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Abstract. Using the concept of I-convergence we provide a Korovkin type approximation
theorem by means of positive linear operators defined on an appropriate weighted space
given with any interval of the real line. We also study rates of convergence by means of the
modulus of continuity and the elements of the Lipschitz class.
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1. Introduction

Chlodovsky [3] was the first to notice that the Bernstein polynomials converge
to the average of the left and right limits at the point of simple discontinuity of a

function. However, this phenomenon does not always take place for general posi-
tive linear approximation operators. One such example was given by Bojanic and

Cheng [1] who showed that the Hermit-Fejer interpolation operator does not con-
verge at a point of simple discontinuity. On the other hand, Bojanic and Khan [2]

showed that the Cesáro averages of the Hermit-Fejer operator converge to the mid-
point of the jump discontinuity. In recent years another form of regular summability

transformation has shown to be quite effective in summing non-convergent sequences
which may have unbounded subsequences (see [8], [9]). Furthermore, some Korovkin

type approximation theorems have been studied via statistical convergence in [5]
and [6].

In the present paper we investigate the approximation properties of positive linear

operators defined on an appropriate subspace of all real-valued continuous functions
on an arbitrary interval of the real numbers by means of I-convergence, which is a
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more general method than A-statistical convergence. We will also give an application

concerning the I-convergence of these operators.
We now recall some definitions and notation used in this paper.

Let K be a subset of
�
, the set of all natural numbers. The natural density of K

is the nonnegative real number given by δ(K) := lim
j

1
j |{n 6 j : n ∈ K}| provided

the limit exists, where |B| denotes the cardinality of the set B (see [18] for details).
Then, a sequence x := (xn) is called statistically convergent to a number L if for

every ε > 0, δ{n ∈ � : |xn − L| > ε} = 0. This is denoted by st- lim
n

xn = L (see [7],

[9]). It is easy to see that every convergent sequence is statistically convergent but
not conversely.

Let A := (ajn) (j, n = 1, 2, . . .) be an infinite summability matrix. For a given

sequence x = (xn), the A-transform of x, denoted by Ax := {(Ax)j}, is given by
(Ax)j =

∞∑
n=1

ajnxn provided the series converges for each j ∈ �
. We say that

A is regular if lim
j

(Ax)j = L whenever lim
n

xn = L [11]. Freedman and Sember [8]

introduced the following extension of statistical convergence: Assume that A = (ajn)
is a nonnegative regular summability matrix. The A-density of a subset K of

�
is

given by δA(K) := lim
j

∑
n∈K

ajn whenever the limit exists. Then, a sequence x = (xn)

is called A-statistically convergent to L if δA{n ∈ � : |xn − L| > ε} = 0, which is
denoted by stA- lim

n
xn = L. It is known that if A is the identity matrix, then A-

statistical convergence reduces to the classical convergence, and also if A = C1, the
Cesáro matrix of order one, then it coincides with the statistical convergence (see

also [10], [13] and [17]).

Let X be a non-empty set. A class I of subsets of X is said to be an ideal in X

provided that

(i) ϕ ∈ I;
(ii) if A, B ∈ I, then A ∪ B ∈ I;
(iii) A ∈ I and if B ⊆ A, then B ∈ I.
An ideal is called nontrivial if X /∈ I. Also, a nontrivial ideal in X is called

admissible if {x} ∈ I for each x ∈ X (see [16] for details). In [15], a unifying
approach to the concept of statistical convergence has been introduced: Let I be
a nontrivial ideal in

�
. A sequence x = (xn) of real numbers is I-convergent to

a real number L if for every ε > 0, {n : |xn − L| > ε} ∈ I, which is denoted by
I- lim

n
xn = L. We also know from [15] that if I is the class of all finite subsets of � ,

then I-convergence reduces to the classical convergence. Furthermore, I-convergence
coincides with the A-statistical convergence by taking I = {K ⊂ �

: δA(K) = 0},
where A is a nonnegative regular summability matrix; of course, choosing A = C1

we have the statistical convergence.
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I-convergence of positive linear operators

In this section, using I-convergence we prove a Korovkin type approximation
theorem for positive linear operators defined on the linear space Cg(U) given by

