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Abstract. In this paper, we give some characterizations of metric spaces under weak-open
π-mappings, which prove that a space is g-developable (or Cauchy) if and only if it is a
weak-open π-image of a metric space.
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1. Introduction and definitions

To find internal characterizations of certain images of metric spaces is one of the
central problems in General Topology. Some characterization for certain quotient

π-images (open π-images, pseudo-open π-images) of metric spaces are obtained in [5],
[11], [12], [13], [14], [15], [18]. Recently, S. Xia [4] introduced the concept of weak-
open mappings. By using it, certain g-first countable spaces are characterized as

images of metric spaces under various weak-open mappings. Furthermore, we prove
that a space is g-metrizable if and only if it is a weak-open σ-image of a metric space

in [18].

The purpose of this paper is to give some characterizations of weak-open π-images
of metric spaces. We prove that a space is g-developable (or Cauchy) if and only if it

is a weak-open π-image of a metric space, and generalize the result of R.W. Heath
in [12].

In this paper, all spaces are Hausdroff, all mappings are continuous and surjective.
�
denotes the set of all natural numbers. τ(X) denotes a topology on X . For the
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usual product space
∏

i∈ �
Xi, πi denotes the projection from

∏
i∈ �

Xi onto Xi. For a

sequence {xn} in X , denote 〈xn〉 = {xn : n ∈ � }.

Definition 1.1. LetP =
⋃{Px : x ∈ X} be a collection of subsets of a spaceX .

P is called a weak-base for X if

(1) for each x ∈ X , Px is a network of x in X ,

(2) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

(3) G ⊂ X is open in X if and only if for each x ∈ G, there exists P ∈ Px such
that P ⊂ G.

Px is called a weak neighborhood base of x in X , and every element ofP is called
a weak neighborhood of x in X .

Definition 1.2. Let f : X → Y be a mapping.

(1) f is called a weak-open mapping [4], if there exists a weak-baseB =
⋃{By : y ∈

Y } for Y , and for each y ∈ Y there exists xy ∈ f−1(y) satisfying the following
condition: for each open neighborhood U of xy , By ⊂ f(U) for some By ∈ By.

(2) f is called a π-mapping [2], if (X, d) is a metric space, and for each y ∈ Y and
its open neighborhood V in Y , d(f−1(y),M \ f−1(V )) > 0.

It is easy to check that a weak-open mapping is quotient and a compact mapping
on metric spaces is a π-mapping.

Definition 1.3 [8]. Let X be a space, and P ⊂ X . Then,

(1) A sequence {xn} in X is called eventually in P , if {xn} converges to x, and
there exists m ∈ � such that {x} ∪ {xn : n > m} ⊂ P .

(2) P is called a sequential neighborhood of x in X , if whenever a sequence {xn}
in X converges to x, then {xn} is eventually in P .

(3) P is called sequential open in X , if P is a sequential neighborhood of each of

its points.

(4) X is called a sequential space, if any sequential open subset of X is open in X .

Definition 1.4. Let P be a cover of a space X .

(1) P is called a cs-cover for X , if every convergent sequence in X is eventually in

some element of P .

(2) P is called a sn-cover for X , if every element ofP is a sequential neighborhood
of some point in X , and for any x ∈ X there exists a sequential neighborhood P
of x in X such that P ∈ P .

Definition 1.5. Let {Pn} be a sequence of covers of a space X .
(1) {Pn} is called a point-star network for X , if for each x ∈ X , 〈st(x,Pn)〉 is a
network of x in X .
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(2) {Pn} is called a weak-development for X , if for each x ∈ X , 〈st(x,Pn)〉 is a
weak neighborhood base of x in X .

If in a weak-development {Pn} forX eachPn satisfies property C, {Pn} is called
a C weak-development for X .

Definition 1.6 ([6]). Let (X, d) is a symmetrizable space. Then,
(1) A sequence {xn} in X is called d-Cauchy if, for each ε > 0, there exists k ∈ �

such that d(xm, xn) < ε for all n,m > k.
(2) X is called Cauchy (respectively weak Cauchy), if each convergent sequence is

d-Cauchy (respectively each convergent sequence has a d-Cauchy subsequence).

For a space X , let g be a mapping defined on
� ×X to the power-set of X such

that x ∈ g(n, x) and g(n+ 1, x) ⊂ g(n, x) for each n ∈ � and x ∈ X , and a subset U
of X is open if for each x ∈ U , there exists n ∈ �

such that g(n, x) ⊂ U . We call

such a mapping a CWC-mapping (i.e., countable weakly-open covering mapping).

