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CLOSURE SPACES AND CHARACTERIZATIONS OF FILTERS

IN TERMS OF THEIR STONE IMAGES

Anh Tran Mynard and Frédéric Mynard, Statesboro

(Received September 16, 2005)

Abstract. Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bise-
quential filters (i.e., neighborhood filters in spaces of the same name) are characterized in
a unified manner in terms of their images in the Stone space of ultrafilters. These char-
acterizations involve closure structures on the set of ultrafilters. The case of productively
Fréchet filters answers a question of S.Dolecki and turns out to be the only one involving
a non topological closure structure.
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1. Introduction

Local topological properties of a topological space X can be interpreted in terms

of properties of the neighborhood filters. Such properties of filters usually make sense

for general filters and consequently can be intepreted also in terms of the Stone images

of such filters, that is, the corresponding sets of finer ultrafilters in the space βX of

ultrafilters on X endowed with the usual Stone topology.1 The general problem is to

characterize properties of a filter F on X in terms of βF = {U ∈ βX : U > F} or

of β0F = βF ∩β0X, where β0X denotes the set of free ultrafilters on X. V.Malyhin

first followed this line of investigation [11] and more recently revisited the idea with

A.Bella in a more systematic manner [2]. Among others, they characterize Fréchet,

strongly Fréchet and bisequential filters in terms of their Stone images. Let us recall

how these filters are defined:

1 β denotes the usual Stone topology on βX for which {βA : A ⊂ X} is a base of open
(and of closed) sets. Notice that a non empty subset of βX is closed if and only if it is

of the form βF for some filter F on X (with the convention that β({∅}↑) = ∅).
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Two families A and B of subsets of a set X are meshing—in symbols A # B—if

A∩B 6= ∅ whenever A ∈ A and B ∈ B. Let Fω denote the class of countably based

filters. A topological space X is respectively bisequential, strongly Fréchet, Fréchet

[12], [3] if

(1) x ∈ adhH =⇒ ∃L ∈ Fω , L # H , L → x,

for every filter H , every countably based H , every principal filter H respectively.

Obviously, a space X is respectively bisequential, strongly Fréchet, Fréchet if and

only if every neighborhood filter in X satisfies the following property of F

(2) H # F =⇒ ∃L ∈ Fω , L # H , L > F ,

for every filter H , every countably based H , every principal filter H respectively.

Accordingly a filter F is called respectively bisequential, strongly Fréchet, Fréchet

if it satisfies (2) for every filter H , every countably based H , every principal fil-

ter H respectively. Productively Fréchet spaces were introduced in [7], [8] as the

spaces whose product with every strongly Fréchet space is (strongly) Fréchet and

characterized as the spaces satisfying (1) for every strongly Fréchet filter H .Weakly

bisequential spaces were introduced in [1] as the spaces satisfying (1) for every count-

ably deep filter2 H , and they were studied more systematically in [10]. Naturally,

we call productively Fréchet the filters satisfying (2) for every strongly Fréchet filter

H and weakly bisequential the filters satisfying (2) for every countably deep filter

H . S.Dolecki asked [4] if there is a characterization of productively Fréchet filters

similar to the known characterizations of Fréchet, strongly Fréchet and bisequential

filters. It is the aim of this paper to answer this question. We present a unified the-

orem characterizing all five classes of filters discussed above in terms of their Stone

images. To this end, we need to consider not only topologies, but also closure space

structures (defined by a closure operator sharing all the properties of a topological

one, save additivity) on βX. While the general context of closure spaces allows a

unified treatment of various classes of filters, all the closure considered turn out to

be topological, except for the one appearing in the characterization of productively

Fréchet filters. This might be one of the reasons why productively Fréchet spaces

were introduced so late.

2A filter F is countably deep if
⋂

A ∈ F whenever A is a countable subfamily of F .
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2. Classes of filters and closures on βX

A closure space (X, C ) is a set endowed with a family C ⊂ 2X of closed sets, which

is closed under arbitrary intersection and contains the empty set (complements of

closed sets are called open). A closure space (X, C ) defines a closure operator clC

defined by

clC : 2X → 2X ,

clC A =
⋂

A⊂C∈C

C.

This closure operator is expansive (i.e., A ⊂ cl A), isotone (i.e., A ⊂ B =⇒

cl A ⊂ cl B) and idempotent. Conversely, an expansive, isotone and idempotent

map cl : 2X → 2X such that cl ∅ = ∅ is the closure operator of a closure structure

C = {C ⊂ X : C = clC} on X. To a closure operator cl, we can associate an interior

operator

intA = (cl Ac)c .