Cg(U) :=
{

f ∈ C(U) : lim
|x|→∞
(x∈U)

|f(x)|
(g(|x|))c

= 0, for any c > 0
}

,

where U is an arbitrary interval of � , the set of all real numbers, and g is a nonneg-
ative increasing function on [0,∞) with g(0) = 1, and also C(U) denotes the linear
space of all real-valued continuous functions on U (see, for instance, [12]; also [6]). If
U = [a, b], then C(U) is a Banach space with the norm ‖f‖C[a,b] := sup

x∈[a,b]

|f(x)| for

f ∈ C[a, b]. Note that when U = [a, b], the notation Cg(U) will stand for C[a, b] with
g(x) ≡ 1. Let U be an arbitrary interval of � and let x ∈ U be fixed. Assume that
{µn,x : n > 1} is a collection of measures defined on (U,B), where B is the sigma
field of Borel measurable subsets of U . Throughout the paper we assume, for δ > 0,
that

(2.1) sup
n∈ �

∫

U\Uδ

g(|y|) dµn,x(y) < ∞,

where Uδ := [x − δ, x + δ] ∩ U . We now consider operators Ln defined on Cg(U) as
follows:

(2.2) Ln(f ; x) =
∫

U

f(y) dµn,x(y), n ∈ � and f ∈ Cg(U).

These operators were introduced in [6]. Note that condition (2.1) guarantees that
the integral in (2.2) is well-defined. Now we have the following main result.

Theorem 2.1 Main Theorem. Let I be an admissible ideal in � and let U be

an arbitrary interval of � . Assume that g is a function such that f2(y) = y2 is in

Cg(U) and for any δ > 0, (2.1) holds. Then, for the operators Ln given by (2.2), the
following two statements are equivalent:

(i) I- lim
n
|Ln(f ; x)− f(x)| = 0 for all f ∈ Cg(U).

(ii) I- lim
n
|Ln(fi; x)− fi(x)| = 0, where fi(y) = yi for i = 0, 1, 2.

�������
	
. Under the hypotheses, since fi ∈ Cg(U) for each i = 0, 1, 2, (i) im-

plies (ii) immediately. Assume now that (ii) holds. Let f ∈ Cg(U) and fix x ∈ U .
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As in the proof of Theorem 1 of [6], it follows from the continuity of f and the

Cauchy-Bunyakowsky-Schwarz inequality that

∫

U\Uδ

|f(y)− f(x)| dµn,x(y)

=
∫

U\Uδ

χU\Uδ
|f(y)− f(x)| dµn,x(y)

6
[∫

U

χU\Uδ
dµn,x(y)

]1/p[∫

U\Uδ

|f(y)− f(x)|q dµn,x(y)
]1/q

,

where p > 1, 1/p+1/q = 1, Uδ := [x−δ, x+δ]∩U for some δ > 0; here χA denotes the

characteristic function of A. By the hypothesis and the definition of the function g,
we conclude that f ∈ Cg(U) implies that f q ∈ Cg(U) and also that there exists a
number of K such that

[∫

U\Uδ

|f(y)− f(x)|q dµn,x(y)
]1/q

< K.

Using this and following the proof of Theorem 1 in [6] we conclude that

|Ln(f ; x)− f(x)| 6 ε + B(x)
{
|Ln(f0; x)− f0(x)|(2.3)

+ |Ln(f0; x)− f0(x)|1/p

+ |Ln(f1; x)− f1(x)|1/p

+ |Ln(f2; x)− f2(x)|1/p
}

holds for every n ∈ � and ε > 0, where

B(x) := max
{

ε + |f(x)|, K

δ2/p
, K

( |x|
δ

)2/p

, K
(2|x|

δ2

)1/p
}

.

