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Abstract. Many new types of Hurwitz continued fractions have been studied by the
author. In this paper we show that all of these closed forms can be expressed by using con-
fluent hypergeometric functions ¢Fi(;¢; z). In the application we study some new Hurwitz
continued fractions whose closed form can be expressed by using confluent hypergeometric
functions.
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1. INTRODUCTION

«a = [ag; a1, as, .. .| denotes the regular (or simple) continued fraction expansion of

a real a, where

a=ag+by, ap=|af,
1/0,-1 =an+0,, a,=|1/0,_1] (n=1).

Hurwitz continued fraction expansions have the form

[ao;al, cee ;anan(k)v o va(k)]z;
= [ao;al, .. .,an,Ql(l), .. .,Qp(1)7Q1(2)7 .. -va(2)7Q1(3)7 e ']’

where ag is an integer, a1, ..., a, are positive integers, @1, ..., Q, are polynomials
with rational coefficients which take positive integral values for £k = 1,2,... and at
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least one of the polynomials is not constant. Up to the present, some basic known
examples are the following.

e/ =[102k—1)s—1,1,1)_, (s€Z,s>1).
Vo=la+1;2a—1,2k,1],_ (a€Zy).
1 %
ael/a: [0;a—1,2a,1,2k,2a— 1], (a€Z,a>1).

= [7;3k—1,1,1,3k, 12k + 6],
e?/* = [1;3ks — 1(55 +1),12ks — 6s,3ks — 2(s+1),1,1]52, (s odd, s > 3).

tanh \/_ = [0; (4k — 3)u, (4k — 1)1}]211 (u,v € Z4).
Tiasp)+1(2/b)
Ty~ Ry

where I (z) are the modified Bessel functions of the first kind, defined by

_ 0 (2/2))\+2n
D& =2 Sro s D

tanm [0;u—1,1,(4k — Do — 2,1, (4k + L)u — 2| .
'](a/b)+1(2/b) 00
o Y — [0;a+b—1,1 E+1)b—2
Jas(2/0) (050 + Lat (k1) Jier

where Jy(z) are the Bessel functions of the first kind, defined by
2\ — (iz/2)%"
Ia(z) = (= S et
Az (2) 7;) nTA+n+1)

It seems that each one of the above belongs to one of the types, e-type, tanh-type,
tan-type and e?-type. No concrete example where the degree of any polynomial
exceeds 1 is known.

Recently, the author [4] obtained a generalized tanh-type Hurwitz continued frac-
tion as

3 (n!)~Lu="=1 ()" T_Lﬁl(a +bi)-!
[0;u(a + (2k — 1)b), v(a + 2kb)] | = n=0_ =1

)

()= (uwb)=" T] (a + bi)~!

n=0 =1
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which includes the cases of \/v/utanh1/y/uv and I, 4)4+1(2/b)/14,(2/b). The au-
thor also obtained a generalized tan-type Hurwitz continued fraction as
2]

[0;u(a+b) — 1,1, v(a+ 2kb) — 2,1,u(a + (2k + 1)b) —
i:: 1) (n!)~tu= "t (vb)™" ]j(a+bi)_1

-
3 (=1) ()~ )~ [T (a+ bi)

which includes the cases of \/v/utan1/\/uv and Ji4/p)+1(2/0)/Ja/b(2/b).
In [6], the author constituted more general forms of Hurwitz continued fractions
1/a

of e-type, namely, some extended forms of the continued fractions of e'/*, ae'/* and
(1/a)el/e.
[0;u(a+kb) —1,1,0— 1],

') n+1
ZZ:O w2 ly=2npTn(pl) L 1;[1 (a+ bi)~?
f; b= (nt) (o)~ _E[l(a bi)—1 — (uw) 201 T_E[ll(a +bi)1)

and

(050 — 1,1, u(a+kb) — 1],
n n+1
Z b= (n)~! (u—QnU—Qn—l H (a+ bi)~! 4 y2n—1y=2n=2 H (a—!—bi)_l)
n=0 i=1 i=1
O(UU)_Q”b_"(TL!)_l ‘];Il(a +bi)~1

NgH

n
There are still more known Hurwitz continued fractions which may not belong to
any of the above categories. Most of them are easily derived from one of the basic

types (see e.g. [4, Props. 1 and 2]).

