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COMPLEMENTED COPIES OF `p SPACES IN TENSOR PRODUCTS

Raffaella Cilia, Catania, Joaquín M. Gutiérrez, Madrid

(Received January 21, 2005)

Abstract. We give sufficient conditions on Banach spaces X and Y so that their projective
tensor product X⊗πY , their injective tensor product X⊗εY , or the dual (X⊗πY )∗ contain
complemented copies of `p.
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MSC 2000 : 46B28, 46B20

It is proved in [3] that C(K1) ⊗π C(K2) contains a complemented copy of `2

whenever at least one of the spaces C(Ki) contains an isomorphic copy of `1, and

that L1(µ1)⊗ε L1(µ2) contains a complemented copy of `2 whenever at least one of
the spaces L1(µi) does not have the Schur property. Moreover, it is also proved that,
if X contains a copy of c0, Y ∗ has the Orlicz property and there exists a surjective

operator from Y onto `2, then X ⊗π Y contains a complemented copy of `2. In the
present paper we extend these results, giving new conditions on X and Y so that

X ⊗π Y , X ⊗ε Y , or the dual (X ⊗π Y )∗ contain complemented copies of `p spaces.

Throughout, X and Y denote Banach spaces, X∗ is the dual of X , and BX stands

for its closed unit ball. By
�
we represent the set of all natural numbers. The

notation X ≡ Y (respectively, X ∼= Y ) means that X and Y are isometrically

isomorphic (respectively, isomorphic). By an operator from X into Y we always
mean a bounded linear mapping. We use L(X, Y ) for the space of all operators
from X into Y , endowed with the supremum norm, and K(X, Y ) for the subspace of
compact operators.

This work was performed during a visit of the first named author to the Universidad
Politécnica de Madrid.
Both authors were supported in part by Dirección General de Investigación, MTM 2006–
03531 (Spain).
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Given 1 6 p 6 ∞, we denote by p∗ the conjugate index of p (1/p + 1/p∗ = 1).
Given 1 6 r < ∞, if a sequence (xn) ⊂ X is weakly r-summable, then there is a
positive constant C such that

‖(xn)n‖w,r := sup
x∗∈BX∗

( ∞∑

n=1

|x∗(xn)|r
)1/r

6 C

(see [8, page 32]). We denote by en the sequence (0, . . . , 0, 1, 0, . . .) with 1 in the n-th
position. The sequence (en)∞n=1 is weakly r-summable in `p (1 < p < ∞), for r > p∗,
with ‖(en)n‖w,r = 1.
The following result will be used without explicit mention.

Proposition 1. Let 1 < p < ∞ and let X be a Banach space. The following

assertions are equivalent:

(a) L(`p, X) 6= K(`p, X);
(b) there is a weakly p∗-summable sequence in X which is not norm null;

(c) there is a normalized weakly p∗-summable sequence in X .

The equivalence (a) ⇔ (b) is proved in [4, Corollary 5]. The equivalence (b) ⇔
(c) is obvious. Note that in [4, Corollary 5] there is a misprint: instead of Cp(X, Y ),
one should read Cp∗(X, Y ).
By X⊗π Y (respectively, X⊗ε Y ) we denote the projective (respectively, injective)

tensor product of X and Y . Recall that (X ⊗π Y )∗ ≡ L(X, Y ∗). We refer to [5] and
[9] for the theory of injective and projective tensor products of Banach spaces.

For any undefined notion from Banach Space Theory, we refer to [7] or [8].

In what follows, Πr(X, Y ) denotes the space of all absolutely r-summing operators

from X into Y .

Theorem 2. Let X and Y be Banach spaces such that L(X, Y ∗) = Πr(X, Y ∗),
for 1 < r < ∞. Suppose that L(`r∗ , X) 6= K(`r∗ , X) and L(`r, Y

∗) 6= K(`r, Y
∗).

Then X ⊗π Y contains a complemented copy of `r∗ .

���������
. Let (xn) ⊂ X (respectively, (y∗n) ⊂ Y ∗) be normalized weakly r-

summable (respectively, weakly r∗-summable) sequences. We can assume that they

are basic. There is a sequence (x∗n) ⊂ X∗ such that ‖x∗n‖ 6 M (n ∈ �
) and

x∗m(xn) = δmn. The argument used in the proof of [11, Theorem 12] yields a sequence

(yn) ⊂ Y such that ‖yn‖ 6 K and y∗m(yn) = δmn.

