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Abstract. A generalized MV -algebra A is called representable if it is a subdirect product
of linearly ordered generalizedMV -algebras. Let S be the system of all congruence relations
̺ on A such that the quotient algebra A /̺ is representable. In the present paper we prove
that the system S has a least element.
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1. Introduction

The concept of the generalizedMV -algebra was introduced independently by Ge-

orgescu and Iorgulescu [6], [7] and by Rach̊unek [10] (in [6] and [7], the term “pseudo

MV -algebra” was applied).

For the terminology and notation cf. Section 2 below.

Dvurečenskij [4] proved that each generalizedMV -algebra is an interval of a unital

lattice ordered group. This enables one to search for analogies between the theory

of lattice ordered groups and the theory of generalized MV -algebras.

A lattice ordered group is representable if it is a subdirect product of linearly

ordered groups. The representability of a generalized MV -algebra is defined analo-

gously; this notion was investigated in [7]; cf. also Dvurečenskij and Pulmannová [5],

Section 3.4.
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The motivation and the aim of the present paper are as follows.

For a lattice ordered group G let W (G) be the union of all normal prime filters of

the positive cone G+ of G. Put

K0(G) = {x ∈ G : |x| /∈W (G)}.

Banaschewski [1] proved that K0(G) is an ℓ-ideal of G and that G/K0(G) is the

largest quotient lattice ordered group of G which is representable.

In other words, K0(G) is the least ℓ-ideal of G having the property that G/K0(G)

is representable.

To each ℓ-ideal of G there corresponds a congruence relation on G, and conversely.

Let S0 be the system of all congruence relations ̺ onG such thatG/̺ is representable.

Banaschewski’s result yields that the system S0 possesses a least element.

In [1], Banaschewski remarked that it may be of interest to have a characterization

ofW (G) and K0(G) internally in terms of elements of G and that it remains an open

question whether W (G) is the set of all elements a > 0 of G such that, for some

x1, . . . , xn ∈ G, the relation

(x1 + a− x1) ∧ . . . ∧ (xn + a− xn) = 0

is valid.

The author [8] showed that the answer to this question is ‘No’ and presented the

desired characterizations of W (G) and K0(G) in terms of elements of G.

In the present paper we prove

(∗) Let A be a generalizedMV -algebra and let S be the system of all congruence

relations ̺ on A such that the quotient algebra A /̺ is representable. Then

the system S has a least element.

In the proof we substantially apply some results of the author’s article [9]; these

were formulated for MV -algebras, but remain valid for generalized MV -algebras as

well.

Further, using the results of [8], we give a constructive description of the least

element of S in terms of elements from G, where G is a lattice ordered group with a

strong unit u such that A is the interval [0, u] of G.
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2. Preliminaries

A generalizedMV -algebra is defined to be an algebraic structure A = (A;⊕,−,∼,

0, 1) of type (2,1,1,0,0) such that the axioms (A1)–(A8) from [6] are satisfied.

For x, y ∈ A we put x 6 y if x− ⊕ y = 1. Then (A; 6) is a distributive lattice with

the least element 0 and with the greatest element 1; we put (A; 6) = ℓ(A ).

The group operation in a lattice ordered group will be denoted by the symbol +,

though the commutativity of this operation is not assumed (cf. also Birkhoff [2] and

Conrad [3]). G+ denotes the positive cone of a lattice ordered group G. An element

u ∈ G+ is a strong unit of G if for each g ∈ G there exists a positive integer n with

g 6 nu.

Let u be a fixed strong unit of G; then (G, u) is said to be a unital lattice ordered

group.

For a unital lattice ordered group (G, u) we set A = [0, u] (the interval in G with

the end-points 0 and u). Further, for x, y ∈ A we put

x⊕ y = (x+ y) ∧ u,

x− = u− x, x∼ = −x+ u, 1 = u.

Then (A;⊕,−,∼, 0, 1) is a generalized MV -algebra; it will be denoted by Γ(G, u).

According to Dvurečenskij [4], for each generalized MV -algebra A there exists a

unital lattice ordered group (G, u) such that A = Γ(G, u). Also, the partial order

defined in A coincides with the partial order on A induced from G.

Let (Ai)i∈I be an indexed system of generalizedMV -algebras. The direct product∏
i∈I

Ai is defined in the usual way; its elements are denoted by (ai)i∈I , where ai ∈ Ai.

