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Abstract. We give a necessary and sufficient condition for the existence of a tree of
order n with a given degree set. We relate this to a well-known linear Diophantine problem
of Frobenius.
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Graphic sequences are sequences of positive integers which can be realized as the

sequence of degrees of vertices of some simple graph. Graphic sequences have been
much studied in the literature, and some of the most well-known characterizations

of such sequences are given in [2], [4], [5]. Graphic sets are sets of positive integers
which are formed by the degrees of vertices of some simple graph. Each set of positive

integers is graphic, as is easy to see. For a given set S of positive integers, the least
order of a graph for which S is its degree set was determined in [6]. This result has

been generalized in [1] to the determination of all n for which there exist n-vertex
graphs with degree set S.

We call a sequence of positive integers tree-graphic provided it can be realized
as the degree sequence of a tree. The following result characterizes tree-graphic

sequences. Although it is well-known, we give a proof for the sake of completeness.

Theorem 1. Let a1, . . . , an be positive integers, with n > 2. Then there exists a

tree with degree sequence a1, . . . , an if and only if
n∑

i=1

ai = 2n− 2.

���������
. Suppose s := a1, . . . , an is a sequence of positive integers with sum

2n − 2. We show, by induction on the number of terms in the sequence, that there
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exists a tree with degree sequence s. The only 2-term sequence is 1, 1 and corresponds
to the tree K2. Assuming the result for all such sequences with fewer than n terms,
let s := a1, . . . , an be a sequence, arranged in decreasing order. Then an−1 = an = 1
and a1 > 1. Consider the (n− 1)-term sequence s′ := a1 − 1, a2, . . . , an−1 of positive

integers with sum 2n − 4. By induction hypothesis, let T ′ be a tree with degree
sequence s′. The graph constructed by adding a new vertex to T ′ and adjoining it

to the vertex of degree a1 − 1 is a tree with degree sequence s. This completes the
inductive proof. The converse is straightforward. �

An immediate and easy consequence of Theorem 1 is that every nontrivial tree

must have at least two vertices of degree 1 since the average degree of a vertex in
any tree is less than 2 and since there cannot be an isolated vertex. Therefore, in
order to realize a set of positive integers as the degree set of a tree it is necessary

that the set have least element 1. It is easy to determine the least order of a tree
with a given degree set as a consequence of Theorem 1. Later on, we will also obtain

Theorem 2 as a special case of Theorem 3.

Theorem 2. Let S be a set of k positive integers with least element 1 whose
elements sum to σ. Let ltree(S) be the least order of a tree with degree set S. Then

ltree(S) = σ − k + 2.
���������

. Let any tree of least order have n vertices. There must be a unique
vertex corresponding to each degree > 1, and hence n − (k − 1) end-vertices. By
Theorem 1, this implies (σ − 1) + (n − k + 1) = 2n− 2, whence n = σ − k + 2. �

Theorem 2 can be extended to the problem of characterizing n for which there is
a tree with n vertices with a given degree set S.

Theorem 3. Let S = {1, a1, a2, . . . , ak−1}, with 1 < a1 < a2 < . . . < ak−1. Then

there exists a tree of order n with degree set S if and only if the equation

(1) (a1 − 1)x1 + (a2 − 1)x2 + . . . + (ak−1 − 1)xk−1 = n − 2

is solvable in integers xi > 1. If S = {1}, the only tree with degree set S is K2.
���������

. The case S = {1} is easy. We henceforth assume that |S| > 1. Let T be
a tree of order n, with degree set S. Let there be xi vertices of degree ai for 1 6 i 6
k−1, and letm denote the number of end-vertices. Thenm = n−(x1+x2+. . .+xk−1),
and by Theorem 1,

a1x1 + a2x2 + . . . + ak−1xk−1 = (2n − 2)−m = n − 2 + (x1 + x2 + . . . + xk−1).

Hence
k−1∑
i=1

(ai − 1)xi = n − 2, with each xi > 1.
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Conversely, suppose (1) has a solution in positive integers xi. We construct a

tree of order n with degree set S = {1, a1, . . . , ak−1}. Observe that K2 is the only
possibility when S = {1}. If |S| > 1, beginning with T1 = K1,a1 , we adjoin (a1 − 1)
new vertices to any one of the end-vertices to form T2, and continue this process of

adjoining (a1−1) new vertices to any one of the end-vertices in Ti to obtain Ti+1. For
each i > 1, each vertex in Ti+1 not in Ti has degree 1, while the vertex in Ti with new

vertices adjoined has degree a1 in Ti+1. Moreover, Tx1 has (a1+1)+(a1−1)(x1−1) =
2 + (a1 − 1)x1 vertices. We continue this process to obtain larger and larger trees

adjoining (a2−1) new vertices x2 times, then adjoining (a3−1) new vertices x3 times,
and so on, until we have adjoined (ak−1 − 1) new vertices xk−1 times. The tree thus

formed has 2+
k−1∑
i=1

(ai−1)xi vertices and degree set S. This completes the constructive

proof. �

It is easy to see that Theorem 2 follows immediately from Theorem 3 by choosing

each xi = 1. Theorem 3 shows that the problem of characterizing n for which there
exist an n-vertex tree with degree set S is dependent on solving a linear Diophantine

equation. A necessary and sufficient condition for the solvability of (1) in integers is
that

d := gcd(a1 − 1, a2 − 1, . . . , ak−1 − 1) | (n− 2).

Since we seek solutions with each xi > 1, the divisibility condition is only necessary.
The case k = 2 is trivial; trees of order n exist if and only if n ∈ (a1 − 1) � + 2. For
k > 2, we reduce (1) to the equivalent

(2) b1x1 + b2x2 + . . . + bk−1xk−1 =
n− 2

d
,

where bi = (ai−1)/d. There is no nice sufficient condition for the solvability of (2) in

positive integers for k > 3, but it is not difficult to show that there is a least positive
integer f = f(b1, b2, . . . , bk−1) such that (2) has a solution whenever the right-hand
side of (2) exceeds f . Moreover, the least such positive integer in the case k = 3
is given by f(b1, b2) = b1b2. This is the much studied problem of Frobenius; for an

extensive study, see [3].
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