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Abstract. By a ternary system we mean an ordered pair (W, R), where W is a finite
nonempty set and R ⊆ W×W×W . By a signpost system we mean a ternary system (W, R)
satisfying the following conditions for all x, y, z ∈ W : if (x, y, z) ∈ R, then (y, x, x) ∈ R
and (y, x, z) 6∈ R; if x 6= y, then there exists t ∈ W such that (x, t, y) ∈ R. In this paper,
a signpost system is used as a common description of a connected graph and a spanning
tree of the graph. By a ct-pair we mean an ordered pair (G, T ), where G is a connected
graph and T is a spanning tree of G. If (G, T ) is a ct-pair, then by the guide to (G, T ) we
mean the ternary system (W,R), where W = V (G) and the following condition holds for
all u, v, w ∈ W : (u, v, w) ∈ R if and only if uv ∈ E(G) and v belongs to the u − w path
in T . By Proposition 1, the guide to a ct-pair is a signpost system. We say that a signpost
system is tree-controlled if it satisfies a certain set of four axioms (these axioms could be
formulated in a language of the first-order logic). Consider the mapping ϕ from the class of
all ct-pairs into the class of all signpost systems such that ϕ((G, T )) is the guide to (G, T )
for every ct-pair (G, T ). It is proved in this paper that ϕ is a bijective mapping from the
class of all ct-pairs onto the class of all tree-controlled signpost systems.

Keywords: signpost system, path, connected graph, tree, spanning tree

MSC 2000 : 05C38, 05C05, 05C12, 05C99

1. Signpost systems and ct-pairs

Following [7], we say that S is a ternary system if S = (W, R), where W is a finite

nonempty set and R ⊆ W ×W ×W .
Let S = (W, R) be a ternary system. We denote V (S) = W . Moreover, if

u, v, w ∈ V (S), then instead of (u, v, w) ∈ R we will write uvSw and instead of

(u, v, w) 6∈ R we will write ¬(uvSw).
Let S be a ternary system. We denote by AS the binary relation on V (S) defined

as follows: (u, v) ∈ AS if and only if

u 6= v and if utSv, then t = v for every t ∈ V (S)
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for all u, v ∈ V (S). Moreover, we denote by SA the ternary system defined as follows:

V (SA) = V (S) and

xySAz if and only if xySz and (x, y) ∈ AS

for all x, y, z ∈ V (S).
By a partial signpost system we mean a ternary system S satisfying the following

axioms (sp1) and (sp2):

(sp1) if xySz, then yxSx for all x, y, z ∈ V (S);
(sp2) if xySz, then ¬(yxSz) for all x, y, z ∈ V (S).

Lemma 1. Let S be a partial signpost system, let u, v, w ∈ V (S), and let uvSw.

Then

(a) uvSv,

(b) u 6= v, and

(c) u 6= w.

���������
. Axiom (sp1) implies (a) and axiom (sp2) implies (b). Combining

axioms (sp1) and (sp2), we get (c). �

By a graph we mean a finite undirected graph without loops or multiple edges

(notions and symbols not defined here can be found in [1]). Let S be a partial signpost
system. According to axiom (sp1), xySy if and only if yxSx for all x, y ∈ V (S). By
the underlying graph of S we mean the graph G defined as follows: V (G) = V (S)
and

uv ∈ E(G) if and only if uvSv for all u, v ∈ V (S).

By a signpost system we mean a partial signpost system S satisfying the following

axiom (sp3):

(sp3) if x 6= y, then there exists t ∈ V (S) such that xtSy for all x, y ∈ V (S).

The term “signpost system” appeared for the first time in [2]. Nonetheless, sign-
post systems were implicitly studied already in [3] and [4].