Let I : `r∗ → X ⊗π Y be the linear mapping given by I(en) = xn ⊗ yn. We show
that I is well-defined and continuous. Indeed, given a = (an) ∈ `r∗ , we have for
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k, m ∈ �
,

∥∥∥∥
m∑

n=k

anxn ⊗ yn

∥∥∥∥
π

= sup
T∈BL(X,Y ∗)

∣∣∣∣
m∑

n=k

an〈T (xn), yn〉
∣∣∣∣

6 K

( m∑

n=k

|an|r
∗
)1/r∗

sup
T∈BL(X,Y ∗)

( m∑

n=k

‖T (xn)‖r

)1/r

,

where we have used Hölder’s inequality. Since every T ∈ L(X, Y ∗) is absolutely
r-summing, we have

I(a) =
∞∑

n=1

anxn ⊗ yn ∈ X ⊗π Y.

Thanks to the Open Mapping Theorem, there is a positive constant C independent

of T such that the absolutely r-summing norm πr(T ) of T satisfies

πr(T ) 6 C‖T‖L(X,Y ∗),

so we have

‖I(a)‖π =
∥∥∥∥

∞∑

n=1

anxn ⊗ yn

∥∥∥∥
π

6 KC‖a‖r∗‖(xn)n‖w,r,

and I is continuous.
Now let R : X ⊗π Y → `r∗ be the linear mapping given by

R(x⊗ y) = (x∗n(x)y∗n(y))∞n=1 (x ∈ X, y ∈ Y ).

Note that R is well-defined since

( ∞∑

n=1

|x∗n(x)y∗n(y)|r
∗
)1/r∗

6 M‖x‖
( ∞∑

n=1

|y∗n(y)|r
∗
)1/r∗

6 M‖x‖‖y‖‖(y∗n)n‖w,r∗.

Let u ∈ X ⊗ Y and let
m∑

i=1

xi ⊗ yi be one of its representations. Then

(1) ‖R(u)‖ =
∥∥∥∥
( m∑

i=1

x∗n(xi)y∗n(yi)
)∞

n=1

∥∥∥∥ =
( ∞∑

n=1

∣∣∣∣
m∑

i=1

x∗n(xi)y∗n(yi)
∣∣∣∣
r∗)1/r∗

.

Consider now the operator T ∈ L(Y ∗, X) defined by

T (y∗) =
m∑

i=1

y∗(yi)xi (y∗ ∈ Y ∗).
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Clearly, T is nuclear and its nuclear norm satisfies

‖T‖N 6
m∑

i=1

‖xi‖‖yi‖.

For every index n, we have

∣∣∣∣
m∑

i=1

x∗n(xi)y∗n(yi)
∣∣∣∣ = |〈T (y∗n) , x∗n〉| 6 M‖T (y∗n)‖.

Then, from (1), using the fact that T is also absolutely r∗-summing, it follows that

‖R(u)‖ 6 M

( ∞∑

n=1

‖T (y∗n)‖r∗
)1/r∗

6 Mπr∗(T )‖(y∗n)n‖w,r∗

6 M‖T‖N‖(y∗n)n‖w,r∗

6 M‖(y∗n)n‖w,r∗

m∑

i=1

‖xi‖‖yi‖.

Since this holds for every representation of u as an element of X ⊗ Y , we have

R(u) 6 M ′‖u‖π. Therefore, R is continuous. Easily, R ◦ I is the identity map on
`r∗ , and so I ◦R is a projection. �

Remark 3. The equality L(X, Y ∗) = Π2(X, Y ∗) holds, for example, when X is an
L∞-space and Y ∗ has cotype 2 [8, Theorem 11.14(a)], while the equality L(X, Y ∗) =
Πr(X, Y ∗) for r > 2 holds, for example, when X is an L∞-space and Y ∗ has cotype
q (2 < q < r) [8, Theorem 11.14(b)]. The disk algebra A is not an L∞-space [2,

page 4], nevertheless, whenever Y ∗ has cotype 2, we have L(A, Y ∗) = Π2(A, Y ∗) [2,
Corollary 2.8].

A Banach space X has the Orlicz property if the identity operator on X is abso-

lutely (2, 1)-summing. Every Banach space with cotype 2 has the Orlicz property
(see [10, Definition 5.1] and [8, Corollary 11.17]). The converse is not true [18].

Theorem 4. Suppose that X has the Orlicz property and contains a normalized

weakly r-summable sequence, for 1 < r 6 2, and Y contains a complemented copy

of `1. Then X ⊗ε Y contains a complemented copy of `r∗ .

