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OPERATORS OF HANKEL TYPE

S. Bermudo, Seville, S. A. M. Marcantognini, Caracas,

and M. D. Morán, Caracas
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Abstract. Hankel operators and their symbols, as generalized by V.Pták and P. Vrbová,
are considered. The present note provides a parametric labeling of all the Hankel symbols of
a given Hankel operator X by means of Schur class functions. The result includes uniqueness
criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel
symbols is obtained. The proof is established by associating to the data of the problem a
suitable isometry V so that there is a bijective correspondence between the symbols of X
and the minimal unitary extensions of V .
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1. Introduction

The intertwining relation that characterizes the classical Hankel operators has been

exploited to study the symbols as well as the operators themselves, from the operator
theory point of view rather than from the function theory standpoint. Under the
commutant perspective, other intertwining operators may be thought of as abstract

Hankel operators. That was the approach adopted by V.Pták and P.Vrbová [10],
[11], [9] to introduce a wider class of Hankel operators.

If S is the shift operator on the space of the L2 functions on the unit circle
of the complex plane, H2 the Hardy space and H2

− its orthogonal complement in

L2, then we recall that a Hankel operator is a linear map X : H2 → H2
− such that

XS|H2 = P−SX , with P− the orthogonal projection from L2 ontoH2
−. If we consider
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the contraction operators T1 := PS∗|H2 , with P the orthogonal projection from L2

onto H2, and T2 := P−S|H2
−
, then the intertwining condition satisfied by X can be

written as XT ∗1 = T2X .

The celebrated Nehari Theorem states that the Hankel operator X is bounded if,
and only if, there exists an L∞ function Φ, a symbol of X , such that Xf = P−Φf

for all f ∈ H2. Hence, in the classical case, the symbols are multiplication operators
induced by L∞ functions with prescribed antianalytic part or, from another point of

view, operators that commute with S and have the same fixed component from H2

into H2
−. Since the unitary operators V1 := S∗ and V2 := S are the corresponding

minimal isometric dilations of the above defined contractions T1 and T2, we can
conclude that the symbols of the given Hankel operator X are the intertwining

dilations Z of X , namely, those linear operators Z : L2 → L2 such that P−Z|H2 = X

and ZV ∗1 = V2Z.

The generalized Hankel operators introduced by Pták and Vrbová are linear maps

X from a Hilbert space H1 into a Hilbert space H2 satisfying the intertwining re-
lation XT ∗1 = T2X , for given contraction operators T1 on H1 and T2 on H2. In

this framework, the operators that play the role of symbols might be the solutions
Z of the commutant dilation problem ZV ∗1 = V2Z, where V1 and V2 are the mini-

mal isometric dilations of T1 and T2, respectively. The investigations carried on by
Pták and Vrbová indicate that the problem is solvable whenever X verifies certain

boundedness condition that depends on the unitary parts of the Wold-Von Neumann
decompositions of V1 and V2. Since the Wold-Von Neumann decomposition is trivial

in the classical case, for S being unitary, the result includes the classical situation.

As counterpart of the classical case and with the aim of developing a full analogue
of the theory of the Commutant Lifting Theorem, the problem of describing the
symbols Z of any abstract Hankel operator X , for given contractions T1 and T2,

turns out to be of greatest interest.

We show that there is a bijective correspondence between the symbols of X and
the minimal unitary extensions of a Hilbert space isometry V determined by X , T1

and T2. Since any Hilbert space isometry has at least one minimal unitary extension,
our approach provides a new proof of the existence of the symbols for the generalized

Hankel operator on hand. The Arov-Grossman functional model [1] yields a complete
description of the minimal unitary extensions of V , as it associates to each minimal

unitary extension U of V a function θU in a suitable Schur class of operator valued
functions, and to each function θ in the Schur class, an operator model Uθ which

gives rise to a minimal unitary extension of V , in such a way that the outlined
correspondence is bijective. Then the adopted method combined with the Arov-

Grossman model gives in turn a bijective correspondence between the symbols of X
and the Schur class. We show that the connection between the symbols and the Schur
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functions can be realized as a parametric description. We also include uniqueness

criteria and a Schur-like formula.

In the framework of the Commutant Lifting Theorem, the methods were developed

in [8] for the usual Hilbert space case and in [4] for the more general Krĕın space
case.

We point out that the line of investigations initiated by V. Pták and P.Vrbová
has been pursued mainly by C.H.Mancera and P. J. Paúl [6], [7]. A few historical

remarks connected with the original work of V. Pták and P.Vrbová can be found in
[11]. For other interesting comments the reader is referred to the introductory pages

of [6].

As a final remark, we mention that abstract Hankel operators can also be treated

as bilinear forms defined in the even more general framework of the algebraic scat-
tering systems as by M.Cotlar and C. Sadosky (see, for instance, [2], [3] and further

references given therein.) The construction of the isometry V , which plays a key role
in the proof of our main result, is in fact inspired by the Cotlar-Sadosky algebraic

scattering systems methods.