2. CONFLUENT HYPERGEOMETRIC FUNCTIONS

Some generalized Hurwitz continued fractions which the author obtained become

elegant to look at with the aid of hypergeometric functions (see e.g. [9]). This
was partly done by the author [5] without the complete form of Hurwitz continued

fractions.
Using the notation of confluent hypergeometric limit functions defined by

oF1 (s Z cl)

n:O

n

N

3

n
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with (¢)p, =c(c+1)...(c+n—1) (n > 1) and (¢)o = 1, we can write our generalized
tanh-type and tan-type Hurwitz contmued fractions as

oFi (5§ +2 m)

(1) (05 u(a + (2k — 1)b), v(a + 2kb)] 5, = PPy oY PR
and
(2) [0;u(a+b) — 1,1, v(a + 2kb) — 2,1, u(a + (2k + 1)b) — 2]

_ OFl( +2; uvb2)
u(a+b)oF1(7g L oe)’

respectively. These transformations were achieved by

) n+1 o0 n
ngo(n!)_lu_"_l(vb)_n 11;[1 (a+0bi)~! nzz:l ub(a/b+1)1-(a/b+2)n % (M}T)
nio(n!)—l(uvb)—n 1:11((1 +bi)~! nzl (a/bh—l)n % (ﬁ)n

OFi(:§+2 o)
u(a + b)oFy (; T+L ﬁ) ’

Using the confluent hypergeometric limit functions, we can write the generalized
e-type Hurwitz continued fractions as

o0

(3) [0;u(a+kb) —1,1,0—1],—,
vo kb1 ( Tt+2 u21}2b2)
w(a+b)oFi(;%+1 ob) —oFi(5 ¢ + 2 gy

and

OFI(;%+2§ u21}2b2) +l’

(4) [0;0—1,1 u(a—l—kb)—l]k 1= wo(a+b)oFr(; &+ 1; bz ) | v

respectively.
In this paper we study some more general and new Hurwitz continued fractions
by using the confluent hypergeometric functions.
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3. MAIN RESULTS

Theorem 1.

[0;ula+ @k —1p) — L Lo— Luw(a+2k) — L Lo— 1]
_ UoFl( +27 ww’ Uzbz)
wo(a+b)oFi(; &+ 1 —r) — oF1 (; & + 25 —rrs)

)

where v is an integer with v > 1, and rational numbers u, u’, a and b are chosen
so that u(a + (2k — 1)b) — 1 and u'(a + 2kb) — 1 take positive integral values for
E=1,2,...

Remark. If v = v/, this reduces to (3).

Theorem 2.

[0;v— L 1u(a+ (2k — 1)b) — Lo — 1,1, u/(a + 2kb) — 1],
_ OFl( + 2’ uu’ v2b2) + l
UUQ(a+b)0F1(73+1,m) U7

where v is an integer with v > 1, and rational numbers u, u’', a and b are chosen
so that u(a + (2k — 1)b) — 1 and u/(a + 2kb) — 1 take positive integral values for
E=1,2,...

Remark. If u =/, this reduces to (4).

Theorem 3.

[0;u(a+ (2k — 1)b) — 1, 1,0 — 2, 1,u/(a + 2kb) — 1, v],_,

_ v P (5 § +2i groe)
wo(a+0)oF1 (s § + 1 gumte) — 0F1 (6§ + 25 e )
where v is an integer with v > 2, and rational numbers u, u', a and b are chosen

so that u(a + (2k — 1)b) — 1 and u/(a + 2kb) — 1 take positive integral values for
k=1,2,...

)

Theorem 4.