Let T be a tree and let u and v be adjacent vertices of T . Then by T (u, v) we
denote the component of T−u which contains v. Recall that if S is a partial signpost

system, u, v, w ∈ V (S), and uvSw, then u and v are adjacent in the underlying graph
of S. The next lemma will be used also in Section 2.
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Lemma 2. Let S be a partial signpost system, let T be a tree, and let T be a

component of the underlying graph of S. Assume that there exist u, v, w ∈ V (S)
such that uvSw, u ∈ V (T ), and w does not belong to T (u, v). Then S is not a

signpost system.

���������
. Put n = |V (F (u, v))|. Without loss of generality we assume that

if |V (T (u∗, v∗)| < n, then w∗ ∈ V (T (u∗, v∗))

for every u∗, v∗, w∗ ∈ V (S) such that u∗v∗Sw∗ and u∗ ∈ V (T ).
Suppose, to the contrary, that S satisfies axiom (sp3). There exists t ∈ V (S) such

that vtSw. Obviously, v and t are adjacent in T . Axiom (sp2) implies that t 6= u.

Hence n > 2 and |V (T (v, t))| < n. This means that w ∈ V (T (v, t)) and therefore
w ∈ V (T (u, v)), which is a contradiction. Thus S does not satisfy axiom (sp3), which
completes the proof. �

Corollary 1. Let S be a signpost system, and let G be the underlying graph

of S. If G is disconnected, then no component of G is a tree.

Lemma 3. Let S be a signpost system, let u, v ∈ V (S), and let (u, v) ∈ AS .

Then uvSv.

���������
. Since (u, v) ∈ AS , we have u 6= v. Since S satisfies axiom (sp3), there

exists t ∈ V (S) such that utSv. This implies that t = v and therefore uvSv. �

Corollary 2. Let S be a signpost system, and let u, v ∈ V (S). Then (u, v) ∈ AS

if and only if uvSAv.

Let G be a connected graph, and let d denote the distance function of G. By the

step system of G we mean a ternary system S such that V (S) = V (G) and

uvSw if and only if d(u, v) = 1 and d(v, w) = d(u, w)− 1 for all u, v, w ∈ V (S).

It is easily shown that if S is the step system of a connected graph, then S is a
signpost system and SA = S.

Remark 1. Let W = {w1, w2, w3}, where w1, w2, and w3 are pairwise distinct.

Put w4 = w1 and w5 = w2. Let S = (W, R) denote the ternary system such that
R is the set of the following nine elements: wiwi+1Swi+1, wi+1wiSwi, wiwi+1Swi+2

for i = 1, 2, 3. It is easy to see that S is a signpost system but SA does not satisfy
axiom (sp1).
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As was proved in [3], if S is a signpost system such that the underlying graph

of S is connected, then S is the step system of a connected graph if and only if
S satisfies a finite set A of certain axioms (all the axioms in A could be formulated
in a language of the first order logic). A shorter proof of this result can be found

in [6]. A stronger result was found for modular graphs and median graphs in [2].
(Without connections to step systems, signpost systems were studied in [7]).

The present paper brings a new view on signpost systems. We will show that a
signpost system of a certain kind can be used as a common description of a connected

graph and a spanning tree of the graph.

By a ct-pair we mean an ordered pair (G, T ), where G is a connected graph and
T is a spanning tree of G. Let P = (G, T ) be a ct-pair. By the guide to P we mean

the ternary system S defined as follows: V (S) = V (G) and

uvSw if and only if uv ∈ E(G) and v belongs to the u− w path in T

for all u, v, w ∈ V (G).

Proposition 1. Let P = (G, T ) be a ct-pair and let S denote the guide to P .

Then S is a signpost system.

���������
. Consider arbitrary u, v, w ∈ V (S). If u 6= v, then there exists t ∈ V (S)

such that t belongs to the u− v path in T and ut ∈ E(G), which means that utSv.

Hence S satisfies axiom (sp3). Let now uvSw. Then uv ∈ E(G) and v belongs to
the u− w path in T . Obviously, u 6= v. It is clear that v belongs to the v − u path

in T and therefore vuSu. Since u 6= v, u does not belong to the v − w path in T

and therefore ¬(vuSw). We see that S satisfies axioms (sp1) and (sp2). Hence S is

a signpost system. �

It will be proved in Section 3 that if S is the guide to a ct-pair, then SA is also a

signpost system.