The paper is organized in three sections. Section 1, this section, serves as an

introduction. In Section 2 we fix the notation and state some known results needed
in the rest of the paper. Our main result, along with some comments and remarks,

is presented in Section 3.

2. Notation and preliminaries

We follow the standard notation, so
�
, � and � are, respectively, the set of natural,

integer and complex numbers; � stands for the open unit disk and � for the unit
circle, hence � := {z ∈ � : |z| < 1} and � := ∂ � .
Throughout this note, all Hilbert spaces are assumed to be complex and separable.

If {Gι}ι∈I is a collection of linear subspaces of a Hilbert space K then
∨
ι∈I

Gι is the

least closed subspace of K containing all the subspaces Gι.

As usual, L(H,K) denotes the space of all everywhere defined bounded linear
operators on the Hilbert space H to the Hilbert space K, and L(H) is used instead
of L(H,H).

By 1 we indicate either the scalar unit or the identity operator, depending on the
context.

If G is a closed linear subspace of a Hilbert space K, then PKG stands for the
orthogonal projection from K onto G.

1149



If T ∈ L(H,K) and ‖T‖ 6 β, then Dβ
T := (β2 − T ∗T )

1
2 and Dβ

T := Dβ
TH. When

β = 1, we use the standard notation DT and DT for the defect operator and the

defect space of T .
If H is a Hilbert space, H2(H) is the Hardy space of the H-valued functions on

� . So, the elements of H2(H) are all the analytic functions f : � → H, f(z) =
∞∑

n=0
znh(n), z ∈ � , {h(n)}∞n=0 ⊆ H, such that

∞∑
n=0

‖h(n)‖2 < ∞. The shift operator
on H2(H) is denoted by S. Thus, (Sf)(z) := zf(z), f ∈ H2(H), z ∈ � .
Given a contraction operator T ∈ L(H), we recall that the operator matrix

VT :=
(

T 0
DT S

)
:

( H
H2(DT )

)
→

( H
H2(DT )

)

is the minimal isometric dilation of T . That is, VT is an isometry everywhere defined

on the Hilbert space KT := H ⊕H2(DT ) such that T n = PKT

H V n
T |H, for all n ∈

�
,

and KT =
∞∨

n=0
V n

T H.
If V ∈ L(K) is an isometric operator, we denote by R the closed linear subspace

of K that reduces V to its unitary part in the Wold-Von Neumann decomposition.

In particular, R =
∞⋂

n=0
V nK and PKR = lim

n→∞
V nV ∗n.

Let T1 ∈ L(H1) and T2 ∈ L(H2) be two contractions with minimal isometric
dilations V1 ∈ L(K1) and V2 ∈ L(K2), respectively. As it was introduced by V. Pták
and P.Vrbová [10], [11], [9], an operator X ∈ L(H1,H2) is said to be a Hankel
operator for T1 and T2 if, and only if, XT ∗1 = T2X and, for some β > 0,

(1) |〈Xh1, h2〉| 6 β‖PK1
R1

h1‖‖PK2
R2

h2‖, for all h1 ∈ H1 and h2 ∈ H2,

where Rj is the subspace of Kj which reduces the minimal isometric dilation Vj of

Tj to the unitary part Rj of Vj (j = 1, 2). We define ‖X‖PV := inf β, where β runs
over all nonnegative numbers satisfying (1).

Given a Hankel operator X for T1 and T2, we say that Z ∈ L(K1,K2) is a Hankel
symbol of X if, and only if, (i) ZV ∗1 = V2Z, (ii) PK2

H2
Z|H1 = X , and (iii) ‖Z‖ =

‖X‖PV .
As we already remarked in the introduction, the relation XT ∗1 = T2X alone is not

sufficient to grant the existence of symbols. The difficulty is overcome by means of
the boundedness condition (1), since it turns out to be necessary and sufficient to

ensure that there exist intertwining dilations Z of X ((i) and (ii)), which satisfy (iii).
The reader is referred to [10], [11], [9] as the original sources. A result used therein,

which we also require in our treatment, is the following:
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Lemma 2.1 [10, Proposition 1.4]. Let T1 ∈ L(H1) and T2 ∈ L(H2) be two con-
tractions with minimal isometric dilations V1 ∈ L(K1) and V2 ∈ L(K2), respectively.
Let X be a Hankel operator for T1 and T2 with β := ‖X‖PV . For j = 1, 2, set

Ej := P
Kj

Rj
Hj , where Rj is the subspace of Kj which reduces the minimal isometric

dilation Vj of Tj to the unitary part Rj of Vj . Then there exists a unique bounded

linear operator X̃ : E1 → E2 such that X = (PK2
R2
|H2)∗X̃PK1

R1
|H1 and ‖X̃‖ = β.

Though the proof is not included in the cited papers by Pták and Vrbová, we do

not append it either. We just remark that the result can be obtained from Douglas’
Lemma [5].