[0;v—1,1,u(a+ (2k — 1)b) — 1,v,u/(a + 2kb) — 1, ,U—2]211

— OFl( +2; uu’ vzbz) + l
U2(a+b) ( +17uu v2b2) ’U,

where v is an integer with v > 2, and rational numbers u, u', a and b are chosen
so that u(a + (2k — 1)b) — 1 and u'(a + 2kb) — 1 take positive integral values for
k=1,2,...
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Theorem 5.

o o2 +1;2)

0;1,u((k— )b+ 2),kb+ 1] = ,
LD e = TR (T )

where b is a positive integer and u is a positive rational number so that both ub and
2u are positive integers.

Theorem 6.

o _ofi(E+ 1)
U oRGEiae)

[1;u((2k—1)b+2)—2,1,kb—1,1] ,
where b is a positive integer and u is a positive rational number so that both ub and
2u are positive integers.

4. PROOF OF THE RESULTS

We use Hurwitz’s method to obtain the continued fraction expansion (ac + b)/d
from the continued fraction expansion of o. In most practical cases it is enough to
consider the rational linear forms of a. According to Satz 4.1 [7, p. 111], which is
essentially from Hurwitz [2] and Chételet [1], it says

Lemma 1. Let [ag;a1,as,...| be the regular continued fraction of an irrational
number « and denote its nth convergent by p,/q, = [ao;a1,az,...,a,]. Moreover,
let B = (roa + to)/s0, where rg, so and to are integers with ro > 0, sp > 0 and
roso = N > 1. For an arbitrary index v > 1 we have

rolao; a1, ... ap—1]+to  ropu—1+toqu—1

S0 - Soqv—1 - [bo; b bu_l]

where the index p is adjusted so that p = v (mod 2). Denote its convergent by

D
fl—l = [b();bl,-”ab,u—l]-
4,

Then three integers t1, 1 and s, are uniquely given satisfying the matrix formula
(7“0 to) (pu—l pu—2) _ (PL_1 PL_Q) (7“1 tl)
0 S0 qv—-1 quv-2 qL_l qL_g 0 S1 ’
where r1 > 0, s1 > 0, r1s1 = N, —s1 < t1 < 11 and = [bo;b1,...,bu—1,3,] with
By = (riaw, +t1)/s1.
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2

Proof of Theorem 1. Replacing v by u'v* and taking its reciprocal in (1), we

have

(a =) u(a+b)- f LEEL — [u(a+ (2K — 1)b), wP(a + 2RD)]
b

We shall find the continued fraction of «—1/v by applying Lemma 1. For k =1,2,...

we have
vlula + (2’1‘ L
= [u(a + (2k — 1)b) — 1;1,v — 1]
and
v =1\ (u(a+ (2k—1)b) 1
(O v ) ( 1 0)
w(a+ (2k—1)b) =1 u(a+ (2k—1)b)\ (1 —v
- C )
thus
wvie ERONZE a2k -
= [u(a +2kb) — 1; 1,0 — 1]
and

((1) ;) <u’v2(a1+2kb) (1))2 (u’v(a+v2kb)—1 u’(a41—2kb)) (S _1]1>

Therefore, we obtain the desired continued fraction as

1
a—1/v

= [0;u(a+ 2k —1)b) — 1,1,v — L,u/(a + 2kb) — L, L,v — 1], .
Proof of Theorem 2. Replacing u by uv? and v by u’ in (1), we have

1 OFl( + 2’ uu’ v2b2)
UQ(a+b) OFl( +1’uu v2b2)

(a:=) " = [0;uwv?(a + (2k — 1)b), u/(a + 2kD)]

We shall find the desired continued fraction as az+ 1/v by applying Lemma 1. First,

v[0] + 1

=[0;0—1,1]
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and
v 1 0 1 _ 1 1 1 v—202
0 v 1 0) \v v-1 0 v2 '
Next, for K =1,2,... we have

[uv?(a + (2k — 1)b)] + v — v?

