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ON k-PAIRABLE GRAPHS FROM TREES
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Abstract. The concept of the k-pairable graphs was introduced by Zhibo Chen (On
k-pairable graphs, Discrete Mathematics 287 (2004), 11–15) as an extension of hypercubes
and graphs with an antipodal isomorphism. In the same paper, Chen also introduced a new
graph parameter p(G), called the pair length of a graph G, as the maximum k such that
G is k-pairable and p(G) = 0 if G is not k-pairable for any positive integer k. In this paper,
we answer the two open questions raised by Chen in the case that the graphs involved are
restricted to be trees. That is, we characterize the trees G with p(G) = 1 and prove that
p(G � H) = p(G) + p(H) when both G and H are trees.
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1. Introduction

In [2], N. Graham, R.C. Entringer and L.A. Székely proved that for every span-
ning tree T of the hypercube Qk, there is an edge of Qk outside T whose addition

to T forms a cycle of length at least 2k. They also extended the result to graphs
with an antipodal isomorphism. Recently, Chen [1] further extended their result to a

greater class of graphs which he introduced as the k-pairable graphs. Chen pointed
out that the k-pairable graphs have some special kind of symmetry that is different

from the well-known type of symmetry such as vertex-transitivity, edge-transitivity,
or distance transitivity. In the same paper, Chen also introduced a new graph pa-

rameter p(G), the pair length of a graph G, and raised some open questions, which
motivated our work here.

All graphs in this paper are connected and simple if not specified. We use the
similar terminology here as in [1]. For example, the distance between two vertices x

and y in a graph G is denoted as dG(x, y) or simply as d(x, y) if it will cause no
confusion. We write x adj y to mean that the two vertices x and y are adjacent.
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The eccentricity of a vertex u in a graph G is e(u) = max
v∈V (G)

d(u, v). The diameter

of G is d(G) = max
u∈V (G)

e(u). The radius of G is r(G) = min
u∈V (G)

e(u). If e(u) = r(G),

then u is called a central vertex of G. The center of G, denoted as C(G), is the
set of all central vertices of G. It is well known that the center of a tree is either

a vertex or a pair of adjacent vertices. The degree of a vertex u in G, denoted
by deg(u), is the number of vertices that are adjacent to u in G. An isomorphism of

a graph G is a one to one map f : V (G) → V (G) such that u adj v in G if and only
if f(u) adj f(v) in G. A graph G has an antipodal isomorphism if for every vertex

v ∈ V (G), e(v) = d(G) and there is a unique v ∈ V (G) such that d(v, v) = d(G) and
the map ϕ : V (G) → V (G) defined by ϕ(v) = v is an isomorphism of G.

Definition 1.1 ([1]). Let k be a positive integer. A graph G is said to be
k-pairable if

1. V (G) can be partitioned into disjoint pairs, that is, V (G) = P1 ∪ P2 ∪ . . . ∪ Pn

with |Pi| = 2 for all i, and Pi ∩ Pj = ∅ for all i 6= j. If two vertices x and y

are in the same pair Pi, then we say x is the mate of y and y is the mate of x,

which is denoted by x = y′ and y = x′.

2. d(x, x′) > k, for every x ∈ V (G), and
3. for any vertices x, y of G, x adj y implies x′ adj y′.

Any partition of V (G) satisfying the above three conditions is called a k-pair

partition of G. From the definition, we can see that for any k-pair partition Π of G,
there is an induced isomorphism fΠ : G → G that maps each vertex x to its mate x′,

i.e., fΠ(x) = x′ and fΠ(x′) = x for each vertex x of G. This isomorphism does not
fix any vertex of G since k is a positive integer.

Definition 1.2 ([1]). The pair length of a graph G, denoted as p(G), is the
maximum k such that G is k-pairable; p(G) = 0 if G is not k-pairable for any

positive integer k.

It has been pointed out in [1] that the order of G has to be even to have the

pair length p(G) > 0. For example, any complete graph K2n has p(K2n) = 1; any
cycle C2n has p(C2n) = n; any path P2n has p(P2n) = 1. The pair length p(G)
measures the maximum distance between a subgraph G1 of G induced by half the
vertices of G and its isomorphic subgraph G2 of G induced by the other half of V (G)
in the sense that d(G1, G2) = min

g∈V (G1)
d(g, g′) where g′ is the isomorphic image of g.

