominate D_{1}. Hence, let $w_{1} \in V\left(T_{1}\right)$ with $w_{1} \leadsto D_{1}$ and $x_{1} \in V\left(D_{1}\right) \cap V\left(w_{1}\right)$. Let $D^{\prime \prime}=\left[D^{\prime} \cup\left\{w_{1}\right\}\right]-\left\{x_{1}\right\}$. Assume that there is a vertex $x \in V\left(D^{\prime \prime}\right)$ such that $d_{D^{\prime \prime}}^{+}(x) \leqslant p-1$ or $d_{D^{\prime \prime}}^{-}(x) \leqslant p-1$.

This yields the contradiction $3 p=d_{D}^{+}(x), d_{D}^{-}(x) \leqslant p-1+\left|V\left(T_{1}\right)\right|-1=3 p-1$. Hence, let $d_{D^{\prime \prime}}^{+}(x), d_{D^{\prime \prime}}^{-}(x) \geqslant p \geqslant 2$ for all $x \in V\left(D^{\prime \prime}\right)$, and thus

$$
\begin{equation*}
d\left(D_{2}, w_{1}\right) \geqslant p-1 \geqslant 1 \tag{6}
\end{equation*}
$$

If $D_{1}-\left\{x_{1}\right\}$ is not strongly connected, then let $D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{t^{\prime}}^{\prime}$ be the strong components of $D_{1}-\left\{x_{1}\right\}$ such that $D_{i}^{\prime} \leadsto D_{j}^{\prime}$ for $i<j$. If $D_{1}^{\prime} \leadsto u$, then it follows that $d_{D_{1}^{\prime}}^{-}(y) \geqslant p-1$ for all $y \in V\left(D_{1}^{\prime}\right)$, and thus $\left|V\left(D_{1}^{\prime}\right)\right| \geqslant 2 p-1$, a contradiction to $\left|V\left(D_{1}\right)\right|=2 p$. Consequently, we may assume that there is a vertex $y \in D_{1}^{\prime}$ such that $u \rightarrow y$ provided $D_{1}-\left\{x_{1}\right\}$ is not strongly connected. If $D_{1}-\left\{x_{1}\right\}$ is strongly connected and $D_{1}-\left\{x_{1}\right\} \leadsto u$, then we see that

$$
2 p-1 \leqslant\left|V(u) \cap V\left(D_{1}\right)\right|+\left|N^{-}(u) \cap V\left(D_{1}\right)\right| \leqslant k-p \Rightarrow 3 p-1 \leqslant k \leqslant 2 p
$$

a contradiction to $p \geqslant 2$. Consequently, we observe that there is a vertex $y \in$ $V\left(D_{1}\right)-\left\{x_{1}\right\}$ such that $u \rightarrow y$ provided $D_{1}-\left\{x_{1}\right\}$ is strong.

The above results guarantee that $D^{\prime \prime}$ is strong. If $D^{\prime \prime}$ is 2 -connected, then Theorem 2.2 yields that $D^{\prime \prime}$ is Hamiltonian, a contradiction. Hence $D^{\prime \prime}$ is exactly 1connected. Obviously, the vertices u and w_{1} are no cut-vertices of $D^{\prime \prime}$. Since $D_{1}-\left\{x_{1}\right\} \sim D_{2}, x_{1} \in V\left(w_{1}\right), N^{-}\left(w_{1}\right) \cap V\left(D_{2}\right) \neq \emptyset, N^{-}(u) \cap V\left(D_{2}\right) \neq \emptyset$, $w_{1} \leadsto D_{1}-\left\{x_{1}\right\}$ and $d_{D^{\prime \prime}}^{+}(x), d_{D^{\prime \prime}}^{-}(x) \geqslant 2$ for all $x \in V\left(D^{\prime \prime}\right)$ furthermore, there is also no cut-vertex of $D^{\prime \prime}$ in $D_{1}-\left\{x_{1}\right\}$. Hence, let $x^{\prime} \in V\left(D_{2}\right)$ be a cut-vertex of $D^{\prime \prime}$. Because of $(6), N^{+}(u) \cap V\left(D_{1}^{\prime}\right) \neq \emptyset, w_{1} \leadsto D_{1}, d_{D^{\prime \prime}}^{-}(u) \geqslant 2$ and $d_{D^{\prime \prime}}^{-}\left(w_{1}\right) \geqslant 2$, so if the vertex x^{\prime} were no cut-vertex of D_{2}, then necessarily $x^{\prime} \rightarrow\left\{w_{1}, u\right\} \leadsto$ $D_{2}-\left\{x^{\prime}\right\}=: \hat{D}$ and $u \rightarrow w_{1}$. Since $d_{D^{\prime \prime}}^{-}\left(w_{1}\right) \geqslant p$ this implies that $p=2$, and thus $|\hat{D}|=4$. Let $y \in \hat{D}-V\left(w_{1}\right)$ be such that $d_{\hat{D}}^{+}(y)=1$. Then we observe that $d^{+}(y) \leqslant 1+\left|\left\{x^{\prime}\right\}\right|+\left|V\left(T_{1}\right)\right|-2=5$, a contradiction. Hence, x^{\prime} is a cut-vertex of D_{2}. Let $D_{1}^{\prime \prime}, D_{2}^{\prime \prime}, \ldots, D_{t^{\prime \prime}}^{\prime \prime}$ be the strong components of $D_{2}-\left\{x^{\prime}\right\}$ such that $D_{i}^{\prime \prime} \leadsto D_{j}^{\prime \prime}$ for $i<j$.