As the minimal unitary extensions of an isometry, on the one hand, and the so

called Schur functions, on the other, play key roles in the description of the symbols
of a given Hankel operator, we conclude this section with a few words about these

objects.

If V is an isometric operator on a Hilbert space H with domain D(V ) and range
R(V ), both closed linear subspaces of H, then a minimal unitary extension of V is
a unitary operator U acting on a Hilbert space F that contains H as a closed linear
subspace such that U |D(V ) = V and F =

∨
n∈ �

UnH. Two minimal unitary extensions
of V , namely U ∈ L(F) and U ′ ∈ L(F ′), are to be interpreted as indistinguishable
whenever there exists an isometric isomorphism ϕ : F → F ′ such that ϕ|H = 1
and ϕU = U ′ϕ. As for the existence of minimal unitary extensions of any given
isometry V , we remark that if VT ∈ L(KT ) is the minimal isometric dilation of the
contraction T := V PHD(V ), then the minimal isometric dilation of V

∗
T , sayW ∈ L(F),

is indeed a unitary operator such that W ∗|D(V ) = V and F =
∨

n∈ �
W nH, hence

U := W ∗ is a minimal unitary extension of V . The defect spaces of the isometry V

are N := H 	D(V ) and M := H 	R(V ). If either N = {0} orM = {0}, then V

has a unique (up to isometric isomorphism) minimal unitary extension.

If N andM are given Hilbert spaces, then the Schur class S(N ,M) is the family
of all analytic functions θ : � → L(N ,M) such that sup

z∈ �
‖θ(z)‖ 6 1.

An example of Schur function, remarkable for the problem we are concerned with,

is the following: Let V be an isometry on H with domain D(V ), range R(V ) and
defect spaces N and M. Let U ∈ L(F) be a minimal unitary extension of V . For

z ∈ � , define
θU (z) := PFMU(1− zPFF	HU)−1|N .

Then θU ∈ S(N ,M). Moreover:
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Lemma 2.2. For all z ∈ � ,

PFHU(1− zU)−1|H
= (V PFD(V ) + θU (z)PFN )[1− z(V PFD(V ) + θU (z)PFN )]−1|H
= V PFD(V )(1− zV PFD(V ))

−1 + [zV PFD(V )(1− zV PFD(V ))
−1 + 1]

× θU (z)[1− zPFN (1− zV PFD(V ))
−1θU (z)]−1PFN (1− zV PFD(V ))

−1.

The first equality stated in the above lemma is proved in [8, Lemma III.1]. The

second one is derived from a straightforward but rather long computation we omit
in the present discussion.

The Schur class S(N ,M) features the Arov-Grossman functional model, which is
an essential tool in our investigations:

Theorem 2.3 [1]. Let V be an isometric operator on a Hilbert space H with
domain D(V ), range R(V ) and defect spaces N and M. The map that to each
minimal unitary extension U ∈ L(F) associates the function

θU (z) := PFMU(1− zPFF	HU)−1|N , z ∈ � ,

establishes a bijection between the family U(V ) of all minimal unitary extensions of
V and the Schur class S(N ,M).

3. Labeling of all the Hankel symbols for a given Hankel operator

We now turn our attention to the problem of describing the Hankel symbols of a

given Hankel operator X . We first consider the case when ‖X‖PV = 1:

Theorem 3.1. Let T1 ∈ L(H1) and T2 ∈ L(H2) be two contractions with minimal
isometric dilations V1 ∈ L(K1) and V2 ∈ L(K2), respectively. For j = 1, 2, let Rj be

the subspace of Kj which reduces Vj to its unitary part. Given X , a Hankel operator

for T1 and T2, with ‖X‖PV = 1, let X̃ ∈ L(E1, E2) be the contraction operator
uniquely determined by X as in Lemma 2.1. Then there is a bijection between the
set HS(X) of all Hankel symbols of X and the Schur class S(N ,M), where

N := DX̃ 	DX̃V ∗1 PK1
R1
H1

and

M := {(e1, e2) ∈ DX̃ ⊕ E2 : T2P
K2
H2

e2 = 0 and DX̃e1 + X̃∗e2 = 0}.
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�	��
�
�
. We proceed by steps.��� � �
1. In the first step we build up a Hilbert space H and an isometry V

acting on H whose defect spaces are the Hilbert spaces N andM in the statement
of the theorem.

We recall that Ej := P
Kj

Rj
Hj , j = 1, 2, and that X̃ is a contraction from E1 into E2

such that X = (PK2
R2
|H2)∗X̃PK1

R1
|H1 .

We set H := DX̃ ⊕E2 with the standard inner product of E1 ⊕E2 and we define a

Hermitian sesquilinear form [·, ·] on H1 ×H2 by setting

[(h1, h2), (h′1, h
′
2)] := 〈PK1

R1
h1, h

′
1〉+ 〈Xh1, h

′
2〉+ 〈h2, Xh′1〉+ 〈PK2

R2
h2, h

′
2〉.