���������
. Since X ⊗ε `1 is complemented in X ⊗ε Y , it is enough to prove the

result for X ⊗ε `1.
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Let (xn) ⊂ X be a normalized weakly r-summable sequence, that can be assumed

to be basic. Then there is a sequence (x∗n) ⊂ X∗ with ‖x∗n‖ 6 M (n ∈ �
), such that

x∗m(xn) = δmn.

We give a linear mapping R : X ⊗ `1 → `r∗ by

R(x⊗ y) = (x∗n(x)en(y))∞n=1 .

Clearly, R is well-defined.

Given
m∑

i=1

xi ⊗ yi ∈ X ⊗ `1, we define the operator T ∈ L(`∞, X) by

T (y∗) =
m∑

i=1

y∗(yi)xi (y∗ ∈ `∞).

Then

‖T‖ =
∥∥∥∥

m∑

i=1

xi ⊗ yi

∥∥∥∥
ε

[5, Examples 4.2]. Moreover, as in the proof of Theorem 2, since r∗ > 2, we obtain

∥∥∥∥R

( m∑

i=1

xi ⊗ yi

)∥∥∥∥
r∗

=
( ∞∑

n=1

|〈T (en), x∗n〉|r
∗
)1/r∗

6 M

( ∞∑

n=1

‖T (en)‖2

)1/2

.

Since X has the Orlicz property, the identity map on X is absolutely (2, 1)-
summing. So there is a positive constant C such that

( ∞∑

n=1

‖T (en)‖2

)1/2

6 C sup
x∗∈BX∗

( ∞∑

n=1

|〈x∗, T (en)〉|
)

6 K sup
x∗∈BX∗

‖T ∗(x∗)‖

= K‖T‖

= K

∥∥∥∥
m∑

i=1

xi ⊗ yi

∥∥∥∥
ε

.

where we have used the Closed Graph Theorem as in [7, page 44]. Therefore,

∥∥∥∥R

( m∑

i=1

xi ⊗ yi

)∥∥∥∥
r∗

6 MK

∥∥∥∥
m∑

i=1

xi ⊗ yi

∥∥∥∥
ε

and then R is continuous with respect to the injective norm.

323



Define the linear mapping I : `r∗ → X⊗ε `1 by I(en) = xn⊗en (n ∈ �
). We show

that I is well-defined and continuous. Indeed, given a = (an) ∈ `r∗ , by Hölder’s
inequality, we have for k, m ∈ �

,
∥∥∥∥

m∑

n=k

anxn ⊗ en

∥∥∥∥
ε

= sup
x∗∈BX∗
y∗∈B`∞

∣∣∣∣
m∑

n=k

anx∗(xn)y∗(en)
∣∣∣∣

6
( m∑

n=k

|an|r
∗
)1/r∗

sup
x∗∈BX∗
y∗∈B`∞

( m∑

n=k

|x∗(xn)y∗(en)|r
)1/r

,

and, since (xn) is weakly r-summable, this implies that

I(a) =
∞∑

n=1

anxn ⊗ en ∈ X ⊗ε `1.

Using again the fact that (xn) is weakly r-summable, we have:

‖I(a)‖ε 6 ‖a‖r∗ sup
x∗∈BX∗
y∗∈B`∞

( ∞∑

n=1

|x∗(xn)y∗(en)|r
)1/r

= ‖a‖r∗‖(xn)n‖w,r,

so I is continuous. Easily, R(I(en)) = en (n ∈ �
), and the proof is complete. �

Theorem 5. Let X be a Banach space with finite cotype q > 2 containing a
normalized weakly q∗-summable sequence. Let Y be a Banach space containing a

complemented copy of `1. Then X ⊗ε Y contains a complemented copy of `q.
���������

. Since X ⊗ε `1 is complemented in X ⊗ε Y , it is enough to consider
Y = `1. If q = 2, the result is true by Theorem 4, since X has the Orlicz property.

Suppose q > 2. Let (xn) ⊂ X be a normalized weakly q∗-summable sequence, which
can be assumed to be basic. Then there is a bounded sequence (x∗n) ⊂ X∗ such that

x∗m(xn) = δmn. Now let R : X ⊗ε `1 → `q be the linear mapping given by

R(x⊗ y) = (x∗n(x)en(y))∞n=1.