In [1], an upper bound for p(G) was given, that is, p(G) 6 min{r(G), 1
2 |V (G)|}.

Properties of the k-pairable Cartesian product graphs were also studied. Recall that

the Cartesian product of two graphsG and H is denoted by G � H . It has the vertex
set V (G)×V (H) and (g1, h1)adj(g2, h2) if either g1 = g2 and h1adjh2 inH or h1 = h2

378



and g1adjg2 in G. Chen showed that p(G)+p(H) 6 p(G � H) 6 r(G)+r(H) and he
also gave a sufficient condition for p(G � H) = p(G) + p(H), that is, if p(G) = r(G)
and p(H) = r(H), then p(G � H) = p(G) + p(H) = r(G) + r(H). But p(G) = r(G)
and p(H) = r(H) is not a necessary condition for p(G � H) = p(G) + p(H). For
example, let G be a path with 2n vertices, then p(G � K2) = 2 = 1 + 1 = p(G) +
p(K2), but 1 = p(G) 6= r(G) = n.

The following open questions were raised by Chen in [1]:

1. How to characterize the graphs for which p(G) = k?

2. Is it true that p(G � H) = p(G) + p(H) in general?
In this paper, we shall answer these questions when both G and H are trees.

2. Preliminaries

The following lemmas give some basic facts about the k-pairable graphs. (Note

that we always assume k > 0 from now on.)

Lemma 2.1. Let G be a k-pairable graph. Then for an arbitrary k-pair parti-

tion Π of G, the following hold:
1. deg(u) = deg(u′) for any vertex u of G where u′ is the mate of u. In particular,

if G is a tree and e(u) = d(G), then deg(u) = deg(u′) = 1.
2. d(u, v) = d(u′, v′) for any vertices u and v of G where u′, v′ are the mates of

u, v respectively.

3. e(u) = e(u′) for any vertex u of G where u′ is the mate of u.

���������
. 1. deg(u) = deg(u′) is trivial since u adj x if and only if their mates

u′adjx′ by the definition of a k-pairable graphG. If e(u) = d(G), then d(u, v) = d(G)
for some v ∈ V (G). Also e(v) = d(u, v) since d(G) > e(v) > d(u, v) = d(G). Assume
that G is a tree and let P be the shortest path joining u and v. If deg(u) 6= 1, then
there is a vertex x ∈ G− P and x is adjacent to u. Then x ∪ P is a path joining x

and v and it is the unique path between x and v since G is a tree. It follows that

d(x, v) = d(u, v) + 1 > d(u, v). This is a contradiction since e(v) = d(u, v) > d(x, v).
Therefore, deg(u) = deg(u′) = 1.
2. Suppose that d(u, v) = n for some n > 1 and uu1 . . . un−1v is a shortest path

joining u and v in G, then u′u′1 . . . u′n−1v
′ is a path of length n joining their mates u′

and v′ in G where u′i is the mate of ui for 1 6 i 6 n− 1. It must be a shortest path
joining u′ and v′. Otherwise, there is a path u′s1 . . . sm−1v

′ joining u′ and v′ in G

with length m less than n. It implies that us′1 . . . s′m−1v is a path joining u and v

where s′i is the mate of si for 1 6 i 6 m − 1. This path has length m less than n,
which contradicts the assumption that d(u, v) = n.

379



3. Suppose e(u) = d(u, v) for some vertex v in G. If e(u′) = d(u′, v′) where
u′, v′ are the mates of u, v respectively, then e(u′) = e(u) since d(u, v) = d(u′, v′). If
e(u′) 6= d(u′, v′), then there exists w ∈ V (G) such that e(u′) = d(u′, w) > d(u′, v′).
Let w′ be the mate of w. Then e(u) > d(u, w′) = d(u′, w) > d(u′, v′) = d(u, v) =
e(u). This is a contradiction. �

Lemma 2.2. Let G be a k-pairable graph. Then we have the following:

1. If |V (G)| > 2 and G1 = G−⋃{u ∈ V (G) : deg(u) = 1}, then p(G1) > p(G) > 0.
The equality holds when G is a tree.

2. Let H be an induced subgraph of G. If there is a k-pair partition Π of G

such that H does not have any two vertices in the same pair of Π, then H is

isomorphic to some induced subgraph of G−H .