Then, for all (h1, h2) ∈ H1 ×H2,

[(h1, h2), (h1, h2)] = ‖PK1
R1

h1‖2 + 2Re〈X̃PK1
R1

h1, P
K2
R2

h2〉+ ‖PK2
R2

h2‖2

= ‖PK1
R1

h1‖2 − ‖X̃PK1
R1

h1‖2 + ‖X̃PK1
R1

h1 + PK2
R2

h2‖2

= ‖DX̃PK1
R1

h1‖2 + ‖X̃PK1
R1

h1 + PK2
R2

h2‖2.

Therefore, if σ is defined on H1 ×H2 by

σ(h1, h2) := (DX̃PK1
R1

h1, X̃PK1
R1

h1 + PK2
R2

h2), h1 ∈ H1, h2 ∈ H2,

then σ is an isometry from (H1 ×H2, [·, ·]) onto a dense subspace of H.
For all hj ∈ Hj (j = 1, 2),

‖PKj

Rj
T ∗j hj‖ = ‖PKj

Rj
V ∗j hj‖ = ‖V ∗j P

Kj

Rj
hj‖ = ‖PKj

Rj
hj‖.

From this and the relation XT ∗1 = T2X , it follows that, for all h1 ∈ H1 and h2 ∈ H2,

[(T ∗1 h1, h2), (T ∗1 h1, h2)] = ‖PK1
R1

T ∗1 h1‖2 + 2Re〈XT ∗1 h1, h2〉+ ‖PK2
R2

h2‖2

= [(h1, T
∗
2 h2), (h1, T

∗
2 h2)].

Hence, the linear operator V : σ(T ∗1H1 ×H2) → σ(H1 × T ∗2H2) densely defined by

V σ(T ∗1 h1, h2) := σ(h1, T
∗
2 h2), h1 ∈ H1, h2 ∈ H2,

is an isometry on H with domain D(V ) := σ(T ∗1H1 ×H2) and range R(V ) :=
σ(H1 × T ∗2H2).
Let N := H 	 D(V ) and M := H 	 R(V ) be the defect spaces of V . Then a

straightforward computation gives that

N = DX̃ 	DX̃V ∗1 PK1
R1
H1
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and, also, using that R1 = E1 ⊕ (R1 ∩ H⊥1 ) (cf. [9, Lemma 2.3],) that

M =
{

(e1, e2) ∈ DX̃ ⊕ E2 : T2P
K2
H2

e2 = 0 and DX̃e1 + X̃∗e2 = 0
}

.

��� � �
2. We show that each minimal unitary extension U of V gives rise to a

Hankel symbol Z of X .

Let U ∈ L(F) be a minimal unitary extension of V . If n ∈ � ∪{0} and h1, h
′
1 ∈ H1,

then

〈Unσ(h1, 0), σ(h′1, 0)〉F = 〈σ(h1, 0), U∗nσ(h′1, 0)〉F = 〈σ(h1, 0), V ∗nσ(h′1, 0)〉H
= 〈σ(h1, 0), σ(T ∗n1 h′1, 0)〉H = 〈PK1

R1
h1, T

∗n
1 h′1〉

= 〈PK1
R1

h1, V
∗n
1 h′1〉 = 〈V n

1 PK1
R1

h1, h
′
1〉 = 〈PK1

R1
V n

1 h1, h
′
1〉.

Thus, for all {h1(m)}∞m=0 ⊆ H1 and M ∈ � ∪ {0},

(2)

∥∥∥∥
M∑

m=0

Umσ(h1(m), 0)
∥∥∥∥
F

=
∥∥∥∥PK1
R1

M∑

m=0

V m
1 h1(m)

∥∥∥∥.

Analogously, for all {h2(m)}∞m=0 ⊆ H2 and M ∈ � ∪ {0},

(3)

∥∥∥∥∥
M∑

m=0

U∗mσ(0, h2(m))

∥∥∥∥∥
F

=
∥∥∥∥PK2
R2

M∑

m=0

V m
2 h2(m)

∥∥∥∥.

We define ϕ1 : R1 → F and ϕ2 : R2 → F by means of the relations

ϕ1P
K1
R1

V n
1 h1 := Unσ(h1, 0), h1 ∈ H1, n ∈

� ∪ {0},

and

ϕ2P
K2
R2

V n
2 h2 := U∗nσ(0, h2), h2 ∈ H2, n ∈

� ∪ {0}.

Then, according to (2) and (3), both ϕ1 and ϕ2 are isometries. Furthermore, if
h1 ∈ H1 then

ϕ1P
K1
R1

V ∗1 h1 = ϕ1P
K1
R1

T ∗1 h1 = σ(T ∗1 h1, 0) = U∗σ(h1, 0) = U∗ϕ1P
K1
R1

h1

and, for all n ∈ �
,

ϕ1P
K1
R1

V ∗1 V n
1 h1 = ϕ1P

K1
R1

V n−1
1 h1 = Un−1σ(h1, 0) = U∗Unσ(h1, 0)

= U∗ϕ1P
K1
R1

V n
1 h1.
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Hence,

(4) ϕ1P
K1
R1

V ∗1 k1 = U∗ϕ1P
K1
R1

k1, for all k1 ∈ K1.