:u(a+(2k‘—1)b)—1+%
= [u(a+ (2k = 1)b) — ;v — 1,1]

v

and
1 v—1? uv?(a + (2k — 1)b) 1
0 v? 1 0
(w(a+ 2k =1)b) —v+1 wu(v—1)(a+ (2k—1)b) —v+2 v 1—w
B v v—1 0 w ’
thus
! 2k 1-— 1
'U[u(a+ b)]+ U:u/(a+2kb)_1+_
v v
= [u'(a + 2kb) — 1;v — 1,1]
and
v 1—w u'(a+2kb) 1
0 v 1 0
(v (a+2kb)+1—v (v—1)u'(a+2kb)+2—v 1 v—1?
N v v—1 0 v? '
Therefore,
1 oo
a+ o= [O;U—l,l,u(a+(2k— b)) — Lv—1,1,u'(a+ 2kb) — 1,v — 1’1]k:1
= [0;v—1,1,u(a+ (2k — 1)b) — 1,v — 1,1,u/(a + 2kb) — ]k .
O
Proof of Theorem 3. Replacing v by u/v? and taking its reciprocal in (2), we
have
OFl( +1; 2b2)
a:=)ula+b)- uu'v
( ) ( ) OFl( +2’ uuvzbz)
= [u(a +b) — 1;1,u/v2(a + 2kb) — 2,1, u(a + (2k + 1)b) — 2]524.
The desired continued fraction is obtained as 1/(a — 1/v). O
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Proof of Theorem 4. Replacing u by uv? and v by u/ in (2), we have

1 OFl( +27 uu’ vzbz)

o =
T R Y A p——
= [0;uv?(a+b) — 1,1, u/(a + 2kb) — 2,1, uv?(a + (2k + 1)b) — 2],
We can obtain the desired continued fraction as o+ 1/v. O

Proof of Theorem 5. This proof can be also done in a similar manner to those
of Theorems 1 to 4. However, we shall proceed in a more direct way. By (91.4) in
[10, Chapter 18]

0F1(;C+ 1;2:) .
oF1(5¢52)

We transform this to a simple continued fraction by using the following formula
in [3, p. 35, (2.3.23)] (cf. [5, Lemma 1]):

zfe(e+1) z/(c+1)(c+2) z/(c+2)(c+3)
+ 1 + 1 + 1 +...

1
1

by by b
[ag;a1,az,..]=af + = 2 =2
al + a2 + CL3 =+ .

iff ap = af, a1 = aj /by and for k =1,2,...

* *
2k—1 2lc 3

b3 o - b3
biabie s

*
b b* Aofy1-

a% and  agpy1 = =
2k+19%2%—1 -+ 01

a2k =

Then our case turns to

oFi(e+1;2) 0:1 cle+1) ¢+2 c¢(c+3) ¢+4 c(c+5) c+6 }
oFiGez) U777 2 T e 2 0 ety e )
If we set ¢ = 2/b and z = 2/(ub?), we get the desired result. O

Proof of Theorem 6. From Theorem 5 with the rule |...,
1,b— 1, —7], we have

a,—=by]=[..,a—1,

oFi(;2+15%)

OFl( b’ ub22)
=[0;1,—(b+2)u,b+1,—(3b+ 2)u,2b+ 1,— (50 + 2)u,3b+ 1, .. .]

= [0; O,l,(b—|—2)u—1 —(b+1),3b+2)u,—(2b4+ 1), (50 + 2)u, —(3b+ 1),.. ]
=[1L0b+2u—2,1,b,—(3b+2)u, 20+ 1, —(5b+ 2)u,3b+ 1, .. ]
=1

b+ 2u—2,1,b—1,1,(3b+ 2)u—1,—(2b+ 1), (5b + 2)u, —(3b + 1), .. ]

=[1;(b+2u—2,1,b—1,1,(3b+2)u—2,1,2b—1,1,(5b+ 2)u—2,1,3b—1,1,.. ].
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5. SOME VARIATIONS ON CONFLUENT HYPERGEOMETRIC LIMIT FUNCTIONS

We shall study some variations which can be derived from the basic results (1)
to (4). Consider the case where u(a + b) is even and va is even in (1). By Raney’s
method ([8]), the continued fraction [ag; a1, as, . ..] corresponds to the matrix product

ao 1) far 1y far 1N 0 pag papes
1 0 1 0 1 0 ’
(1 a L (10
R —<0 1) and L _<a 1).
0 1 0
A:(C ) and A’:( )
0 0 ¢