This operator is contractive, isotone, idempotent, and intX = X. These properties

characterize the closure structure as well.

If λ is a closure structure on X, let Nλ(A) = {U ⊂ X : A ⊂ intU} and Nλ (A ) =
⋃

A∈A

Nλ(A). See for instance [5] for more details on closure spaces.

Lemma 1.

B # Nλ (A ) ⇐⇒ clλ B # A .

To a class D of filters on X, we associate a closure structure D ∗ on βX by declaring

{βD : D ∈ D } a base of open sets for the closure space (βX, D ∗ ). Therefore

(3) intD∗ βF =
⋃

D∈D
F6D

βD

for any filter F .

Let D and M be two classes of filters. As a common generalization of Fréchet,
strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters,

we call a filter F D to M meshable-refinable—in symbols, F ∈ (D /M )#>—if

D ∈ D , D # F =⇒ ∃M ∈ M , M # D , M > F .

See [6] for details and variants. Let D ∨ M denote the class of filters of the type
D ∨ M where D ∈ D and M ∈ M . Following the terminology of [9], we denote byF1 the class of principal filters and call F1 -steady a class M satisfying F1 ∨ M ⊂ M .
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Lemma 2. If D and M are two F1 -steady classes of filters, then the class (D /M )#>

is also F1 -steady.

P r o o f. LetF ∈ (D /M )#>, A ∈ F1 be such that A # F and D ∈ D be such that
D # (F ∨A). Then F # (D ∨A) and D ∨A ∈ D by F1 -steadiness of D . Thus, there

exists an M -filterM # (D∨A) such thatM > F . SinceM∨A ∈ M by F1 -steadiness

of M , D # (M ∨A) andM ∨A> F ∨A, we conclude that F ∨A ∈ (D /M )#> . �

A filter is free if its intersection is empty. We denote by F ◦ the free part F ∨

(
⋂

F )
c
of a filter F , and by F • its principal part

⋂

F . One or the other may be

the degenerate filter {∅}↑ = 2X . We always haveF = F
◦∧F •, with the convention

that G ∧ {∅}↑ = G . By convention, we assume that the degenerate filter {∅}↑ is an

element of every class of filters we may consider.

Lemma 3. Let D and M be two F1 -steady classes of filters such that F1 ⊂ M . A

filter F is D to M meshable-refinable if and only if its free part F ◦ is.

P r o o f. By Lemma 2, F ◦ is D to M meshable-refinable whenever F is. Con-

versely, assume that F ◦ ∈ (D /M )#> and let D ∈ D be such that D # F . Then

D # (F ◦ ∧ F •) , hence either D # F ◦ or D # F •. In the former case, there exists

M ∈M such thatM # D andM > F ◦ > F . In the later case, F • ∈ F1 ⊂ M is anM -filter meshing with D and finer than F . Thus, F ∈ (D /M )#> . �

Proposition 4. Let D be a class of filters on X. The closure space (βX, D ∗ ) is a

topological space if and only D ∨ D ⊂ (F/D )#> .

If moreover D =(L/M )#> for some classes L and M of filters, then (βX, D ∗ ) is a

topological space if and only D ∨ D ⊂ D .

P r o o f. To show that D ∗ is a topology, we only need to show that a finite

intersection of open sets is open in D ∗ . But

(

⋃

α∈I

βDα

)

∩

(

⋃

γ∈J

βDγ

)

=
⋃

α∈I
γ∈J

(βDα ∩ βDγ) =
⋃

α∈I
γ∈J

β (Dα ∨ Dγ) ,

with the convention that β (Dα ∨ Dγ) = ∅ if Dα and Dγ do not mesh. Now, if U ∈
(

⋃

α∈I

βDα

)

∩
(

⋃

γ∈J

βDγ

)

, there is α and γ such that U > Dα ∨ Dγ . By assumption,

Dα ∨ Dγ ∈ (F/D )#> , so that there exists a D -filter Dαγ such that U > Dαγ >

Dα ∨ Dγ . Therefore, U ∈ βDαγ ⊂
(

⋃

α∈I

βDα

)

∩
(

⋃

γ∈J

βDγ

)

.
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Conversely, if D ∗ is a topology and D1 and D2 are two D -filters such that D1 # D2,

then βD1 ∩ βD2 = β (D1 ∨ D2) is open. Therefore,

β (D1 ∨ D2) =
⋃

D∈D
D1∨D26D

βD .