In a similar way it can be proved that

(5) ϕ2P
K2
R2

V ∗2 k2 = Uϕ2P
K2
R2

k2, for all k2 ∈ K2.

For the given minimal unitary extension U of V acting on F , define Z : K1 → K2

by

〈Zk1, k2〉 := 〈ϕ1P
K1
R1

k1, ϕ2P
K2
R2

k2〉F , k1 ∈ K1, k2 ∈ K2.

Then, for all k1 ∈ K1 and k2 ∈ K2,

|〈Zk1, k2〉| 6 ‖PK1
R1

k1‖‖PK2
R2

k2‖ 6 ‖k1‖‖k2‖.

This shows that Z is a bounded linear operator with ‖Z‖ 6 1.
On the other hand, for all h1 ∈ H1 and h2 ∈ H2,

〈Zh1, h2〉 = 〈σ(h1, 0), σ(0, h2)〉F = 〈Xh1, h2〉.

Hence, PK2
H2

Z|H1 = X . Moreover, as 〈Zk1, k2〉 = 〈ZPK1
R1

k1, P
K2
R2

k2〉, for all k1 ∈ K1

and k2 ∈ K2, ‖Z‖ > ‖X‖PV = 1, so that ‖Z‖ = 1.
In order to show that Z is a Hankel symbol of X it remains to show that ZV ∗1 =

V2Z. Let k1 ∈ K1 and k2 ∈ K2 be given. From (4) and (5) we get that

〈ZV ∗1 k1, k2〉 = 〈ϕ1P
K1
R1

V ∗1 k1, ϕ2P
K2
R2

k2〉F = 〈U∗ϕ1P
K1
R1

k1, ϕ2P
K2
R2

k2〉F
= 〈ϕ1P

K1
R1

k1, Uϕ2P
K2
R2

k2〉F = 〈ϕ1P
K1
R1

k1, ϕ2P
K2
R2

V ∗2 k2〉F
= 〈Zk1, V

∗
2 k2〉 = 〈V2Zk1, k2〉.

The above discussion provides a new proof of the existence of Hankel symbols of

the given Hankel operator X , as to each minimal unitary extension U of V there
corresponds a Hankel symbol Z of X .

It turns out that any Hankel symbol Z of X can be obtained as before from a
minimal unitary extension U of the isometry V associated to X , T1 and T2. We

prove that in the next step.��� � �
3. If Z is a Hankel symbol of X , then Z = PK2

R2
Z = ZPK1

R1
(see, for

instance, [11, Proposition 2.1].) Whence, by setting

[(k1, k2), (k′1, k
′
2)] := 〈PK1

R1
k1, k

′
1〉+ 〈Zk1, k

′
2〉+ 〈k2, Zk′1〉+ 〈PK2

R2
k2, k

′
2〉,
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for k1, k
′
1 ∈ K1 and k2, k

′
2 ∈ K2, we get a Hermitian sesquilinear form on K1 × K2

such that, for all (k1, k2) ∈ K1 ×K2,

[(k1, k2), (k1, k2)] = ‖DZPK1
R1

k1‖2 + ‖Zk1 + PK2
R2

k2‖2.

Therefore, if F := DZ ⊕R2, with the standard inner product of R1 ⊕R2, and τ is
defined on K1 ×K2 as

τ(k1, k2) := (DZPK1
R1

k1, Zk1 + PK2
R2

k2), k1 ∈ K1, k2 ∈ K2,

then τ is an isometry from (K1 ×K2, [·, ·]) onto a dense subspace of F such that

(6) τ(k1, k2) = τ(PK1
R1

k1, P
K2
R2

k2), for all k1 ∈ K1 and k2 ∈ K2.

Since PK2
H2

Z|H1 = X , it readily follows that, for all h1 ∈ H1 and h2 ∈ H2,

‖σ(h1, h2)‖H = ‖τ(h1, h2)‖F . Then, via the isometric operator % : H → F , %σ :=
τ |H1×H2 , the Hilbert space H can be regarded as a closed linear subspace of the
Hilbert space F .
Set

Uτ(k1, k2) := τ(V1k1, V
∗
2 k2), k1 ∈ K1, k2 ∈ K2.

As ZV ∗1 = V2Z, the operator U is shown to be isometric. On the other hand, if
k1 ∈ K1 and k2 ∈ K2 are given, then, according to (6),

τ(k1, k2) = τ(PK1
R1

k1, P
K2
R2

k2)τ(V1V
∗
1 PK1

R1
k1, V

∗
2 V2P

K2
R2

k2)

= Uτ(V ∗1 PK1
R1

k1, V2P
K2
R2

k2).

It thus turns out that the extension of U to all of F is a surjective isometry, that is,
a unitary operator.