Definition 1.7 ([7]). A space X is g-developable if X has a CWC-mapping g
with the following property: If x, xn ∈ g(n, yn) for each n ∈ � , then sequence {xn}
converges to x.

2. Results

Theorem 2.1. The following are equivalent for a space X :
(1) X is a weak-open π-image of a metric space.
(2) X has a cs-cover weak-development.

(3) X has a sn-cover weak-development.
(4) X is a Cauchy space.

(5) X is a g-developable space.
�������	�

. (1) ⇒ (2): Suppose X is an image of a metric space (M,d) under a
weak-open π-mapping f . For each n ∈ � , put Pn = {f(B(z, 1/n)) : z ∈M}, where
B(z, 1/n) = {y ∈M : d(z, y) < 1/n}. Then {Pn} is a point-star network for X . In
fact, for each x ∈ X , and its open neighborhood U , since f is a π-mapping, there
exists n ∈ � such that d(f−1(x),M \ f−1(U)) > 1/n. We can pick m ∈ � such that
m > 2n. If z ∈M with x ∈ f(B(z, 1/m)), then

f−1(x) ∩ B(z, 1/m) 6= ∅.

If B(z, 1/m) 6⊂ f−1(U), then

d(f−1(x),M \ f−1(U)) 6 2/m 6 1/n,
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a contradiction. Thus B(z, 1/m) ⊂ f−1(U), so f(B(z, 1/m)) ⊂ U . Hence

st(x,Pm) ⊂ U . Therefore {Pn} is a point-star network for X .
We shall prove that every Pk is a cs-cover for X . Since f is weak-open, there

exists a weak-base B =
⋃{Bx : x ∈ X} for X , and for each x ∈ X there exists

mx ∈ f−1(x) satisfying the following condition: for each open neighborhood U
of mx in M,B ⊂ f(U) for some B ∈ Bx. For each k ∈

�
, if {xn} converges to

x ∈ X in X , there exists B ∈ Bx such that B ⊂ f(B(mx, 1/k)) since f is weak-
open. Since B is a weak-neighborhood of x in X , B is a sequential neighborhood

of x in X by Corollary 1.6.18 in [9], so f(B(mx, 1/k)) is too. Thus {xn} is eventually
in f(B(mx, 1/k)). This implies each Pk is a cs-cover for X .

For each x ∈ X and k ∈ � , since f(B(mx, 1/k)) is a sequential neighborhood of x
in X , st(x,Pk) is too. Obviously, X is a sequential space. So 〈st(x,Pk)〉 is a weak
neighborhood base of x in X .
In other words, {Pn} is a cs-cover weak-development for X .
(2) ⇒ (3): Suppose {Pn} is a cs-cover weak-development for X . We can assume

that Pn+1 refines Pn for each n ∈
�
. For each x, y ∈ X , denoting

t(x, y) = min{n : x 6∈ st(y,Pn)} (x 6= y),

we define

d(x, y) =

{
0, x = y,

2−t(x,y), x 6= y,

then d : X ×X → [0,+∞) is a symmetric function on X .

Claim. For each x, y ∈ X , x ∈ st(y,Pn) if and only if t(x, y) > n.

In fact, the if part is obvious. For the only if part, suppose x ∈ st(y,Pn) but
t(x, y) 6 n. Since Pn refines Pt(x,y), st(y,Pn) ⊂ st(y,Pt(x,y)). Note that x 6∈
st(y,Pt(x,y)), so x 6∈ st(y,Pn), a contradiction.
For each x ∈ X and n ∈ �

, st(x,Pn) = B(x, 1/2n) by the Claim. Because
{Pn} is a point-star network for X , (X, d) is symmetrizable. And d has the fol-
lowing property: for each x ∈ X and ε > 0, there exists δ = δ(x, ε) > 0 such that
d(x, y) < δ and d(x, z) < δ imply d(y, z) < ε. Otherwise, there exist ε0 > 0 and two
sequences {yn} and {zn} in X such that d(yn, zn) > ε0 whenever d(x, yn) < 1/2n

and d(x, zn) < 1/2n. Since Pn is a point-star network for X , {yn} and {zn} all
converge to x. We choose k ∈ � such that 1/2k < ε0. Since Pk is a cs-cover for X ,

{ym, zm} ⊂ P for some m ∈ � and P ∈ Pk. Thus ym ∈ st(zm,Pk). By the Claim,
t(ym, zm) > k. Thus, d(ym, zm) = 1/2t(ym,zm) < 1/2k < ε0, a contradiction.