3. If p(G) = r(G) and u is a central vertex of G, then for any p(G)-pair partition Π
of G, d(u, u′) = r(G) where u′ is the mate of u in Π.

���������
. 1. It is easy to see that G1 = G − ⋃{u ∈ V (G) : deg(u) = 1} is

an induced subgraph of G. For any p(G)-pair partition of G, there is an inherited

p(G)-pair partition of G1 since the mate of a vertex of G with degree 1 is still a
vertex of G with degree 1. Therefore, p(G1) > p(G). If G is a tree, then we can

delete the vertices with degree 1 repeatedly until a graph Gn is obtained that is
either a vertex or an edge. It is easy to see that Gn is not a vertex if p(G) > k > 0
since p(Gn) > p(Gn−1) > . . . > p(G1) > p(G) > 0. Therefore, Gn is an edge and
1 = p(Gn) > p(G) > 0. It follows that p(G) = 1 and the equality holds for each step
from G to Gn by deleting the vertices of degree 1.
2. Let H ′ be the subgraph induced by the mates of vertices of H in the partition Π.

Then H ′ is an induced subgraph of G − H since H is an induced subgraph of G.

If fΠ is the isomorphism of G induced by the partition Π, then it is clear that the
restriction of fΠ to H is an isomorphism between H and H ′.

3. For any p(G)-pair partition Π of G, e(u) > d(u, u′) > p(G) = r(G) where u′ is

the mate of u. Since u is a central vertex of G, then e(u) = r(G). It follows that
d(u, u′) = r(G). �

By part 1 of Lemma 2.1, we immediately have

Corollary 2.3. If T is a star with more than 2 vertices, then p(T ) = 0.

From part 1 of Lemma 2.2, we can easily get the following result of Chen in [1].
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Corollary 2.4. If T is a tree, then p(T ) = 0 or 1.

This result tells that in order to answer Chen’s first open question for trees, we
only need to characterize the trees T with p(T ) = 1.

3. Main results

Theorem 3.1. A tree T has p(T ) = 1 if and only if there is an edge e = xy in T

such that there exists an isomorphism f between the two connected components of

T − e satisfying f(x) = y.

���������
. We first prove the sufficiency. Assume that there is an edge e = xy in T

such that there exists an isomorphism f between the two connected components T−e

satisfying f(x) = y. Let H1 and H2 denote these two components with x in H1 and

y in H2. Then
⋃

u∈V (H1)

{(u, f(u))} gives a partition of V (T ) as disjoint pairs, since

f(u) 6= f(v) whenever u 6= v. For each vertex u in T , let the mate of u be u′ = f(u)
if u is in H1 and u′ = f−1(u) if u is in H2. Consider two adjacent vertices u1 and
u2 in T . If both of them are in H1, then their mates f(u1) and f(u2) are adjacent.
If both of them are in H2, then their mates f−1(u1) and f−1(u2) are adjacent. If
they are in different components, then the two adjacent vertices u1, u2 must be x,

y. It follows that u1 is the mate of u2 and u2 is the mate of u1. It is trivial that the
mates of u1 and u2 are adjacent too. Furthermore, min

u∈V (H1)
d(u, f(u)) = d(x, y) = 1.

Therefore, V (T ) =
⋃

u∈V (H1)

{(u, f(u))} is a 1-pair partition of T . This implies that

p(T ) > 1. On the other hand, p(T ) 6 1 for any tree T by Corollary 2.4. Therefore,
p(T ) = 1. This proves the sufficiency.
As to the necessity, we prove the following stronger statement: Let T be a tree

with p(T ) = 1. Then for any 1-pair partition Π of T , there is an edge e = xy in T

such that the two connected components of T − e are isomorphic under f satisfying
f(x) = y, where f is the isomorphism induced by Π.
The statement can be proved by the mathematical induction on |V (T )|. Obviously,

p(T ) = 1 implies that |V (T )| > 2. It is trivial if |V (T )| = 2 since T = K2. Assume
that it is true for tree T with less than 2n vertices where n > 1. Let T be a tree