Using the transition formulae

where

Set

—_

AR = R°A, AL=L°A,
AL° =LA, A'R° = RA',
ALR*™' = R A, A'RL' =L 'RA
in the case where ¢ = 2, we have for £k =1,2,...
1
§[u(a + (2k — 1)b) — 1;v(a + 2kb), u(a + (2k + 1)b), v(a + (2k + 2)b), . . .]
o A/ Rat(2k=1)b)—1 T v(a+2kb) pu(a+(2k+1)b) v(at+(2k+2)b)

_ Rw—IA/RLv(a-i-?lcb)Ru(a+(2k+1)b)Lv(a+(2k+2)b) o

_ Rw—1LRALv(a+2kb)—1Ru(a+(2k+l)b)Lv(a+(2k+2)b) o

_ M—1LRLM—1ALRu(a+(2k+1)b)Lv(a+(2k+2)b)
_ M—lLRLM;?W —1 R A Rla+(2k+1)b) =1 fv(a+(2k+2)b)
u(a—|—(2k—1)b)_1_11v(a—|—2kb)_111 }
2 ) ) ) 2 ) ) AR

Therefore, if
_ oRGEt2ae)
ula+b)oF1(; ¢+ 1; ﬁ)

)

then
11—« 1 1 oo
= T = [0; 1,35 [u(a +b) — L;v(a+ 2kb),u(a + (2k + 1)b)] kfl]
14+« 1+7l(1/a—1) =
2
= [0;1, 2u(a+ (2k — 1)b) — 1,1,1, gv(a + 2kb) — 1,1,1] .

In a similar manner, from (1) we have
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Theorem 7.

ula+0)oF1 (s 5+ 1 mpz) — oF1( § + 2 )

u(a + b>0F1 (’ b + 17 uvb2) + OFl (; % + 2; uv1W)

[0; 1, u(a+(6k2—5)b)—1 ,20(a + (6k — 4)b), u(a+(6k2—3)b)—1 1,1, v(a+(6k2—2)b)—1

)

2u(a+ (6k — 1)b), L1 1 | :1 if u(a + b) is odd and va is odd;

[0; 1, ot @E=3)0) _q q, 1, 20201 9y (a + (4k — 1)b),

%7 1] . if u(a + b) is even and va is odd;
=1

[0; 1, u(a+(4k2—3)b)—1 ,20(a + (4k — 2)b), u(a+(4k2—1)b)—1 1,1,

m} if u(a + b) is odd and va is even;
k=1

[0;17w_1’171’”(a'272’@_1’w:)
=1

if u(a + b) is even and va is even.

From (2) we have

Theorem 8.

u((l‘i‘b)OFl(;%_'_l;ﬁ)_oFl( +2’uvb2)

u(a'i_b)oFl(;%‘Fl?ﬁ) +0F1(, T+ 2 uvb2)
01, SO BIE 3 0 (6) — 4)b) — 2,1, “HOEIS o)

oo

ot Ok 2003 4 2u(a+ (6k — 1)b) — 2,1, LetORI=3 1o
if u(a + b) is odd and va is odd;

k=1

b.LM 1,2, w 1, 2u(a+ (4k — 1)b) — 2,1,

- ”(a+4kb) 2 if u(a 4+ b) is even and va is odd,

(.1 u(at+(4k—3)b u(a+(4k—1)b)—3
& 1,#,1,2v(a+(4k 2)b) — 2,1, weth 1)) -3

v(a+4kb) -1, 2 if u(a + b) is odd and va is even;

_0;17w—1;27w—174w
] k=1

2

) )

if u(a + b) is even and va is even.