Let G and H be graphs, and let S be a signpost system. We will prove that
(G, H) is a ct-pair and S is the guide to (G, H) if and only G is the underlying graph

of S, H is the underlying graph of SA, and S satisfies a certain set of four axioms.
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2. Tree-like signpost systems and trees

We say that a signpost system S is tree-like if it satisfies the following axioms (tl1)

and (tl2):

(tl1) if x 6= y, then there exists at most one t ∈ V (S) such that xtSy for all
x, y ∈ V (S);

(tl2) if xySy, then xySz or yxSz for all x, y, z ∈ V (S).

It was shown in [5] that, simply saying, every tree can be considered as a finite

nonempty set with a certain binary operation. Some ideas of [5] will be used in the
proof of the following theorem.

Theorem 1. Let H be a graph, and let S be a signpost system. Then the

following two statements are equivalent:

(I) H is a tree and S is the step system of H ;

(II) S is tree-like and H is the underlying graph of S.
���������

. It is easy to prove that (I) implies (II). We will prove that (II) implies (I).

Assume that (II) holds. Consider an arbitrary component F of H . We denote by SF

the ternary system defined as follows: V (SF ) = V (F ) and

uvSF w if and only if uvSw for all u, v, w ∈ V (F ).

It is not difficult to see that SF is a tree-like signpost system and F is the underlying
graph of S(F ). Let d and Sstep denote the distance function of F and the step system

of F , respectively.
Consider arbitrary u, v ∈ V (F ). We now prove that

(1) uxSstepv if and only if uxSF v for all x ∈ V (F ).

We proceed by induction on d(u, v). The case when d(u, v) 6 1 is obvious. Assume
that d(u, v) > 2 and the following statement holds for all u∗, v∗ ∈ V (F ) such that
d(u∗, v∗) = d(u, v)− 1:

(2) u∗x∗Sstepv∗ if and only if u∗x∗SF v∗ for all x∗ ∈ V (F ).

Consider an arbitrary y ∈ V (F ) and assume that uySstepv. Obviously, uySF y

and thus, by axiom (tl2), yuSF v or uySF v. Assume that yuSF v. Since d(y, v) =
d(u, v) − 1, (2) implies that yuSstepv, which is a contradiction. Thus uySstepv. We

have proved that

(3) if uySstepv, then uySF v for y ∈ V (F ).
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Consider an arbitrary z ∈ V (F ) and assume that uzSF v. There exists t ∈ V (F )
such that utSstepv. By (3), utSF v. Since S satisfies axiom (tl1), we get t = z. Hence
uzSstepv and the proof of (1) is complete. This means that Sstep = SF .
Assume that F contains a cycle. Let m denote the minimum length of a cycle

in H . Consider a cycle C in H such that the length of C is m. Let dC denote the
distance function of C. It is easy to see that dC(u, v) = d(u, v) for all u, v ∈ V (C).
There exists i > 2 such that m = 2i or m = 2i− 1. If m = 2i, then Sstep does not
satisfy axiom (tl1), which is a contradiction. Assume that m = 2i− 1. Then there
exist x, y, z ∈ V (C) such that xy ∈ E(C) and d(x, z) = i − 1 = d(y, z). Obviously,
xySstepy, ¬xySstepz, and ¬yxSstepz. Hence Sstep does not satisfy axiom (tl2), which

is a contradiction. This means that F is a tree.
By virtue of Corollary 1, F = H . Hence H is a tree, which completes the proof.

�

Proposition 2. For every tree T there exists exactly one signpost system S such

that T is the underlying graph of S.
���������

. Let Sstep denote the step system of T . By Theorem 1, T is the

underlying graph of Sstep. Hence there exists at least one signpost system S such
that T is the underlying graph of S.