with 2n vertices, and let Π be a 1-pair partition of T . Take a vertex u of T with
e(u) = d(T ). By Lemma 2.1, deg(u) = deg(u′) = 1 where u′ is the mate of u in the

partition Π. Since |V (T )| > 4, it is clear that u′ is not adjacent to u. Let v and
w be the neighbors of u and u′ in T respectively. Since u adj v implies that u′ adj v′

where v′ is the mate of v and since deg(u′) = 1, we must have w = v′ 6= v. Let
T ′ = T − u − u′. Then T ′ is a tree with a 1-pair partition Π′ inherited from the
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1-pair partition Π of T , and so p(T ′) = 1. By the induction hypothesis, there is an
edge e = xy of T ′ such that the two connected components H ′

1 and H ′
2 of T

′− e are
isomorphic under the isomorphism f ′ induced by Π′ satisfying f ′(x) = y. Without
loss of generality, we may assume that v and x are in H ′

1 and v′ and y are in H ′
2.

Since T ′ = T − u − u′, one of the two connected components of T − e is obtained
from H ′

1 by attaching the pendant edge joining the vertex u with v of H ′
1, and the

other component of T −e is obtained from H ′
2 by attaching the pendant edge joining

the vertex u′ with v′ of H ′
2. Extend f ′ to a map f on V (T ) such that f |V (T ′) ≡ f ′,

f(u) = u′ and f(u′) = u. Since f ′(v) = v′ and f ′(v′) = v, it is easy to see that
f is an isomorphism of T induced by Π, the two connected components of T − e are

isomorphic under f , and f(x) = y. �

Remarks.
1. It is not difficult to see that if a tree T has an edge e = xy such that there

exists an isomorphism f between the two connected components of T − e satisfying
f(x) = y, then the center of T is {x, y}.
2. If p(T ) = 1, then the center of the tree T must be a pair of adjacent vertices.

However, the converse is not true, which can be seen from Fig. 1.

x y

Figure 1. The center of the tree T is a pair of adjacent vertices but p(T ) = 0

Theorem 3.1 solves Chen’s first open question for trees. The next theorem is to

solve Chen’s second open question for trees.

Theorem 3.2. If G and H are trees, then p(G � H) = p(G) + p(H).

Before proving the theorem, we first prove some lemmas below.

For any graph G, we call its subgraph induced by the center C(G) the center
subgraph of G and denote it as 〈C(G)〉.

Lemma 3.3. For any graphs G and H , 〈C(G � H)〉 = 〈C(G)〉 � 〈C(H)〉. In
particular, if both G and H are trees, then 〈C(G � H)〉 is either K1 (if 〈C(G)〉 =
〈C(H)〉 = K1), or K2 (if {〈C(G)〉, 〈C(H)〉} = {K1, K2}), or C4 (if 〈C(G)〉 =
〈C(H)〉 = K2).

���������
. In the Cartesian product graphG � H , dG�H((u, v), (x, y)) = dG(u, x)+

dH(v, y). It follows that eG�H(u, v) = eG(u) + eH(v) and r(G � H) = r(G) + r(H).
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Therefore, (u, v) is a central vertex of G � H if and only if u is a central vertex of G

and v is a central vertex of H . That is, 〈C(G � H)〉 = 〈C(G)〉 � 〈C(H)〉.
The center of a tree is either a vertex or a pair of adjacent vertices. It follows

that the center subgraph of a tree is either K1 or K2. If both G and H are trees,

then either 〈C(G � H)〉 = K1 � K1
∼= K1 (when 〈C(G)〉 = 〈C(H)〉 = K1); or

〈C(G � H)〉 = K1 � K2
∼= K2 (when {〈C(G)〉, 〈C(H)〉} = {K1, K2}); or 〈C(G �

H)〉 = K2 � K2
∼= C4 (when 〈C(G)〉 = 〈C(H)〉 = K2). �

Given a Cartesian product graph G � H , for a vertex h of H , we use G � {h}
to denote the induced subgraph 〈{(g, h) : g ∈ V (G)}〉 and call it the G-layer at
position h. Similarly, for a vertex g of G we call {g} � H

.= 〈{(g, h) : h ∈ V (H)}〉
the H-layer at position g. Note that a G-layer (H-layer) is an isomorphic copy of G
(H), and that any two adjacent vertices in G � H must be either in the same G-layer

or in the same H-layer.