Given r > 0, choose ε > 0 such that ε < r. Consider the following sets:

H =
{

n : |Ln(f ; x)− f(x)| > r
}

,

H1 =
{

n : |Ln(f0; x)− f0(x)| > r − ε

4B(x)

}
,

H2 =
{

n : |Ln(f0; x)− f0(x)|1/p > r − ε

4B(x)

}
,

H3 =
{

n : |Ln(f1; x)− f1(x)|1/p > r − ε

4B(x)

}
,

H4 =
{

n : |Ln(f2; x)− f2(x)|1/p > r − ε

4B(x)

}
.
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Then, it follows from (2.3) that H ⊆
4⋃

j=1

Hj . By (ii), Hj ∈ I for j = 1, 2, 3, 4. So,

by the definition of an ideal,
4⋃

j=1

Hj ∈ I, which yields H ∈ I. So we have

{n : |Ln(f, x)− f(x)| > r} ∈ I,

whence the result. �

We remark that Theorem 2.1 reduces to Theorem 1 in [6] if we take I = {K ⊆�
: δA(K) = 0}, where A is a nonnegative regular summability matrix. Furthermore,
in Theorem 2.1 the choice of I being the class of all finite subsets of � gives the next
result immediately.

Corollary 2.2. Under the hypotheses of Theorem 2.1, the following two state-
ments are equivalent:

(i) For all f ∈ Cg(U), the sequence {Ln(f)} converges pointwise to f .

(ii) For each i = 0, 1, 2, the sequence {Ln(fi)} converges pointwise to fi, where

fi(y) = yi.

On the other hand, the choice of U = [a, b] in Theorem 2.1 leads to

Corollary 2.3. Let I be an admissible ideal in � and let U = [a, b] be a closed
and bounded interval of � . Assume that the measure µn,x and the operators Ln are

given by (2.1) and (2.2). Then the following two statements are equivalent:
(i) I- lim

n
‖Ln(f ; x)− f(x)‖C[a,b] = 0 for all ∈ C[a, b].

(ii) I- lim
n
‖Ln(fi; x) − fi(x)‖C[a,b] = 0, where fi(x) = xi for i = 0, 1, 2.

Of course, if I is the class of all finite subsets of
�
, then the classical Korovkin

theorem (see [14, p. 20]) follows from Corollary 2.3 at once.

3. An application to Theorem 2.1

In this section, as a special case, we deal with an application to positive linear

operators satisfying Theorem 2.1.
When U = � , the Gauss-Weierstrass operators are defined by

(3.1) Wn(f ; x) =
√

n

2π

∫ ∞

−∞
f(y)e−

1
2 n(y−x)2 dy.

Now by using Theorem 2.1 we obtain the following result.
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Corollary 3.1. Consider the function g defined by g(x) = ex for x > 0. Let I be
an admissible ideal in

�
. Then, for all f ∈ Cg( � ),

I- lim
n
|Wn(f ; x)− f(x)| = 0

holds, where the operators Wn are given by (3.1).
�������
	

. Let x ∈ � be fixed and f ∈ Cg( � ). It is well-known that Wn(1; x) = 1,
Wn(y; x) = x and Wn(y2; x) = x2 + 1/n for every n ∈ �

. So, it is clear that
lim
n
|Wn(fi; x) − fi(x)| = 0 for i = 0, 1, 2 which implies I- lim

n
|Wn(fi; x)− fi(x)| = 0

where fi(y) = yi (i = 0, 1, 2). We also know that each Borel measure µn,x represents

a non-decreasing right continuous function Fn,x (see, for instance, [19]). Now, for
every n ∈ � , define a function Fn,x on � by

Fn,x(y) =
∫ y

−∞
hn,x(t) dt,

where hn,x(t) :=
√

1
2n/π e−

1
2 n(t−x)2 . So we have dFn,x(y)/dy = hn,x(y). For each

n ∈ � , µn,x is the Borel measure corresponding to the function Fn,x. Since f ∈ Cg( � )
is a measurable function, we conclude that

∫
� f(y) dµn,x(y) =

∫
� f(y) dFn,x(y) =

∫
� f(y)hn,x(y) d(y)

(see [19] for details). Hence, we get

Wn(f ; x) =
∫
� f(y) dµn,x(y), n ∈ � , f ∈ Cg( � ).

Thus, the operators Wn have the form given by (2.2).
On the other hand, for any δ > 0 and n ∈ � we obtain that

√
n

2π

∫

|y−x|>δ

e|y|e−
1
2 n(y−x)2 dy 6 e|x|

√
n

2π

∫

|t|>δ

e|t|e−
1
2 nt2 dt

6 2e|x|
√

n

2π

∫ ∞

0

ete−
1
2 nt2 dt

6 2e|x|
√

n

2π

∫ ∞

−∞
ete−

1
2 nt2 dt

= 2e|x|+1/2n.