Clearly, R is well-defined. Given
m∑

i=1

xi ⊗ yi ∈ X ⊗ε `1, we define T ∈ L(`∞, X) as in

the proof of Theorem 4. Since X has cotype q > 2, T is absolutely (q, 1)-summing
and there is a positive constant C independent of T such that the absolutely (q, 1)-
summing norm of T satisfies π(q,1)(T ) 6 C‖T‖ (see [8, Theorem 11.14(b) and its
proof]). So, as in the proof of Theorem 4, R is continuous.
Let I : `q → X ⊗ε `1 be the linear mapping given by I(en) = xn ⊗ en (n ∈ �

).
As in the proof of Theorem 4, I is well-defined and continuous, and R(I(en)) = en

(n ∈ �
), so we are done. �
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Theorem 6. Suppose that Y ∗ contains a complemented copy of `1 and X∗ has

finite cotype q > 2. Let r > q if q > 2 and let r > 2 if q = 2. If L(`r, X
∗) 6= K(`r, X

∗),
then (X ⊗π Y )∗ contains a complemented copy of `r.
���������

. Since L(X, `1) is complemented in L(X, Y ∗) ≡ (X ⊗π Y )∗ (see, for
instance, the proof of [11, Theorem 15]), it is enough to prove the statement for

L(X, `1). Let (x∗n) ⊂ X∗ be a normalized weakly r∗-summable sequence. We can
assume that it is basic. As in the proof of [11, Theorem 12], we can find a sequence

(xn) ⊂ X such that x∗m(xn) = δmn and ‖xn‖ 6 M (n ∈ �
). Let j : `1 → `r be the

natural inclusion and let R : L(X, `1) → `r be given by

R(T ) = (〈jT (xn), en〉)∞n=1 .

We show that R is a well-defined operator. Indeed, given T ∈ L(X, `1), its adjoint
T ∗ ∈ L(`∞, X∗) is absolutely r-summing [8, Theorem 11.14]. Moreover, by the
Open Mapping Theorem, there is a positive constant C independent of T such that

πr(T ∗) 6 C‖T ∗‖, so
( ∞∑

n=1

|〈jT (xn), en〉|r
)1/r

6 M

( ∞∑

n=1

‖T ∗j∗(en)‖r

)1/r

6 CM‖T‖.

Therefore, R is well-defined and continuous. Now let I : `r → L(X, `1) be the linear
mapping given by

I(a)(x) = (x∗n(x)an)∞n=1 for each a = (an)n ∈ `r.

Since (x∗n) is weakly r∗-summable, we have

∞∑

n=1

|x∗n(x)an| 6 ‖x‖‖a‖r‖(x∗n)n‖w,r∗.

It follows that I is a well-defined operator. Moreover,

I(em)(xn) = (x∗k(xn)δmk)∞k=1 = x∗m(xn)em = δmnem,

so

R(I(em)) = (〈j(I(em)(xn)), en〉)∞n=1 = (〈δmnem, en〉)∞n=1 = em,

and I ◦R is a projection. �

Remark 7. Under the hypotheses of Theorem 6, the space K(X, Y ∗) contains a
complemented copy of `r.
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Indeed, since K(X, `1) is complemented in K(X, Y ∗), it is enough to show that the
range of I is contained in K(X, `1). Given a = (an) ∈ `r and ε > 0, there is n0 ∈

�

such that
( ∞∑

n=n0

|an|r
)1/r

<
ε

‖(x∗n)‖w,r∗
.

Hence, by Hölder’s inequality,

sup
x∈BX

∞∑

n=n0

|x∗n(x)an| 6
( ∞∑

n=n0

|an|r
)1/r

sup
x∈BX

( ∞∑

n=n0

|x∗n(x)|r
∗
)1/r∗

<
ε

‖(x∗n)‖w,r∗
· ‖(x∗n)‖w,r∗ = ε,

so I(a)(BX ) is relatively compact in `1.

The following result improves [11, Corollary 16].

Corollary 8. Let X and Y be infinite-dimensional L∞-spaces such that at least

one of them contains a copy of `1. Then (X ⊗π Y )∗ contains a complemented copy
of `2.

���������
. Suppose that X contains a copy of `1. Then there is a surjective

operator q : X → `2 [8, Corollary 4.16]. The operator q∗ : `2 → X∗ is not compact.

Since X is an L∞-space, X∗ is an L1-space [14, Theorem III(a)] and then has
cotype 2 [8, Corollary 11.7(a)]. Since Y is an infinite-dimensional L∞-space, Y ∗

contains a complemented copy of `1 [13, Proposition 7.3]. Then it is enough to apply
Theorem 6. �

Corollary 9. Let X and Y be infinite-dimensional L∞-spaces. Assume that Y

is separable and Y ∗ 6∼= `1. Then (X ⊗π Y )∗ contains a complemented copy of `2.