For any h1 ∈ H1 and h2 ∈ H2,

U%σ(T ∗1 h1, h2) = Uτ(T ∗1 h1, h2) = Uτ(V ∗1 h1, h2)

= Uτ(PK1
R1

V ∗1 h1, P
K2
R2

h2) = Uτ(V ∗1 PK1
R1

h1, P
K2
R2

h2)

= τ(V1V
∗
1 PK1

R1
h1, V

∗
2 PK2

R2
h2) = τ(PK1

R1
h1, P

K2
R2

V ∗2 h2)

= τ(h1, V
∗
2 h2) = τ(h1, T

∗
2 h2)

= %σ(h1, T
∗
2 h2) = %V σ(T ∗1 h1, h2).

Therefore, U%|D(V ) = %V . In other words, by means of the isometry %, U can be
interpreted as a unitary extension of V .
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If ϕ1 : R1 → F and ϕ2 : R2 → F are defined as

ϕ1r1 := τ(r1, 0), r1 ∈ R1 and ϕ2r2 := τ(0, r2), r2 ∈ R2,

then ϕ1 and ϕ2 are isometries such that

(i) ϕ1R1 ∨ ϕ2R2 = F
and, for all k1 ∈ K1 and k2 ∈ K2,

(ii) 〈ϕ1P
K1
R1

k1, ϕ2P
K2
R2

k2〉F = 〈Zk1, k2〉.
Furthermore, for all h1 ∈ H1, h2 ∈ H2 and n ∈ � ∪ {0},
(iii) ϕ1P

K1
R1

V n
1 h1 = Unϕ1P

K1
R1

h1 = Un%σ(h1, 0)

and

(iv) ϕ2P
K2
R2

V n
2 h2 = U∗nϕ2P

K2
R2

h2 = U∗n%σ(0, h2).

From (iii) and (iv) we get that

∞∨

n=0

Un%σ(H1 × {0}) =
∞∨

n=0

Unϕ1P
K1
R1
H1 =

∞∨

n=0

ϕ1P
K1
R1

V n
1 H1ϕ1R1

and ∞∨

n=0

U∗n%σ({0} ×H2)
∞∨

n=0

U∗nϕ2P
K2
R2
H2 =

∞∨

n=0

ϕ2P
K2
R2

V n
2 H2ϕ2R2.

From the above relations and by applying (i), we conclude that F =
∨

n∈ �
Un%H,

which shows that U is minimal.
Finally, (ii), (iii) and (iv) say that Z is given by U as in the correspondence we

established in STEP 2.
Therefore, we can conclude that the correspondence which associates to each min-

imal unitary extension U of V a Hankel symbol Z of X is surjective.��� � �
4. Next we show that the correspondence is injective.

Assume that U ∈ L(F) and U ′ ∈ L(F ′) are two minimal unitary extensions of
V and let Z and Z ′ be the corresponding Hankel symbols. If Z = Z ′ then, for all

h1 ∈ H1, h2 ∈ H2 and n ∈ � ∪ {0},

〈Unσ(h1, 0), σ(0, h2)〉F = 〈ZV n
1 h1, h2〉

= 〈Z ′V n
1 h1, h2〉 = 〈U ′nσ(h1, 0), σ(0, h2)〉F ′ .

This, together with the minimality condition satisfied by both U and U ′ and the

fact that H = σ(H1 × {0}) ∨ σ({0} × H2), grants that U and U ′ are isometrically
isomorphic, since, besides, when n ∈ � ∪ {0},

〈Unσ(h1, 0), σ(h′1, 0)〉F = 〈PK1
R1

V n
1 h1, h

′
1〉 = 〈U ′nσ(h1, 0), σ(h′1, 0)〉F ′ ,
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for all h1, h
′
1 ∈ H1, and

〈Unσ(0, h2), σ(0, h′2)〉F = 〈PK2
R2

V ∗n2 h2, h
′
2〉 = 〈U ′nσ(0, h2), σ(0, h′2)〉F ′ ,

for all h2, h
′
2 ∈ H2.

As a summary of what we have achieved so far, let us point out that we have
built up a Hilbert space H and an isometry V acting on H such that if U ∈ L(F)
is a minimal isometric extension of V , then there exist two isometries ϕ1 : R1 → F
and ϕ2 : R2 → F such that the operator Z := PK2

R2
ϕ∗2ϕ1P

K1
R1
is a symbol of X , and

the mapping U → Z is a bijection between the family U(V ) of all minimal unitary
extensions of V and the set HS(X) of all Hankel symbols of X .
At this point we are ready to consider the problem of labeling the set HS(X).��� � �

5. Let Z ∈ HS(X) be given. It readily follows that ZV1 = V ∗2 Z (cf. [11,

Proposition 2.1].) Thus, for all h1 ∈ H1 and n ∈ �
, ZV n

1 h1 = V ∗n2 Zh1. From this,

as K1 =
∞∨

n=0
V n

1 H1, it follows that Z is fully determined by its restriction to H1. On

the other hand, since K2 = H2 ⊕
∞⊕

n=0
V n

2 L2, where L2 := (V2 − T2)H2, it turns out

that Z|H1 = X +
∞∑

n=0
PK2

V n
2 L2

Z|H1 . Therefore, Z is indeed determined by the sequence

of operators {PK2
V n
2 L2

Z|H1}∞n=0.