For each x ∈ X and n ∈ �
, we can pick δ = δ(x, n) such that d(y, z) < 1/n

whenever d(x, y) < δ and d(x, z) < δ. Let g(n, x) = B(x, δ(x, n)). Since Pn is a
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cs-cover for X , st(x,Pn) is a sequential neighborhood of x in X , so g(n, x) is too.
Put

Fn = {g(n, x) : x ∈ X},

then every Fn is an sn-cover for X .

If {Fn} is not a point-star network for X , then there exist x ∈ G ∈ τ(X) and
two sequences {xn} and {yn} in X such that x ∈ g(n, yn) and xn ∈ g(n, yn) \G. So
{xn} does not converge to x, and d(yn, x) < δ(yn, n), d(yn, xn) < δ(yn, n). By the
property above, d(x, xn) < 1/n. This implies that {xn} converges to x, a contradic-
tion. Hence {Fn} is a point-start network for X .
Since X is symmetrizable, X is a sequential space. For each x ∈ X and n ∈ � , by

the above, g(n, x) is a sequential neighborhood of x in X . By g(n, x) ⊂ st(x,Fn),
st(x,Fn) is too. So 〈st(x,Fn)〉 is a weak neighborhood base of x in X . Hence
{Fn} is a sn-cover weak-development for X .

(3) ⇒ (1): Suppose {Pn} is a sn-cover weak-development for X . For each i ∈
�
,

let Pi = {Pα : α ∈ Λi}. Endow Λi with the discrete topology, then Λi is a metric
space. Put

M =
{
α = (αi) ∈

∏

i∈ �
Λi : 〈Pαi〉 forms a network at some point xα in X

}
,

and endow M with the subspace topology induced from the usual product topology
of the collection {Λi : i ∈

� } of metric spaces, then M is a metric space. Since X is
Hausdroff, xα is unique in X . For each α ∈M , we define f : M → X by f(α) = xα.
For each x ∈ X and i ∈ �

, there exists αi ∈ Λi such that x ∈ Pαi . Since {Pi} is
a point-star network for X , {Pαi : i ∈ � } is a network of x in X . Put α = (αi),
then α ∈ M and f(α) = x. Thus f is surjective. Suppose α = (αi) ∈ M and

f(α) = x ∈ U ∈ τ(X), then there exists n ∈ � such that Pαn ⊂ U . Put

V = {β ∈M : the nth coordinate of β is αn},

then α ∈ V ∈ τ(M), and f(V ) ⊂ Pαn ⊂ U . Hence f is continuous.

For each α, β ∈M , we define

d(α, β) =

{
0, α = β

max{1/k : πk(α) 6= πk(β)}, α 6= β,

then d is a distance in M . Because the topology of M is the subspace topology

induced from the usual product topology of the collection {Λi : i ∈
� } of discrete

spaces, d is metric in M . For each x ∈ U ∈ τ(X), note that {Pn} is a point-star
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network for X , hence there exists n ∈ � such that st(x,Pn) ⊂ U . For α ∈ f−1(x),
β ∈ M , if d(α, β) < 1/n, then πi(α) = πi(β) for all i 6 n. So x ∈ Pπn(α) = Pπn(β).
Thus

f(β) ∈
⋂

i∈ �
Pπi(β) ⊂ Pπn(β) ⊂ U.

Hence

d(f−1(x),M \ f−1(U)) > 1/n.

Therefore f is a π-mapping.
We shall prove that f is weak-open. For each x ∈ X , since every Pi is an sn-

cover for X , there exists αi ∈ Λi such that Pαi is a sequential neighborhood of x
in X . Since {Pi} is a point-star network for X , 〈Pαi〉 is a network of x in X . Put
βx = (αi) ∈

∏
i∈ �

Λi, then βx ∈ f−1(x).