This gives

sup
n∈ �

∫
� \ � δ

e|y| dµn,x(y) < ∞.

Therefore, the operators Wn satisfy all hypotheses of Theorem 2.1, which completes
the proof. �
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4. Rates of convergence

In this section we compute the rates of I-convergence in Theorem 2.1 by means
of the modulus of continuity and elements of the Lipschitz class.
Since most of the approximating operators in approximation theory preserve the

function f0(y) = 1, throughout this section we assume that Ln(f0; x) = 1.
Now, let f ∈ Cg(U). The modulus of continuity of f , denoted by w(f, δ), is defined

to be
w(f, δ) = sup

|y−x|<δ,x,y∈U

|f(y)− f(x)|.

Then it is clear that for any δ > 0 and each x, y ∈ U

(4.1) |f(y)− f(x)| 6 w(f, δ)
( |y − x|

δ
+ 1

)
, (f ∈ Cg(U)).

Now we have

Theorem 4.1. For the operators Ln given by (2.2) we have, for any f ∈ Cg(U),
δ > 0, n ∈ � and for each x ∈ U ,

|Ln(f ; x)− f(x)| 6 2w(f, δn),

where

(4.2) δn := δn(x) =
√
|Ln(f2; x)− f2(x)| + 2|x||Ln(f1; x)− f1(x)|.

�������
	
. Let f ∈ Cg(U) and x ∈ U . Since Ln(f0; x) = 1, using (4.1) and the

linearity and monotonicity of the operators Ln, we get, for any δ > 0 and n ∈ � ,
that

|Ln(f ; x)− f(x)| 6 Ln(|f(y)− f(x)|; x)

6 w(f, δ)
{1

δ
Ln(|y − x|; x) + 1

}
.

Now applying the Cauchy-Schwarz inequality for positive linear operators, we obtain

(4.3) |Ln(f ; x)− f(x)| 6 w(f, δ)
{1

δ

√
Ln(ϕx; x) + 1

}
,

where ϕx(y) = (y − x)2. Since

Ln(ϕx; x) = Ln(f2; x) − 2xLn(f1; x) + x2(4.4)

6 |Ln(f2; x)− f2(x)| + 2|x||Ln(f1; x)− f1(x)|,
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we conclude from (4.3) and (4.4) that

|Ln(f ; x)− f(x)| 6 w(f, δ)(4.5)

×
{1

δ

√
|Ln(f2; x)− f2(x)| + 2|x||Ln(f1; x)− f1(x)|+ 1

}
.

Choosing δ := δn(x) given by (4.2) the proof follows from (4.5). �

We will now study the rate of convergence of the positive linear operators Ln by
means of the elements of the Lipschitz class LipM (α) for 0 < α 6 1. We recall that
a function f ∈ Cg(U) belongs to LipM (α) if the inequality

(4.6) |f(y)− f(x)| 6 M |y − x|α (y, x ∈ U)

holds. So we get

Theorem 4.2. For the operators Ln given by (2.2) we have, for any f ∈ LipM (α),
n ∈ � and for each x ∈ U ,

|Ln(f ; x)− f(x)| 6 Mδα/2
n ,

where δn := δn(x) is given by (4.2).
�������
	

. Let f ∈ LipM (α) and x ∈ U . Then (4.6) implies, for all n ∈ � , that

|Ln(f ; x)− f(x)| 6 Ln(|f(y)− f(x)|; x)

6 MLn(|y − x|α; x).

Now applying the Hölder inequality with p = 2/α, q = 2/(2− α) we get

|Ln(f ; x)− f(x)| 6 M{Ln(ϕx; x)}α/2,

and also by (4.4),

|Ln(f ; x)− f(x)| 6 M{|Ln(f2; x)− f2(x)|+ 2|x||Ln(f1; x)− f1(x)|}α/2.

So the proof follows from the choice δn := δn(x) given by (4.2). �

Concluding Remarks. Under condition (ii) of Theorem 2.1, observe that
I- lim

n
δn(x) = 0 for each x ∈ U , which also guarantees that I- lim

n
w(f ; δn) = 0 for

all f ∈ Cg(U). Therefore, Theorems 4.1 and 4.2 give us the rates of I-convergence
in the approximation Ln(f ; x) of f(x).
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