To each Z ∈ HS(X) we associate the power series

SZ(z) :=
∞∑

n=0

znŜZ(n), z ∈ � , ŜZ(n) := V ∗n2 PK2
V n
2 L2

Z|H1 , n > 0,

so that SZ is an L(H1,L2)-valued function defined and analytic on � . We get that,
for all h1 ∈ H1 and h2 ∈ H2,

〈SZ(z)h1, (V2 − T2)h2〉 =
∞∑

n=0

zn〈ŜZ(n)h1, (V2 − T2)h2〉

=
∞∑

n=0

zn
[
〈Zh1, V

n+1
2 h2〉 − 〈Zh1, V

n
2 T2h2〉

]

=
∞∑

n=0

zn
[
〈σ(h1, 0), U∗n+1σ(0, h2)〉F − 〈σ(h1, 0), U∗n+1σ(0, T ∗2 T2h2)〉F

]

=
∞∑

n=0

zn〈σ(h1, 0), U∗n+1σ(0, h2 − T ∗2 T2h2)〉F

= 〈U(1− zU)−1σ(h1, 0), σ(0, h2 − V ∗2 T2h2)〉F .
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Set L := {σ(0, h2 − V ∗2 T2h2) : h2 ∈ H2} and define % : L → R2 by

%σ(0, h2 − V ∗2 T2h2) := PK2
R2

(V2 − T2)h2, h2 ∈ H2.

It can be easily seen that % is an isometry. Thus, for all h1 ∈ H1 and h2 ∈ H2,

〈SZ(z)h1, (V2 − T2)h2〉 = 〈%PFL U(1− zU)−1σ(h1, 0), (V2 − T2)h2〉.

Therefore, setting ςh1 := σ(h1, 0) for h1 ∈ H1, we get that

(7) SZ(z) = %PFL U(1− zU)−1ς.

On the other hand, if

θU (z) := PFMU(1− zPFF	HU)−1|N , z ∈ � ,

is the S(N ,M) function associated to U via the Arov-Grossmann functional model

(Theorem 2.3), then, according to Lemma 2.2,

PFHU(1− zU)−1|H
= (V PFD(V ) + θU (z)PFN )[1− z(V PFD(V ) + θU (z)PFN )]−1|H
= V PFD(V )(1− zV PFD(V ))

−1 + [zV PFD(V )(1− zV PFD(V ))
−1 + 1]

× θU (z)[1− zPFN (1− zV PFD(V ))
−1θU (z)]−1PFN (1− zV PFD(V ))

−1.

From this expression and (7), we get that, for all z ∈ � ,

(8) SZ(z) = a(z) + b(z)θ(z)(1− c(z)θ(z))−1d(z),

where θ ≡ θU and

a(z) := %PHL V PHD(V )(1− zV PHD(V ))
−1ς ∈ L(H1,R2),

b(z) := %PHL [1 + zV PHD(V )(1− zV PHD(V ))
−1]|M ∈ L(M,R2),

c(z) := zPHN (1− zV PHD(V ))
−1|M ∈ L(M,N ),

d(z) := PHN (1− zV PHD(V ))
−1ς ∈ L(H1,N ).

The Schur-like formula (8) establishes the direct connection between S(N ,M) and
{SZ : Z ∈ HS(X)}. Finally, the map

θ −→ SZ
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determined by (8) is a bijection between S(N ,M) and HS(X), since the mappings

U ∈ U(V )

��

// Z ∈ HS(X)

��
θ ∈ S(N ,M) {ŜZ(n)}

��
SZ

are all bijections (up to isomorphism as far as U ∈ U(V ) is concerned). This com-
pletes the proof. �

Remark 3.2. The hypothesis that ‖X‖PV = 1 can be dropped as long as we deal
with symbols Z of X such that ‖Z‖ = ‖X‖PV . Clearly, if X is a Hankel operator
for T1 and T2 with ‖X‖PV = β > 0, then X ′ := β−1X is a Hankel operator for T1

and T2 with ‖X ′‖PV = 1. Furthermore, Z ′ ∈ HS(X ′) if, and only if, βZ ′ ∈ HS(X).
Also, the arguments in the proof of Theorem 3.1 can be slightly modified to replace

N andM by
N := Dβ

X̃
	Dβ

X̃
V ∗1 PK1

R1
H1

and

M := {(e1, e2) ∈ Dβ

X̃
⊕ E2 : T2P

K2
H2

e2 = 0 and Dβ

X̃
e1 + X̃∗e2 = 0},

in order to get a bijective correspondence between the setHS(X) and the correspond-
ing Schur class S(N ,M). It can even be assumed that β is any fixed nonnegative

number such that β > ‖X‖PV . If so, the bijection is established between S(N ,M)
and the larger set HSβ(X) of intertwining dilations Z of X satisfying ‖Z‖ 6 β.