A generalizedMV -algebra A is a subdirect product of the indexed system (Ai)i∈I

if there exists a one-to-one homomorphism ϕ : A →
∏
i∈I

Ai such that, whenever

i0 ∈ I and z ∈ Ai0 , then there exists a ∈ A with ϕ(a) = (ai)i∈I , where ai0 = z. We

also say that ϕ is a subdirect product decomposition of A .

Let Con A be the system of all congruence relations on A . For ̺ ∈ ConA , the

symbol A /̺ has the obvious meaning. If x ∈ A, we put x(̺) = {y ∈ A : y̺x}. Let

̺1, ̺2 ∈ Con A ; we set ̺1 6 ̺2 if for each x ∈ A, x(̺1) ⊆ x(̺2). Under the relation

6, Con A is a complete lattice.

Analogous notions are applied for lattice ordered groups.

For a lattice ordered group G let J (G) be the system of all ℓ-ideals of G. This

system is partially ordered by the set-theoretical inclusion. Further, let ConG be the

system of all congruence relations on G. It is well-known that for each ̺ ∈ ConG,

0(̺) is an ℓ-ideal of G and the mapping ConG → J (G) defined by ̺ → 0(̺) is an

isomorphism of ConG onto J (G).
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Again, let A be a generalizedMV -algebra. A nonempty subset X of A is a normal

ideal of A if it satisfies the following conditions:

(i) X is closed with respect to the operation ⊕;

(ii) if x ∈ X and x1 ∈ A, x1 6 x, then x1 ∈ X ;

(iii) a⊕X = X ⊕ a for each a ∈ A.

This notion was investigated in [6] and [10]; cf. also [5]. Let NJ (A ) be the system

of all normal ideals of A ; this system is partially ordered by the set theoretical

inclusion. The relation between NJ (A ) and Con A is similar to that between

J (G) and ConG, namely: for each ̺ ∈ ConA , 0(̺) belongs to NJ (A ) and the

mapping Con A → NJ (A ) defined by ̺→ 0(̺) is an isomorphism of Con A onto

NJ (A ).

3. Subdirect product decompositions

In the present section we assume that A is a generalized MV -algebra and (G, u)

is a unital lattice ordered group with A = Γ(G, u). Recall that if the operation ⊕

in A is commutative, then A is an MV -algebra.

Proposition 3.1 (Cf. [5]). For each Y ∈ J (G) we put ψ(Y ) = Y ∩A. Then ψ

is an isomorphism of J (G) onto NJ (A ).

Let ̺1 ∈ ConG. Then 0(̺1) ∈ J (G). Put 0(̺1) = Y ; hence ψ(Y ) ∈ NJ (A ).

There exists a uniquely determined ̺ ∈ Con A with 0(̺) = ψ(Y ). In view of

Section 2 and of 3.1 we have

Lemma 3.2. The mapping χ : ConG → ConA defined by χ(̺1) = ̺ for each

̺1 ∈ ConG is an isomorphism of ConG onto ConA .

Subdirect product decompositions of MV -algebras were investigated by the au-

thor [9].

A straightforward verification shows that the results of Section 1 and Section 2 of

[9] remain valid if

(a) the MV -algebra A is replaced by a generalized MV -algebra;

(b) the symbol ¬ is replaced by −;

(c) in the proof of 2.3, the argument concerning the operation ∼ is added (which

is analogous to the argument used for the operation ¬).

In this sense we will understand the quotations concerning the definitions and

results of [9].

1102



In view of the well-known Birkhoff’s result on the relation between subdirect

product decompositions and congruence relation (cf., e.g., [2], Chapter VI), when

considering a subdirect product decompositions of any algebra X we can suppose

without loss of generality that the corresponding subdirect factors have the form

X/̺i (i ∈ I), where ̺i are congruence relations on X such that
∧
i∈I

̺i = IdX (we

denote by IdX the identity on X). Moreover, for each x ∈ X and each i ∈ I, the

component of x in X/̺i is equal to x(̺i). In this situation we say that the subdirect

product decomposition under consideration is determined by the system (̺i)i∈I .

Let ̺1 ∈ ConG. The element u(̺1) is a strong unit of the lattice ordered group

G/̺1, hence we can construct the generalized MV -algebra

A̺1 = Γ(G/̺1, u(̺1)).