Assume that there exists a signppost system S0 different from Sstep such that T is
the underlying graph of S0. It is easy to see that there exist u, v, w ∈ V (T ) such
that v and w belong to distinct components of T − u and uvS0w. Lemma 2 implies
that S0 is not a signpost system, which is a contradiction. Thus the proposition is

proved. �

The following lemma will be used in Section 3.

Lemma 4. Let T be a tree, and let u, v, w ∈ V (T ) be such that u 6= v. Then the

following two statements are equivalent:

(I) v belongs to the u− w path in T ;

(II) there exists t ∈ V (T ) such that vt ∈ E(T ), t belongs to the v − u path in T ,

and v belongs to the t− w path in T .
���������

. It is clear that (I) implies (II).

Conversely, let (II) hold. Since vt ∈ E(T ) and t belongs to the v−u path in T , we
see that v does not belong to the t− u path in T . If there exists x ∈ V (T ) different
from t such that x belongs both to the u−t path in T and to the t−w path in T , then
T contains a cycle; a contradiction. This means that t is the only common vertex of

the u− t path in T and the t−w path in T . Since v belongs to the t−w path in T ,
we see that (II) holds, which completes the proof. �
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3. Tree-controlled signpost systems and ct-pairs

We say that a signpost system S is tree-controlled if it satisfies the following
axioms (tc1), (tc2), (tc3), and (tc4):

(tc1) (x, y) ∈ AS if and only if (y, x) ∈ AS for all x, y ∈ V (S);
(tc2) if x 6= y, then there exists exactly one t ∈ V (S) such that xtSy and

(x, t) ∈ AS for all x, y ∈ V (S);
(tc3) if (x, y) ∈ AS , then xySz or yxSz for all x, y, z ∈ V (S);
(tc4) xySz if and only if xySy and there exists t ∈ V (S) such that (y, t) ∈ AS ,

ytSx, and tySz for all x, y, z ∈ V (S).

Remark 2. It is obvious that all the axioms (sp1), (sp2), (sp3), (tl1) (tl2), (tc1),
(tc2), (tc3), and (tc4) can be formulated in the language of the first-order logic.

Lemma 5. Let S be a tree-controlled signpost system. Then SA is a tree-like

signpost system.
���������

. Consider arbitrary u, v, w ∈ V (S). Assume that uvSAw. Then (u, v) ∈
AS and uvSw. Since S satisfies axiom (tc1), we have (v, u) ∈ AS . Since S satisfies

axioms (sp1) and (sp2), we have vuSu and ¬(vuSw). This means that vuSAu and
¬(vuSAw). Hence SA satisfies axioms (sp1) and (sp2). Let u 6= v. Since S satisfies

axiom (tc2), there exists exactly one t ∈ V (S) such that utSv and (u, t) ∈ AS . This
implies that SA satisfies axioms (sp3) and (tl1). Assume that uvSAv. Then (u, v) ∈
AS and uvSv. Since S satisfies axioms (sp1) and (tc3), we see that (v, u) ∈ AS and,
moreover, uvSw or vuSw. Thus uvSAw or vuSAw. Hence SA satisfies axiom (tl2)
and therefore SA is a tree-like signpost system, which completes the proof. �

Recall that if P is a ct-pair, then (by Proposition 1), the guide to P is a signpost
system. Moreover, if S is a tree-controlled signpost system, then SA is a signpost
system as well. The next theorem is the main result of this paper.