Lemma 3.4. Let f be an isomorphism of G � H . If there is a G-layer that is

mapped onto a G-layer by f , then each G-layer is mapped onto a G-layer by f , and

each H-layer is mapped onto an H-layer by f .
���������

. Let G � {h} be the G-layer such that f(G � {h}) = G � {h′}
for some h′ ∈ V (H). If h1 is any vertex adjacent to h in H , then each vertex
(g, h1) in the G-layer G � {h1} is adjacent to the corresponding vertex (g, h) in
the G-layer G � {h}. Thus, it is not difficult to see that any two adjacent vertices
in G � {h1} must be mapped into the same G-layer. Since G is connected, then

f(G � {h1}) = G � {h′1} for some h′1 adjacent to h′ in H . It follows that each
G-layer is mapped onto a G-layer since H is connected.

To prove that eachH-layer is mapped onto anH-layer, we first prove the following:
For any two adjacent vertices x and y in the same H-layer {g} � H of G � H , f(x)
and f(y) must be in the same H-layer.

From the proved fact that each G-layer is mapped onto a G-layer by f , it is clear
that vertices in distinct G-layers must be mapped into distinct G-layers. For any

two adjacent vertices x and y in the same H-layer of G � H , x and y are in distinct
G-layers, hence f(x) and f(y) must be in distinct G-layers. And x adj y implies

f(x) adj f(y) in G � H . Note that any two adjacent vertices in G � H must be
either in the same G-layer or in the same H-layer. So f(x) and f(y) must be in the
same H-layer.

Since H is connected, it is then easily seen that for any vertices x and y in the
same H-layer, f(x) and f(y) must be in the same H-layer. That is, each H-layer is

mapped onto an H-layer by f . �
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Lemma 3.5. Let G and H be trees. Let fΠ be the induced isomorphism of a

k-pair partition Π of G � H . Then each G-layer is mapped onto a G-layer by fΠ.
���������

. From the given condition, G � H is k-pairable. Thus by Lemma 3.3,
the center subgraph 〈C(G � H)〉 is either K2 (if {〈C(G)〉, 〈C(H)〉} = {K1, K2}), or
C4 (if 〈C(G)〉 = 〈C(H)〉 = K2).

Case 1. 〈C(G � H)〉 = K2. Without loss of generality, we can denote the
center of G � H as C(G � H) = {(g1, h), (g2, h)}, where g1 and g2 are the

pair of adjacent central vertices of G and h is the unique central vertex of H .
Then fΠ((g1, h)) = (g2, h) since the mate of a central vertex is a central vertex
by Lemma 2.1. We will show that the G-layer G � {h} is mapped onto itself by fΠ.
This is trivial when |V (G)| = 2. So we may assume |V (G)| > 2. Since G is con-

nected, we only need to show that if (g, h) is adjacent to (g1, h) in G � {h}, then
fΠ(g, h) ∈ G � {h}. If fΠ(g, h) /∈ G � {h}, then fΠ(g, h) = (g2, h1) for some ver-
tex h1 adjacent to h in H . Then fΠ maps the set {(g, h), (g1, h), (g2, h)} into the
set {(g2, h1), (g2, h), (g1, h), (g1, h1)} that induces a four cycle in G � H . This is

impossible since the set {(g, h), (g1, h), (g2, h)} is not contained in any four cycle in
G � H since G is a tree. Hence, f(G � {h}) = G � {h}. Then by Lemma 3.4, each
G-layer is mapped onto a G-layer by fΠ.
Case 2. 〈C(G � H)〉 = C4. Let C(G � H) = {(g1, h1), (g2, h1), (g2, h2), (g1, h2)},

where g1 and g2 are the pair of adjacent central vertices of G, and h1 and h2 are the
pair of adjacent central vertices of H . Since the mate of a central vertex is a central

vertex by Lemma 2.1, we distinguish three subcases:
Subcase 1. fΠ(g1, h1) = (g2, h1). Then by the proof of Case 1, fΠ(G � {h1}) =

G � {h1}.
Subcase 2. fΠ(g1, h1) = (g1, h2). Similarly as above, we can see that fΠ({g1} �

H) = {g1} � H .
Subcase 3. fΠ(g1, h1) = (g2, h2). Then fΠ(g2, h1) = (g1, h2). We can show that

fΠ(G � {h1}) = G � {h2} similarly.
Therefore, by Lemma 3.4, we see that each G-layer is mapped onto a G-layer

by fΠ. �

Now we are ready to prove Theorem 3.2.
���������

of Theorem 3.2. We first show that p(G � H) = p(G) + p(H) = 0 when
p(G) = p(H) = 0, by contradiction. Assume that p(G � H) > 0. Let Π be an
arbitrary p(G � H)-pair partition of G � H and fΠ be its induced isomorphism.