Let {Umβx} be a decreasing neighborhood base of βx in M , and put

Bx = {f(Umβx) : m ∈ � },
B =

⋃
{Bx : x ∈ X},

then B satisfies (1), (2) in Definition 1.1. Suppose G is open in X . For each x ∈ G,
from βx ∈ f−1(x), we see that f−1(G) is an open neighborhood of βx in M . Thus
Umβx ⊂ f−1(G) for some m ∈ � , so f(Umβx) ⊂ G and f(Umβx) ∈ Bx. On the other

hand, suppose that G ⊂ X and for x ∈ G, there exists B ∈ Bx such that B ⊂ G.
Denote B = f(Umβx) for some m ∈ � . Let {xn} be a sequence converging to x in X .
Since Pαi is a sequential neighborhood of x in X for each i ∈

�
, {xn} is eventually

in Pαi . For each n ∈
�
, if xn ∈ Pαi , let αin = αi; if xn 6∈ Pαi , pick αin ∈ Λi such

that xn ∈ Pαin. Thus there exists ni ∈
�
such that αin = αi for all n > ni. So

{αin} converges to αi. For each n ∈
�
, put

βn = (αin) ∈
∏

i∈ �
Λi,

then f(βn) = xn and {βn} converges to βx. Since Umβx is an open neighborhood

of βx in M , {βn} is eventually in Umβx , so {xn} is eventually in G. Hence G is a
sequential neighborhood of x. So G is sequential open in X . Since X is a sequential

space, G is open in X . This implies that B is a weak-base for X .
By the definition of B, f is weak-open.

(2) ⇒ (4): Suppose {Pi} is a cs-cover weak-development for X . We can assume
that Pn+1 refinesPn for each n ∈

�
. Similarly as in the proof of (2) ⇒ (3), we can

define a symmetric distance function d on X such that st(x,Pn) = B(x, 1/2n) for
each x ∈ X and n ∈ � . So (X, d) is symmetrizable. For each sequence {xn} in X
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converging to x ∈ X and ε > 0, there exists k ∈ � such that 1/2k < ε. Since Pk is

a cs-cover for X , there exist P ∈ Pk and l ∈
�
such that {x} ∪ {xn : n > l} ⊂ P . If

n,m > l, then xn, xm ∈ P , so xn ∈ st(xm,Pk). Thus t(xn, xm) > k by the Claim in
(2) ⇒ (3). Hence d(xn, xm) = 1/2t(xn,xm) < 1/2k < ε whenever n,m > l. Therefore

{xn} is d-Cauchy. This implies that X is a Cauchy space.
(4) ⇒ (2): Suppose X is a Cauchy space. For each n ∈ � , put

Pn = {A ⊂ X : sup{d(x, y) : x, y ∈ A} < 1/n}

then st(x,Pn) = B(x, 1/n) for each x ∈ X , so {Pn} is a point-star network for X .
It is clear that X is a sequential space. We need only prove that each Pn is a cs-

cover for X . For each sequence {xn} converging to x in X , since {xn} is d-Cauchy
and X is symmetrizable, there exists m ∈ �

such that d(x, xi) < 1/(n + 1) and
d(xi, xj) < 1/(n+ 1) for all i, j > m by Lemma 9.3 in [16]. Put

P = {x} ∪ {xi : i > m}

then P ∈ Pn. Hence each Pn is a cs-cover for X .
(4) ⇔ (5) follows from Theorem 2.3 in [7]. �

By Theorem 2.1, Proposition 2.2 in [7], Proposition 2.1.16 (3) in [9] and Proposi-
tion 2.1.16 in [9], we have

Proposition 2.2. A space is developable if and only if it is a weak-open, π,
pseudo-open image of a metric space.

Corollary 2.3 ([12]). A space is developable if and only if it is an open π-image
of a metric space.

We give examples illustrating Theorem 2.1 of this paper.

Example 2.4. Let X be the Arens space S2 (see [9, Example 1.8.6]). Since X is

Cauchy, X is a weak-open π-image of a metric space by Theorem 2.1. But X is
not an open π-image of a metric space because X is not first countable. Thus the

following holds:
A weak-open π-image of a metric space needn’t be an open π-image of a metric

space.

Example 2.5. Let X be the weak Cauchy space in [5, Example 2.14 (3)]. By
Theorem 12 in [15], X is a quotient π-image of a metric space. But X is not Cauchy,

X is not a weak-open π-image of a metric space by Theorem 2.1. Thus the following
holds:

A quotient π-image of a metric space needn’t be a weak-open π-image of a metric
space.
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Example 2.6. Let X be the Mrowka space ψ(
�
) (see [9, Example 1.8.4]). Since

X is developable, X is an open π-image of a metric space. But X has no point-
countable cs∗-networks. Thus X is not a quotient s-image of a metric space by
Corollary 2.7.6 in [9]. Thus the following holds:

(1) A weak-open π-image of a metric space needn’t be a weak-open compact image
of a metric space.

(2) A weak-open π-image of a metric space needn’t be a weak-open s-image of a
metric space.
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