���������
. Since Y is an infinite-dimensional separable L∞-space and Y ∗ 6∼= `1,

then Y ∗ ∼= C[0, 1]∗ [1, Theorem 3.1]. Therefore,

(X ⊗π Y )∗ ∼= L(X, C[0, 1]∗) ≡ (X ⊗π C[0, 1])∗,

and it is enough to apply Corollary 8. �
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Corollary 10. Let X and Y be infinite-dimensional separable L∞-spaces. Then

the following assertions are equivalent:

(a) X∗ ∼= Y ∗ ∼= `1;

(b) (X ⊗π Y )∗ has the Dunford-Pettis property;
(c) (X ⊗π Y )∗ contains no complemented copy of `2.
���������

. (a) ⇔ (b) is proved in [11, Corollary 7];
(b) ⇒ (c) is clear;
(c) ⇒ (a) follows from Corollary 9. �

Corollary 11. Let X and Y be infinite-dimensional L∞-spaces. Then the fol-

lowing assertions are equivalent:

(a) X and Y contain no copy of `1;

(b) (X ⊗π Y )∗ has the Schur property;
(c) (X ⊗π Y )∗ has the Dunford-Pettis property;
(d) (X ⊗π Y )∗ contains no complemented copy of `2;

(e) X∗ ⊗ε Y ∗ has the Schur property;

(f) X∗ ⊗ε Y ∗ has the Dunford-Pettis property;

(g) X∗ ⊗ε Y ∗ contains no complemented copy of `2.
���������

. (a)⇒ (b). SinceX and Y have the Dunford-Pettis property and contain

no copy of `1, their duals X∗ and Y ∗ have the Schur property [6, Theorem 3]. By
[17, Corollary 3.4], the space (X ⊗π Y )∗ has the Schur property.
(b) ⇒ (c) ⇒ (d) are obvious.
(d) ⇒ (a) follows from Corollary 8.
(a) ⇒ (e). Since X∗ and Y ∗ have the Schur property, X∗ ⊗ε Y ∗ has the Schur

property [15].
(e) ⇒ (f) ⇒ (g) are obvious.
(g) ⇒ (a). Suppose that Y contains a copy of `1. Then there exists a surjection

q : Y → `2 [8, Corollary 4.16]. The sequence (q∗(en)) is weakly 2-summable in Y ∗

and is not norm null. Since Y ∗ is an L1-space, it has the Orlicz property. Since X

is an infinite-dimensional L∞-space, X∗ contains a complemented copy of `1. By

Theorem 4, X∗ ⊗ε Y ∗ contains a complemented copy of `2. �

Remark 12.
(a) In the proof of Corollary 11, only the following assumptions on X and Y are

used: X and Y are infinite-dimensional and have the Dunford-Pettis property, Y ∗

has the Orlicz property, and X∗ contains a complemented copy of `1.

(b) If X and Y are L∞-spaces and X contains no copy of `1, then

(X ⊗π Y )∗ ≡ X∗ ⊗ε Y ∗.
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Indeed, (X⊗πY )∗ ≡ L(X, Y ∗). Every operator in L(X, Y ∗) is completely continuous
[8, Theorems 3.7 and 2.17] and, since X contains no copy of `1, also compact [16,
page 377]. By the approximation property of X∗ (or Y ∗) [5, page 306], we have
K(X, Y ∗) ≡ X∗ ⊗ε Y ∗ [5, Proposition 5.3].

The following result is proved in [11, Corollary 14]:

Theorem 13. Let X and Y be infinite-dimensional L1-spaces. The following

assertions are equivalent:

(a) X and Y have the Schur property;

(b) X ⊗ε Y has the Schur property;

(c) X ⊗ε Y has the Dunford-Pettis property.

We do not know if these assertions are equivalent to:

(d) X ⊗ε Y contains no complemented copy of `2.

As for the dual, it is shown in [12] that, if X and Y are infinite-dimensional

L1-spaces, then (X ⊗ε Y )∗ contains a complemented copy of `2. This was proved
independently and by different techniques in [3]. Moreover, its isometric subspace
X∗ ⊗π Y ∗ [9, Theorem VIII.3.10] also contains a complemented copy of `2, by a

result of [3] (see the introduction to the present paper).
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