For every F # (D1 ∨ D2), there exists U ∈ β (D1 ∨ D2)∩ βF . In view of the above

description of β (D1 ∨ D2) , there exists D ∈ D such that U > D > D1 ∨ D2. Since

D # F , we conclude that D1 ∨ D2 ∈ (F/D )#> .

Obviously, if D ∨ D ⊂ D then D ∨ D ⊂ (F/D )#> . We show that the converse is

true if D =(L/M )#> . Indeed, if D1 and D2 are D -filters and L is a L-filter such
that L # (D1 ∨ D2) , then there exists a D -filter D # L such that D > D1 ∨ D2

because D ∨ D ⊂ (F/D )#> . Since D ∈ (L/M )#> , there exists a M -filter M such

that M # L and M > D > D1 ∨ D2. Therefore D1 ∨ D2 ∈ (L/M )#> = D . �

Let F, Fω , F∧ω , F1 denote respectively the class of all, of countably based, of

countably deep and of principal filters respectively. By the above observation, the

closure structures F∗ , F∗ω , F∗∧ω and F∗1 are topological because F, Fω , F∧ω and F1 are

stable under finite suprema. More specifically, F∗ is the discrete topology on βX,F∗ω is the Gδ-topology Gδβ associated to β,3 and F∗1 is the usual Stone topology β of

βX. On the other hand,

F ∈ F∧ω ⇐⇒ Nβ (βF ) = NGδβ (βF ) .

Hence the topology F∗∧ω is generated by β-closed sets having the same β and Gδβ

neighborhood filters. More generally, if τ denotes a topology on X and Gδτ denotes

the associated Gδ-topology, a closure structure τ⊥ can be defined on X by declaring

τ⊥-open unions of τ -closed sets F satisfying Nτ (F ) = NGδτ (F ) .We call a topolog-

ical space (X, τ) δ-normal if for every pair of disjoint closed sets F1, F2 there exists

disjoint Gδ-sets G1 and G2 such that F1 ⊂ G1 and F2 ⊂ G2.
4

Lemma 5. Let (X, τ) be a δ-normal topological space. Then the closure structure

τ⊥ is a topology on X .

P r o o f. Assume (X, τ) is δ-normal. We only need to show that if F1, F2

are τ -closed sets such that Nτ (Fi) = NGδτ (Fi) for i = 1, 2 then Nτ (F1 ∩ F2) =

NGδτ (F1 ∩ F2) .

3 Because it is easy to see that the Gδ-topology of βX has a base consisiting of β-closed
Gδ-sets.

4 The authors want to thank Francis Jordan (Georgia Southern University) for helpful
discussions that led to Lemma 5.
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Let G be a Gδτ -set containing F1 ∩ F2. We need to find an open set O such

that F1 ∩ F2 ⊂ O ⊂ G. The sets G ∪ F c
1 and G ∪ F c

2 are Gδ-sets containing F2

and F1 respectively. By assumption, there exists τ -open sets U1 and U2 such that

F1 ⊂ U1 ⊂ G ∪ F c
2 and F2 ⊂ U2 ⊂ G ∪ F c

1 . Then F2 ∩ U c
1 and F1 ∩ U c

2 are two

disjoint closed sets. By δ-normality, there exists two disjoint Gδ-sets G2 ⊃ F2 ∩ U c
1

and G1 ⊃ F1 ∩ U c
2 . Notice that Gi ⊃ Fi ∩ Gc so that Fi is included in the Gδ-set

Gi ∪G for i = 1, 2. Therefore, there exists open sets Oi such that Fi ⊂ Oi ⊂ Gi ∪G.

Hence F1 ∩ F2 ⊂ O1 ∩ O2 ⊂ (G1 ∪ G) ∩ (G2 ∪ G) ⊂ G. �

As observed above, the closure F∗∧ω is β⊥. Since β is compact and Hausdorff,

hence normal, Lemma 5 gives another proof of the topological nature of F∗∧ω .

Theorem 6. Let D and M be two classes of filters and let F be a filter.

F ∈ (D /M )#> ⇐⇒ βF ⊂ clD∗ (intM∗ (βF )) .