Suppose that there is a vertex $y \in V\left(D_{t^{\prime \prime}}^{\prime \prime}\right)$ with $y \rightarrow u$. Since $N^{+}(u) \cap V\left(D_{1}^{\prime}\right) \neq$ $\emptyset, w_{1} \leadsto D_{1}$ and (6) is valid, we conclude that $D^{\prime \prime}-\left\{x^{\prime}\right\}$ is strongly connected, a contradiction. Consequently, let $u \leadsto D_{t^{\prime \prime}}^{\prime \prime}$. This yields that $d_{D_{t^{\prime \prime}}^{\prime \prime}}^{+}(x) \geqslant 3 p-$ $\left(\left|V\left(T_{1}\right)\right|-1\right)-\left|\left\{x^{\prime}\right\}\right|=p-1$ for all $x \in V\left(D_{t^{\prime \prime}}^{\prime \prime}\right)$ and thus $\left|V\left(D_{t^{\prime \prime}}^{\prime \prime}\right)\right| \geqslant 2 \delta_{D_{t^{\prime \prime}}^{\prime \prime}}^{+}+1 \geqslant 2 p-1$. To get no contradiction, it follows that $t^{\prime \prime}=2,\left|V\left(D_{2}^{\prime \prime}\right)\right|=2 p-1$ and $D_{2}^{\prime \prime} \leadsto T_{1} \cup\left\{x^{\prime}\right\}$. Since $D_{1}-\left\{x_{1}\right\} \leadsto D_{2}, d_{D^{\prime \prime}}^{-}(u) \geqslant 2$ and $w_{1} \leadsto D_{1}-\left\{x_{1}\right\}$, we deduce that $D^{\prime \prime}-\left\{x^{\prime}\right\}$ is strongly connected, a contradiction.

This completes the proof of the theorem.
Combining Corollary 3.2 with Theorems 1.6 and 3.4 we can see that we have found a solution of Problem 1.3 for regular multipartite tournaments and $r_{i}=\left|V_{i}\right|-1$ for all $1 \leqslant i \leqslant c$.

Corollary 3.5. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament D with $c \geqslant 5$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r \geqslant 2$. Then D contains a cycle with exactly $r-1$ vertices of each partite set.

Now, we shall prove the main theorem of this article.

Theorem 3.6. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament D with $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r \geqslant 2$. If $c \geqslant 5$ or $c=4$ and $r \geqslant 4$ or $c=3$ or $c=2$ and D is not isomorphic to $B\left(\frac{1}{2} r, \frac{1}{2} r, \frac{1}{2} r, \frac{1}{2} r\right)$, then D contains a cycle with exactly $r-1$ vertices from each partite set.

Proof. If $c \geqslant 5$, then Corollary 3.5 yields the desired result. Since, according to Theorem 1.4, D is Hamiltonian, the result for $c=2$ follows directly from Theorem 1.7 while for the case $c=3$ we use Theorems 1.1 and 1.8. Hence, let $c=4$. According to Remark 2.8, r has to be even. If $r \geqslant 6$, then Corollary 3.2 leads to the desired result.

Consequently, it remains to consider the case that $c=r=4$. Suppose that D does not contain any cycle with exactly 3 vertices of every partite set. Let T_{1} be a subtournament of D of order 4 and $D^{\prime}=D-V\left(T_{1}\right)$. This implies that $\alpha\left(D^{\prime}\right)=3$. With respect to Remark 2.8, we observe that $d^{+}(x), d^{-}(x)=6$ for all $x \in V(D)$ and $d_{D^{\prime}}^{+}(x), d_{D^{\prime}}^{-}(x) \geqslant 3$ for all $x \in V\left(D^{\prime}\right)$. Now we distinguish four different cases.