For each vertex h in H , fΠ(G � {h}) = G � {h′} where h′ is some vertex in H

by Lemma 3.5. We will show that there must be some G-layer that is mapped onto

itself by fΠ. Otherwise, h′ 6= h for all h ∈ V (H). Define fH : V (H) → V (H) such
that fH(h) = h′ if fΠ(G � {h}) = G � {h′}. It is easy to see that fH is well defined.
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Note that fH(h) = h′ if and only if fH(h′) = h since fΠ(G � {h}) = G � {h′} if
and only if fΠ(G � {h′}) = G � {h}. If h1 6= h2 in V (H), then fH(h1) 6= fH(h2)
since fΠ(G � {h1}) 6= fΠ(G � {h2}). If h1 is adjacent to h2 in H , then each
vertex in fΠ(G � {h1}) = G � {h′1} is adjacent to the corresponding vertex in
fΠ(G � {h2}) = G � {h′2}. It follows that fH(h1) = h′1 is adjacent to fH(h2) = h′2
in H . Similarly, we can show that if fH(h1) = h′1 is adjacent to fH(h2) = h′2
in H , then h1 is adjacent to h2 in H . Therefore, fH is an isomorphism of H . Let
kH = min

h∈V (H)
d(h, h′). Then kH > 0 since h′ 6= h for all h ∈ V (H). This implies that

fH is an isomorphism induced by a kH -pair partition of H , which is impossible since
p(H) = 0. Hence, there must be some h ∈ V (G) such that fΠ(G � {h}) = G � {h}.
So there is a p(G � H)-pair partition of G � {h} inherited from Π. Since G ∼= G �
{h}, p(G) = p(G � {h}) > p(G � H) > 0. This contradicts the fact that p(G) = 0.
Therefore, p(G � H) = 0 when p(G) = p(H) = 0.
Now we prove the remaining case where: p(G) > 0 or p(H) > 0. Without loss of

generality, we may assume that p(G) = 1 (note that any tree has its pair length 0 or
1). It has been proved in [1] that p(G � H) > p(G) + p(H). So p(G � H) = k > 0
and we only need to prove that p(G � H) 6 p(G) + p(H). Let Π be an arbitrary
k-pair partition of G � H and let fΠ be its induced isomorphism. We will show

p(G � H) 6 p(G) + p(H) using mathematical induction on |V (G)|.
If |V (G)| = 2, then we can denote V (G) = {g1, g2}. If p(H) = 1, then 〈C(G �

H)〉 = C4 by Lemma 3.3. It follows that p(G � H) 6 2 since the mate of a central
vertex is a central vertex. Thus p(G � H) 6 p(G) + p(H). If p(H) = 0, then there
must be some G-layer G � {h} such that fΠ(G � {h}) = G � {h} by the proof
in the first paragraph. It follows that fΠ(g1, h) = (g2, h), and so p(G � H) 6 1,
i.e., p(G � H) 6 p(G) + p(H).
Assume that p(G � H) 6 p(G) + p(H) when |V (G)| < 2n where n > 1. If

|V (G)| = 2n, let G′ = G − {u ∈ V (G) : deg(u) = 1}. Then G′ is a tree with

p(G′) = 1 by Lemma 2.2. By the induction hypothesis, we can have p(G′ � H) =
p(G′) + p(H) = p(G) + p(H). By Lemma 3.5, it is not difficult to see that there is a
p(G � H)-pair partition of G′ � H inherited from Π. This implies that p(G � H) 6
p(G′ � H) = p(G) + p(H). This completes the mathematical induction. Therefore,
p(G � H) = p(G) + p(H). �
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