From (3) we have
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Theorem 9.

uv(a + b)oFl(; % +1 m) — (v+ 1)1 (; % +2; u21112b2)
wo(a+b)oF1(; ¢+ 15 o) + (0 — D)o Fu (5 &

¥ﬁ)

[o;Lw’l?gv_l’w_1’1721}_17%’27

2_171’17M_172’2_1’1J00
2 p) 2 o1

ifu(a + b) is odd, ua is even, v is even;

[0;1,%,1,%-1,%_1,1,21,_1,w

)

oo

2,55 2ufa+4kb) - L L5

if u(a + b) is odd, ua is even, v is odd,;

|:0’ 1 u(a+(2k2—1)b)—3’ 1,20 — 1, u(a+22kb)—1 2, % iy 1Joo
k=1

ifu(a + b) is odd, ua is odd, v is even;

[0; 1, e GE20) 8 1y 9y 1, WetGAVDTL 9 vl 9y(q 4 3kb) — 1,

1,553, 1}
k=1
ifu(a +b) is odd, wa is odd, v is odd,

071, 2= g 24— 1,11

Lt D) [k Rt

u(a+(4k2—2)b)—3’ 1,20 -1,

wletGh—Db) _ 11,20 -1

) )

u(a+4kb)—1 v
kgl o g - 11|
if u(a + b) is even, ua is odd, v is even;

o0

0;1,M—1,2,2—1,1J
[ 2 2 k=1

if u(a + b) is even, ua is even, v is even,

o0

[0; 1, Lt CEDY 9 v=L 9 (q + 2kb) — 1,1, 2521 )
=1

if u(a +b) is even, v is odd.

From (4) we have
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Theorem 10.

uv(v— 1)(a+b)0F1(;%+17u2 2b2) ( 7u2y12b2)
uv(v—i—l)(a-l-b)oFl(;%‘f‘L I 2b2) ( 7u2v12b2)
u(a-g?k:b) —1, 1J

oo

2 14

[o 1,253 1, 2u(a + (2k — 1)b) — .

if v is odd, wa is even;

{0 1,252 1 2u(a + (3k — 2)b) — 1, 251, 2, et G-DD-1

20— 1,1, u(a-‘,—i’;/cb)—?,7 1Joo
k=1

if v is odd, wa is odd, b is even;

[0 1,23 1, 2u(a + (4k — 3)b) — wat(k-2h) -1 9, 1,1,

R 2 14

W—lﬂv—l,l,w,w if v is odd, wa is odd, b is odd,;

o
[0; 1,%-1,2, M -1, 1J if v is even, ua is even, ub is even;
k=1

[0;1,5— 1,2, W@tUb=30) _ g g p_ g watUE2h-L 5, 1

7772 » 4o

o0

wlat(k=1)b) _ | 9, _ 1 1 ulatdkb)—3 1J
2 ’ y 4o 2 ’ kel
if v is even, ua is odd, ub is odd,

o0

[0;1,%-1’27w’2v_ Ll’w’w
k=1

if v is even, wa is odd, ub is even;

{01 __12M2v_11 M—l,%—ll

Lt} L] Pl

u(a+(4k—1)b)—3 v u(a+4kb) &
11,5 - 1,2, =—— — 1,1Jk:

if v is even, ua is even, ub is odd.

It is possible to obtain some more general results. If we replace the first partial
quotient 1 by any positive integer a;, we consider the form [O; a, %( é — 1)] for «
with 0 < o < 1. For example, in the case where both u(a+b) and va are even in (1)

we have

u(a+0)oF1 (5 +1 o) —oF1( 3 + 2 )
aru(a+b)oFi(;¢+1;-5s) + (2—a)oFi (5 ¢+ 2 -52)

u(a+ (2k —1)b) 111 v(a + 2kb)

—1,1,1}00
2 2

= |:07 ai,
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If we consider the form [0;ay,2(2 —1)] for o, we can obtain e.g. in the case where
va is even in (1),

u(a+0)oF1 ( § + L gogr) —oF1 (5 § + 25 )
ayu(a +b)oFi (s § + 1 pr) + (3 — @) A (5 § + 2 5e)

v(a + 2kb)
2

= [0;01,20(a +b) -2, 2u(a + (2k + 1)b)r°

k=1
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