Case 1. Let $\kappa\left(D^{\prime}\right) \geqslant 3$. In this case Theorem 2.2 yields that D^{\prime} is Hamiltonian, a contradiction.

Case 2. Assume that $\kappa\left(D^{\prime}\right)=0$. Let $D_{1}, D_{2}, \ldots, D_{t}$ be the strong components of D such that $D_{i} \leadsto D_{j}$ for $i<j$. Since $d_{D_{1}}^{-}(x) \geqslant 3$ for all $x \in V\left(D_{1}\right)$, we deduce that $\left|V\left(D_{1}\right)\right| \geqslant 7$. Analogously, we conclude that $\left|V\left(D_{t}\right)\right| \geqslant 7$. Hence, we arrive at the contradiction $12=\left|V\left(D^{\prime}\right)\right| \geqslant\left|V\left(D_{1}\right)\right|+\left|V\left(D_{t}\right)\right| \geqslant 14$.

Case 3. Suppose that $\kappa\left(D^{\prime}\right)=1$. Let u be a cut-vertex of D^{\prime} such that $D^{\prime}-$ u consists of the strong components $D_{1}, D_{2}, \ldots, D_{t}$ with $D_{i} \leadsto D_{j}$ for $i<j$. This implies that $d_{D_{1}}^{-}(x) \geqslant 2$ for all $x \in V\left(D_{1}\right)$ and thus, since $c=4$, we conclude that $\left|V\left(D_{1}\right)\right| \geqslant 6$. Analogously, we observe that $\left|V\left(D_{t}\right)\right| \geqslant 6$, a contradiction to $\left|V\left(D^{\prime}\right)\right|=12$.

Case 4. Assume that $\kappa\left(D^{\prime}\right)=2$.
First, let D^{\prime} contain a cycle-factor. In this case, because of $\alpha\left(D^{\prime}\right)=3$, Theorem 2.4 yields that D^{\prime} is Hamiltonian, a contradiction.

Secondly, let D^{\prime} contain no cycle-factor. Now, Lemma 2.6 implies that $V\left(D^{\prime}\right)$ can be partitioned into four subsets Y, Z, R_{1} and R_{2} such that $R_{1} \leadsto Y$ and $\left(R_{1} \cup Y\right) \leadsto$ R_{2}, where Y is an independent set and $|Y|>|Z|$.

If $|Z| \leqslant 1$, then we deduce that $\kappa\left(D^{\prime}\right) \leqslant 1$, a contradiction to $\kappa\left(D^{\prime}\right)=2$. If $|Z| \geqslant 3$, then Y has to be an independent set with $|Y| \geqslant 4$, a contradiction to
$\alpha\left(D^{\prime}\right)=3$. Hence, let $|Z|=2$ and $|Y|=3$, which means that Y is a partite set of D^{\prime}. Without loss of generality, let $\left|R_{1}\right| \leqslant\left|R_{2}\right|$.

Assume that $\left|R_{1}\right|=0$. This yields that $\left|R_{2}\right|=7$ and thus $d_{D^{\prime}}^{+}(y) \geqslant 7$ for all $y \in Y$, a contradiction to $d^{+}(x), d^{-}(x)=6$ for all $x \in V(D)$.

Now, let $1 \leqslant\left|R_{1}\right| \leqslant 2$. In this case we see that there is a vertex $x \in R_{1}$ with $d_{D\left[R_{1}\right]}^{-}(x)=0$ and thus $d_{D^{\prime}}^{-}(x) \leqslant|Z|=2$, a contradiction.

Finally, let $\left|R_{1}\right|=3$. Because $d_{D^{\prime}}^{-}(x) \geqslant 3$ for all $x \in R_{1}$, we conclude that $D\left[R_{1}\right]$ is a 3-cycle and $Z \rightarrow R_{1}$. Since $D^{\prime}-Y$ and R_{1} consist of vertices of 3 partite sets, this is impossible. This completes the proof of the theorem.

For the case that $c=4$ and $r=2$, Theorem 3.6 is not true in general as the following example (see also [12]) demonstrates.