P r o o f. Assume that F ∈ (D /M )#> and that U ∈ βF . Let βD be a D ∗ -

neighborhood of {U },where D ∈ D and U ∈ βD . Then D # F . Therefore, there

exists an M -filter M that meshes with D and is finer than F . Thus βD ∩ βM 6= ∅

and βM ⊂ intM∗ (βF ) . Hence, ND∗ (U ) # intM∗ (βF ) . In view of Lemma 1, U ∈

clD∗ (intM∗ (βF )) .

Conversely, if βF ⊂ clD∗ (intM∗ (βF )) and if D is a D -filter meshing with F , then

there exists U ∈ βF ∩ βD ⊂ clD∗ (intM∗ (βF )) . Therefore, ND∗ (U ) # intM∗ (βF ) .

In particular, βD ∈ ND∗ (U ) so that βD ∩ intM∗ (βF ) 6= ∅. In view of (3), there

exists an M -filter M > F such that βD ∩βM 6= ∅, that is, such that D # M . Thus

F ∈ (D /M )#> . �

In view of Lemma 3, we can assume the filter F to be free in the statement above

(hence βF = β0F ), provided that D and M are both F1 -steady and that F1 ⊂ M ,

which is statisfied by any classes D and M we consider in this paper. Therefore, we
assume in the sequel that F is a free filter. Theorem 6 gives in particular:

F is iff
bisequential βF ⊂ intGδβ (βF ) ,i.e., βF is Gδ-open

weakly bisequential βF ⊂ clF∗
∧ω

(intGδβ (βF ))
productively Fréchet βF ⊂ cl(Fω/Fω)∗

#>
(intGδβ (βF ))

strongly Fréchet βF ⊂ clGδβ (intGδβ (βF ))
Fréchet βF ⊂ clβ (intGδβ (βF ))

Notice that the class (Fω /Fω )#> of strongly Fréchet filters is not stable under

suprema, as shown for instance by an example of Isbell, first presented in [13] and
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detailed in [2, Example 3.2]. In view of Proposition 4, (βX, (Fω /Fω )
∗

#>) is not

topological, and therefore the representation of productively Fréchet filters in βX is

not of topological nature.

In [2], Bella and Malyhin obtained similar characterizations of Fréchet and strongly

Fréchet filters (though in a somewhat different language). More specifically, their

results can be rephrased as follows:

F is iff
strongly Fréchet βF ⊂ clGδβ (intβ (βF ))
Fréchet βF ⊂ clβ (intβ (βF ))

To clarify the relationships between our results and those of [2], we describe more

explicitely the role of sequences.

Since β0

(

(xn)n∈N)

= β0 ({xn : n ∈ N}) and since any sequence finer than a free
filter is free, we have

(4)
⋃

F6(xn)
n∈Nβ0

(

(xn)n∈N)

⊂ intββF ⊂ intGδβ βF ,

for any filter F on X. The simple observation that the first inclusion in (4) can be

reversed if the underlying set X is countable is essentially due to Malykhin [11].

Moreover, denoting by E (F ) the set of (automatically free) sequences finer than

F , we have:

Proposition 7. The following are equivalent:

1. E (F ) 6= ∅;

2.
⋃

F6(xn)
n∈Nβ (

(xn)n∈N)

6= ∅;

3. intβ βF 6= ∅;

4. intGδβ βF 6= ∅.

P r o o f. (1 =⇒ 2 =⇒ 3 =⇒ 4) are obvious.

(4 =⇒ 1) . If intGδβ βF 6= ∅ then there exists H ∈ Fω such that F 6 H .

Therefore E (F ) 6= ∅ because E (H ) 6= ∅. �

However, none of the inclusions of (4) can be reversed in general.

Example 8 (U ∈ intGδβ βF \ intβ βF ). Let F be a non almost principal5 but

countably based filter. If the cofinite filter CA of some infinite subset A of X is

5A filter F is called almost principal [9] if there exists F0 ∈ F such that |F0 \F | < ω for
every F ∈ F . Principal and cofinite filters are almost principal.
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finer than F , then Ac # F because F is not almost principal. Moreover, there

exists an ultrafilter U0 of F such that Ac ∈ U whenever F 6 CA. Otherwise, for

every U ∈ βF there exists AU ∈ U such that F 6 CAU
. Then we would have

finitely many AU ’s whose union belongs to F . But F would be cofinite on that

set and therefore would be almost principal. By construction U0 /∈ intβ βF , but

U0∈βF = intGδβ βF .

