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Abstract. It is proved that a linear surjection Φ: A → B, which preserves noninvertibility
between semisimple, unital, complex Banach algebras, is automatically injective.
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In a recent result, Brešar, Fošner, and Šemrl [3] extended Sourour’s result [4]

on the form of linear bijection, which preserve invertibility, from B(X) to arbitrary
semisimple Banach algebras with ‘large socle’ (see also Aupetit and Mouton [2]).

The present note was motivated by Sourour’s question in [4]: Is a linear, unital
surjection Φ: B(X) → B(Y ), which preserves invertibility, necessarily injective? We
show below, with help of [3], that the answer is affirmative when ‘invertibility’ is
replaced by ‘noninvertibility’.

Before stating the result, we collect some terminology: If a is an element of a
Banach algebra A, we let Sp(a) be its spectrum and socA the socle of A (see [1]).
Recall that an ideal I of A is called essential if it has a nonzero intersection with
every nonzero ideal of A; in semisimple Banach algebras this is equivalent to a · I =
0 ⇒ a = 0 for each a ∈ A. As an example, if A = B(X) then socA equals the
ideal of finite-rank operators, and is essential. Finally, a linear mapping Φ preserves
noninvertibility (in one direction) if Φ(a) is not invertible whenever a is not invertible.
We will prove the following

Theorem 1. Let Φ: A → B be a linear surjection that preserves noninvertibility
between semisimple, unital, complex Banach algebras A and B (in one direction
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only). Then it is bounded and bijective. Moreover, there exists an invertible a ∈ A
such that Ψ(x) := Φ(ax) satisfies

(1) Ψ(Ψ−1(y2)−Ψ−1(y)2) · socB = 0 ∀ y ∈ B.

In particular, if socB is an essential ideal of B then Ψ−1, hence also Ψ, is a Jordan
isomorphism. In this case, Φ(x) = Ψ(a−1x) = b · Ψ′(x), where Ψ, Ψ′ : A → B are
Jordan isomorphisms, and b ∈ B is invertible.
���������

. We claim that Φ is injective:
Indeed, suppose Φ(n) = 0 for some nonzero n ∈ A. As A is semisimple, we can

then find some c ∈ A such that cn is not a quasinilpotent. By surjectivity, Φ(a) = 1
for some a, which is necessarily invertible. Now, as Sp[((1− ξ)c + ξa−1)n] 6= {0} at
ξ = 0, the Scarcity Lemma (see [1, Theorem 3.4.25, and Corollary 3.4.18]) on the
analytic multifunction ξ 7→ Sp[((1− ξ)c+ ξa−1)n] implies that it differs from {0} for
any ξ off some subset Ω ⊂ � with zero capacity. Observe that such Ω can contain no
interval [1, Corollary A.1.27], and that a belongs to the open set of invertibles, while

the mapping x 7→ x−1 is continuous at x = a−1. Consequently, we may replace, if
necessary, c by some (1− ξ)c+ ξa−1 to ensure that, in addition to Sp(cn) 6= {0}, the
element c is invertible, and that the line-interval [c−1, a] contains solely invertible
elements.

Let b := c−1 − a, and let D := {µ ∈ � ; (a + µb) is invertible} be an open subset,
which contains [0, 1]. If µ ∈ D is sufficiently small, the right-hand side of

Φ(a + µb + λn) = Φ(a) + µΦ(b) + 0 = 1 + µΦ(b),

is invertible for any λ. However,

(2) a + µb + λn = (a + µb) · (1 + λ(a + µb)−1n)

and the analytic function µ 7→ (a + µb)−1n has at least one nonzero spectral point

at µ := 1. By the Scarcity Lemma we may find arbitrarily small µ ∈ [0, 1], such
that (a + µb)−1n is not a quasinilpotent. Consequently, for any of these small µ, the

right-hand side of (2) is noninvertible for at least some λ, contradicting the fact that
it is mapped into invertible Φ(a + µb + λn) = 1 + µΦ(b). Thus, Φ is injective, hence
also bijective.
Since a is invertible, the mapping Ψ(x) := Φ(ax) is also bijective. Its inverse is

unital and preserves invertibility between semisimple Banach algebras. Obviously
then, Sp(Ψ−1(y)) ⊆ Sp(y), so Ψ−1 is bounded by [1, Theorem 5.5.2]. The same

holds for Φ: x 7→ Ψ(a−1x) by the Open Mapping Theorem. Eq. (1) now follows
from [3, Main Theorem], which proves the first part.

920



Finally, if socB is essential then, plainly, Ψ−1 and Ψ are Jordan. By [4, Proposi-
tion 1.3] such Ψ preserves invertibility in both directions. Hence, b := Φ(1) = Ψ(a−1)
is invertible, and the mapping Ψ′(x) := b−1Φ(x) is a unital bijection, whose inverse
preserves invertibility. As before we derive (1) for Ψ′ in place of Ψ, and then conclude
that Ψ′ is Jordan. �
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