Example 3.7. Let $V_{i}=\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$ for $i=1,2,3,4$ be the partite sets of a 4-partite tournament such that $v_{1}^{\prime} \rightarrow v_{2}^{\prime} \rightarrow v_{3}^{\prime} \rightarrow v_{1}^{\prime}, v_{1}^{\prime \prime} \rightarrow v_{2}^{\prime \prime} \rightarrow v_{3}^{\prime \prime} \rightarrow v_{1}^{\prime \prime}$,

$$
\begin{gathered}
\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\} \rightarrow v_{4}^{\prime} \rightarrow\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\} \rightarrow v_{4}^{\prime \prime} \rightarrow\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\} \\
v_{1}^{\prime} \rightarrow v_{3}^{\prime \prime} \rightarrow v_{2}^{\prime} \rightarrow v_{1}^{\prime \prime} \rightarrow v_{3}^{\prime} \rightarrow v_{2}^{\prime \prime} \rightarrow v_{1}^{\prime}
\end{gathered}
$$

(see also Fig. 2). Now it is a simple matter to check that the resulting 4-partite tournament is 3 -regular without a cycle containing exactly $r-1=1$ vertices of every partite set.

Figure 2. A regular 4-partite tournament without a strong subtournament of order 4

The results of the Theorems 1.4 and 1.6 and Corollary 3.5 lead us to the following conjecture.

Conjecture 3.8. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a regular c-partite tournament D with $c \geqslant 5$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{c}\right|=r \geqslant 2$. Then D contains a cycle with exactly m vertices of each partite set for every $m \in\{1,2, \ldots, r\}$.

Note that, according to Theorem 3.1, Conjecture 3.8 is valid for a given m if c and r are sufficiently large.

References

[1] J. Bang-Jensen, G. Gutin: Digraphs: Theory, Algorithms and Applications. Sprin-ger-Verlag, London, 2000.

Zbl 0985.05002
[2] L. W. Beineke, C. Little: Cycles in bipartite tournaments. J. Combinat. Theory Ser. B 32 (1982), 140-145.

Zbl 0465.05035
[3] J. A. Bondy: Diconnected orientations and a conjecture of Las Vergnas. J. London Math. Soc. 14 (1976), 277-282.

Zbl 0344.05124
[4] P. Camion: Chemins et circuits hamiltoniens des graphes complets. C. R. Acad. Sci. Paris 249 (1959), 2151-2152.

Zbl 0092.15801
[5] W.D. Goddard, O. R. Oellermann: On the cycle structure of multipartite tournaments. In: Graph Theory Combinat. Appl. 1 (Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schenk, eds.). Wiley-Interscience, New York, 1991, pp. 525-533. Zbl 0840.05026
[6] Y. Guo: Semicomplete multipartite digraphs: a generalization of tournaments. Habilitation thesis. RWTH Aachen, 1998.
[7] G. Gutin: Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J. Graph Theory 19 (1995), 481-505.

Zbl 0839.05043
[8] G. Gutin, A. Yeo: Note on the path covering number of a semicomplete multipartite digraph. J. Combinat. Math. Combinat. Comput. 32 (2000), 231-237. Zbl 0949.05066
[9] J. W. Moon: On subtournaments of a tournament. Canad. Math. Bull. 9 (1966), 297-301. Zbl 0141.41204
[10] L. Rédei: Ein kombinatorischer Satz. Acta Litt. Sci. Szeged 7 (1934), 39-43.
Zbl 0009.14606
[11] M. Tewes, L. Volkmann, and A. Yeo: Almost all almost regular c-partite tournaments with $c \geqslant 5$ are vertex pancyclic. Discrete Math. 242 (2002), 201-228. Zbl 0993.05083
[12] L. Volkmann: Strong subtournaments of multipartite tournaments. Australas. J. Combin. 20 (1999), 189-196.

Zbl 0935.05051
[13] L. Volkmann: Cycles in multipartite tournaments: results and problems. Discrete Math. 245 (2002), 19-53.

Zbl 0996.05063
[14] L. Volkmann: All regular multipartite tournaments that are cycle complementary. Discrete Math. 281 (2004), 255-266.

Zbl 1049.05043
[15] L. Volkmann, S. Winzen: Almost regular c-partite tournaments contain a strong subtournament of order c when $c \geqslant 5$. Submitted.
[16] A. Yeo: One-diregular subgraphs in semicomplete multipartite digraphs. J. Graph Theory 24 (1997), 175-185.

Zbl 0865.05045
[17] A. Yeo: Semicomplete multipartite digraphs. Ph.D. Thesis. Odense University, 1998.
[18] A. Yeo: How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin. 15 (1999), 481-493.

Zbl 0939.05059
[19] K.-M. Zhang: Vertex even-pancyclicity in bipartite tournaments. Nanjing Daxue Xuebao Shuxue Bannian Kan 1 (1984), 85-88.

Authors' address: Lutz Volkmann, Stefan Winzen, Lehrstuhl II für Mathematik, RWTH Aachen, Germany, e-mails: volkm@math2.rwth-aachen.de, winzen@math2. rwth-aachen.de.