Example 9 (U ∈ intβ βF \
⋃

F6(xn)n∈Nβ((xn)n∈N)). Let X be an uncountable

set and let F be the cofinite filter on X. A free uniform ultrafilter U on X (i.e.,

every element has the cardinality ofX) is not finer than any free sequence. Therefore

U ∈ β0X = βF but U /∈
⋃

F6(xn)
n∈Nβ (

(xn)n∈N)

.

Proposition 10. If D ⊂ (Fω /Fω )#> and F is a free filter, then

clD∗

(

⋃

F6(xn)
n∈Nβ (

(xn)n∈N)

)

= clD∗ (intβ βF ) = cl D∗ (intGδβ βF ) .

P r o o f. clD∗

(

⋃

F6(xn)n∈Nβ((xn)n∈N)
)

⊂ clD∗ (intGδβ βF ) is always true, regard-

less of D . Now, if U ∈ clD∗ (intGδβ βF ) then ND∗ (U ) # intGδβ βF . In other words,

βD ∩ intGδβ βF 6= ∅ for every D ∈ D such that D 6 U . Hence, there exists a

countably based filter L > F such that βL∩βD 6= ∅, that is, L # D . Since

D ∈ (Fω /Fω )#> , there exists a sequence (xn)n∈N > L ∨ D . Hence (xn)n∈N > F ,

β(xn)n∈N∩βD 6= ∅ and D 6 U . Therefore, U ∈ clD∗

(

⋃

F6(xn)n∈Nβ((xn)n∈N)
)

. �

Therefore, we can refine some of our results, as well as those of [2] described above:

F is iff

productively Fréchet βF ⊂ cl(Fω/Fω)∗
#>

(

⋃

F6(xn)n∈Nβ((xn)n∈N)
)

strongly Fréchet βF ⊂ clGδβ

(

⋃

F6(xn)
n∈Nβ (

(xn)n∈N)

)

Fréchet βF ⊂ clβ

(

⋃

F6(xn)
n∈Nβ (

(xn)n∈N)

)

However, if D " (Fω /Fω )#> , we may have βF ⊂ clD∗ (intGδβ (βF )) but βF" clD∗

(intβ (βF )) . For instance, Example 8 gives such a situation for the class D = F of all
filters, in which case D ∗ is the discrete topology. We can more generally characterize

classes of filters D for which interiors of βF for two different closure structures M ∗
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and N∗ have the same D ∗ -closures. If M and N are two classes of filters, we call a
filter F M to N refinable-meshable—in symbols F ∈ (M /N )># if

M ∈ M , M # F =⇒ ∃N ∈ N : N > M and N # F .

Theorem 11. Let M and N and D be three classes of filters. The following are
equivalent:

1. D ⊂(M /N)># ;

2. clD∗ (intM∗ βF ) ⊂ clD∗ (intN∗ βF ) for every filter F ;

3. βM⊂ clD∗ (intN∗ (βM )) for every M -filter M ;

4. M ⊂(D /N)#> .

P r o o f. (1 =⇒ 2) . Assume that D ⊂(M /N)># and let U ∈ clD∗ (intM βF ) .

In other words, ND∗ (U ) # intM∗ βF . Let D ∈D such that U ∈ βD . Since βD #

intM∗ βF , there exists an M -filter M > F such that βD∩βM 6= ∅, that is, D # M .

Therefore, there exists an N-filter N such that N > M and N # D because D ∈

(M /N)># . Hence, there exists an N-filter N such that N > F and βD ∩ βN 6= ∅.

In other words, ND∗ (U ) # intN∗ βF so that U ∈ clD∗ (intN∗ βF ) .

(2 =⇒ 3) is obvious and (3 =⇒ 4) follows from Theorem 6. Finally, (4 =⇒ 1)

follows immediately from the definitions of the classes of filters considered. �

In particular, if there exists on X a countably based filter M not in (D /A )#> ,

where A denotes the class of almost principal filters, then βM = intGδβ(βM ) but

βM" clD∗ (intβ (βM )). Notice that this is the case for any free countably based

filterM meshing with a D -filter D such that E (D) = ∅, for instance a uniform filter

(if X is uncountable), or an ultrafilter. In particular, the cocountable filter on an

uncountable set X is a countably deep and uniform filter, meshing with any other

free uniform filter. Therefore, on an uncountable set X, there exist countably based

filters M such that βM" clF∗∧ω
(intβ (βM )) .
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