Theorem 2. Let G and H be graphs, and let S be a signpost system. Then the

following two statements are equivalent:

(I) (G, H) is a ct-pair and S is the guide to (G, H);

(II) S is tree-controlled, G is the underlying graph of S, and H is the underlying

graph of SA.
���������

. (I) → (II): Let (G, H) be a ct-pair and let S be the guide to (G, H).
Then H is a spanning tree of G. Obviously, V (G) = V (H) = V (S). Consider
arbitrary u, v, w ∈ V (S).
It follows from the definition of the guide to a ct-pair that uv ∈ E(G) if and only

if uvSv. Thus G is the underlying graph of S.
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Recall that H is a tree. It is clear that (u, v) ∈ AS if and only if uv ∈ E(H).
Hence S satisfies axiom (tc1). Moreover, it is easy to see that uvSAw if and only
if uv ∈ E(H) and v belongs to the u − w path in H . This implies that SA is the
step system of H . Theorem 1 implies that SA is a tree-like signpost system and H is

the underlying graph of SA. Hence S satisfies axioms (tc2) and (tc3). It remains to
prove that S satisfies axiom (tc4).

Assume that uvSw. By Lemma 1, uvSv and u 6= v. Moreover, since S is the guide
to (G, H), we see that v belongs to the u − w path in H . Combining the fact that

SA is the step system of H with Lemma 4, we see that there exists t ∈ V (S) such
that vtSAu and tvSAw; therefore (v, t) ∈ AS , vtSu, and tvSw.

Conversely, assume that uvSv and there exists t ∈ V (S) such that (v, t) ∈ AS ,
vtSu, and tvSw. Since uvSv, we get u 6= v. Lemma 4 implies that v belongs to the

u−w path in H . Since uvSv, we get uv ∈ E(G). According to the definition of the
guide to a ct-pair, uvSw.

Hence S satisfies axiom (tc4) and therefore S is tree-controlled.
(II) → (I): Let S be tree-controlled, let G be the underlying graph of S, and let

H be the underlying graph of SA. Obviously, V (G) = V (S) = V (SA) = V (H).
Consider arbitrary u, v, w ∈ V (S).
By Lemma 5, SA is a tree-like signpost system. Recall that H is the underlying

graph of SA. Theorem 1 implies that H is a tree and SA is the step system of H .

Obviously, if uvSAv, then uvSv. This implies that H is a factor of G. Since
H is a tree, we see that (G, H) is a ct-pair. It remains to prove that S is the guide

to (G, H).
Assume that uv ∈ E(G) and v belongs to the u−w path in H . Since uv ∈ E(G),

we have u 6= v. By Lemma 5, there exists t ∈ V (H) such that

tv ∈ E(H), t belongs to the u− v path in H

and v belongs to the t− w path in H.

Since H is the underlying graph of SA, we have vtSAt and thus, by Corollary 2,
(v, t) ∈ AS . Recall that SA is the step system of H . We have vtSAu and tvSAw.

This implies that vtSu and tvSw. Since uv ∈ E(G), we have uvSv. Thus, by
axiom (tc4), uvSw.

Conversely, assume that uvSw. Since S satisfies axiom (tc4), we see that uvSv

and there exists t ∈ V (S) such that (v, t) ∈ AS , vtSu, and tvSw. It is clear that

vtSAu and tvSAw. Since SA is the step system of H , we see that (4) holds. Recall
that uvSv. By Lemma 1, u 6= v. Lemma 4 implies that v belongs to the u−w path

in H . Since uvSv and G is the underlying graph of S, we have uv ∈ E(G).
Hence S is the guide to (G, H), which completes the proof. �
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Proposition 3. Let S be the guide to a ct-pair. Then SA is a tree-like signpost

system.
���������

. By Proposition 1, S is a signpost system. Theorem 2 implies that S is

tree-controlled. Hence, by Lemma 5, SA is a tree-like signpost system. �

The following two corollaries are immediate consequences of Theorem 1.

Corollary 3. A signpost system S is tree-controlled if and only if there exists a

ct-pair P such that S is the guide to P .

Corollary 4. Let ϕ denote the mapping from the class of all ct-pairs into the

class of all signpost systems defined as follows:

ϕ(P ) is the guide to P for every ct-pair P.

Then ϕ is a bijective mapping from the class of all ct-pairs onto the class of all
tree-controlled signpost systems.
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