We finally study the problem of determining whether the set HS(X) has a single
element. From the remark it is clear that we may assume that ‖X‖PV = 1:

Theorem 3.3. Let T1 ∈ L(H1) and T2 ∈ L(H2) be two contractions with minimal
isometric dilations V1 ∈ L(K1) and V2 ∈ L(K2), respectively. For j = 1, 2, let Rj

be the subspace of Kj which reduces Vj to its unitary part. Let X be a Hankel

operator for T1 and T2 such that ‖X‖PV = 1. On the Hilbert space H1 ⊕H2, with

the standard inner product, consider the 2× 2 block matrix operators

T̃1 :=
(

T1 0
0 1

)
, T̃2 :=

(
1 0
0 T2

)

and

E :=
(

PK1
H1

PK1
R1
|H1 X∗

X PK2
H2

PK2
R2
|H2

)
.
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Then X has a unique Hankel symbol if, and only if, either

(a) kernel (T̃1E) ⊆ kernelE

or

(b) kernel (T̃2E) ⊆ kernelE.

�	��
�
�
. We follow the notation introduced in the proof of Theorem 3.1. In

particular, if [·, ·] is the inner product on H1 × H2 and σ is the isometry from
(H1×H2, [·, ·]) onto a dense subspace ofH as defined therein, then, for all h1, h

′
1 ∈ H1

and h2, h
′
2 ∈ H2,

(9) 〈σ(h1, h2), σ(h′1, h
′
2)〉H = [(h1, h2), (h′1, h

′
2)] = 〈E(h1, h2), (h′1, h

′
2)〉.

Therefore, if A is a subset of H1 ×H2, then σA = {0} if, and only if, A, regarded
as a subset of H1 ⊕ H2, is contained in the null space of E, that is, A ⊆ kernelE.
Besides, on the other hand, if A,B are subsets of H1 × H2 then σA ⊆ σB if, and
only if, range (E|A) ⊆ range (E|B), with A,B interpreted as subsets of H1 ⊕H2.
We also recall that the Hilbert spaces N andM given in the statement of Theo-

rem 3.1 are the defect spaces of the isometry V built up in its proof. Therefore, they
can be expressed as

N = H	 σ(T ∗1H1 ×H2)

and
M = H	 σ(H1 × T ∗2H2),

as σ(T ∗1H1 ×H2) and σ(H1 × T ∗2H2) are, respectively, the domain and the range
of V .

As the set HS(X) of the Hankel symbols of X is in bijective correspondence with
the Schur class S(N ,M), it is clear that HS(X) has a single element if, and only if,
either N = {0} orM = {0}. Thus, the theorem is proved if (a) and (b) are shown
to be necessary and sufficient conditions for N andM, respectively, to be trivial.
From (9) we get that if (h1, h2) ∈ kernel (T̃1E) then, for all h′1 ∈ H1 and h′2 ∈ H2,

〈σ(h1, h2), σ(T ∗1 h′1, h
′
2)〉H = [(h1, h2), (T ∗1 h′1, h

′
2)]

= 〈E(h1, h2), T̃ ∗1 (h′1, h
′
2)〉

= 〈T̃1E(h1, h2), (h′1, h
′
2)〉 = 0.

Whence σ(kernel (T̃1E)) ⊆ N . In a similar fashion it can be seen that σ(kernel (T̃2E))
⊆M.

1161



So, if N = {0}, then kernel (T̃1E) ⊆ kernelE, as σ(kernel (T̃1E)) = {0}. On
the other hand, if kernel (T̃1E) ⊆ kernelE, then rangeE ⊆ range (ET̃ ∗1 ), hence,
H = σ(H1 ×H2) ⊆ σ(T ∗1H1 ×H2) and N = {0}. This shows that N = {0} if, and
only if, (a) holds. Similar arguments lead to the conclusion that M = {0} if, and
only if, (b) holds true. This completes the proof. �

Remark 3.4. It is convenient to remark that, for a fixed pair of contractions
T1 ∈ L(H1) and T2 ∈ L(H2), any Hankel operator X for T1 and T2 has a unique

Hankel symbol, say ZX , if either T1P
K1
H1
|E1 is injective or T2P

K2
H2
|E2 is injective.

Indeed, if T2P
K2
H2
|E2 is assumed to be injective, then

M = {(e1, e2) ∈ DX̃ ⊕ E2 : T2P
K2
H2

e2 = 0 and DX̃e1 + X̃∗e2 = 0} = {0}.

In a similar way one can show that if T1P
K1
H1
|E1 is injective, then N = {0}. Therefore,

if either of the conditions holds true, then any given Hankel operator X for T1 and

T2 has a unique Hankel symbol ZX .
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