We define a binary relation ̺ on A as follows: for any a1, a2 ∈ A we put a1̺a2 iff

a1̺
1a2. It is easy to verify that ̺ belongs to Con A and that ̺ = χ(̺1), where χ is

as in 3.2. For each g(̺1) ∈ A̺1 we put

ψ̺1(g(̺1)) = g(̺1) ∩A.

In view of the above remark concerning the validity of results of [9] for generalized

MV -algebras we have

Proposition 3.3 (Cf. [9], Proposition 2.4). Let ̺1 ∈ ConG and ̺ = χ(̺1).

Then ψ̺1 is an isomorphism of A̺1 onto A /̺.

Theorem 3.4 (Cf. [9], Theorem 2.5). Let (G, u) and A be as above. If σ is a

subdirect product decomposition of G which is determined by a system {̺i}i∈I ⊆

ConG, then

(i) there exists a subdirect product decomposition σ1 = ψ∗(σ) of A which is

determined by the system {χ(̺i)}i∈I ;

(ii) for each i ∈ I, the quotient algebra A /χ(̺i) is isomorphic to Γ(G/̺i, u(̺i)).

Lemma 3.5. Let σ0 be a subdirect product decomposition of A which is deter-

mined by a system {̺i
0}i∈I ⊆ ConA . Let χ be as in 3.2. Put ̺i = χ−1(̺i

0) for each

i ∈ I. Then the system {̺i}i∈I determines a subdirect product decomposition of G.

P r o o f. From the fact that {̺i
0}i∈I determines a subdirect product decomposi-

tion of A we obtain
∧
i∈I

̺i
0 = IdA. In view of 3.2, χ−1 is an isomorphism of ConG

onto ConA , hence
∧
i∈I

̺i = IdG. Then in view of Birkhoff’s theorem, {̺i}i∈I deter-

mines a subdirect product decomposition of G. �
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Lemma 3.6. Let ̺1 ∈ ConG, ̺ = χ(̺1). Then g/̺1 is linearly ordered if and

only if A (̺) is linearly ordered.

P r o o f. It is well-known that if A = Γ(G, u), then A is linearly ordered if and

only if G is linearly ordered. Now it suffices to apply Proposition 3.3. �

Lemma 3.7. G is representable if and only if A is representable.

P r o o f. Assume that G is representable. Then there exists a system {̺i}i∈I ⊆

ConG such that (i) all G/̺i are linearly ordered, and (ii) this system determines

a subdirect product decomposition of G. For each i ∈ I let ̺i
0 = χ(̺i). Then in

view of 3.4, the system {̺i
0}i∈I determines a subdirect product decomposition of A .

Moreover, according to 3.3, all generalized MV -algebras A /̺i
0 are linearly ordered.

Hence A is representable.

Conversely, suppose that A is representable; thus there exists {̺i
0}i∈I ⊆ ConA

determining a subdirect product decomposition of A such that all A /̺i
0 are linearly

ordered. Let ̺i be as in 3.5. In view of 3.5, the system {̺i
0}i∈I determines a subdirect

product decomposition of G; according to 3.3, all G/̺i are linearly ordered. �

Lemma 3.8. Let ̺1 ∈ ConG; put ̺ = χ(̺1). Then G/̺1 is representable if and

only if A /̺ is representable.

P r o o f. This is a consequence of 3.3 and 3.7. �

Let S and S0 be as in Section 1.

Lemma 3.9. Assume that ¯̺ is the least element of S0. Then χ(¯̺) is the least

element of S.

P r o o f. According to 3.8 and 3.2 we conclude that χ is a bijection of S0 onto S;

moreover, if ̺1, ̺2 ∈ S0, then

̺1 6 ̺2 ⇔ χ(̺0) 6 χ(̺2).

Let ̺ ∈ S. There exists ̺1 ∈ S0 with χ(̺1) = ̺. Then ̺1 > ¯̺, whence χ(̺1) > χ(¯̺).

Thus ̺ > χ(¯̺). �

According to [1], the set S0 has a least element. Then in view of 3.9, the assertion

(∗) from Section 1 is valid.

Using the results of [8], we can give a constructive description of the least element

of S (in terms of elements of G). We proceed as follows.

By induction we define subsets Kn and Kn of G by putting K1 = K1 = {0}; if

1 < n ∈ N then letKn be the set of all 0 6 a ∈ G such that (x1+a−x1)∧(x2+a−x2) ∈
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Kn−1 for some x1, x2 ∈ G. Further, let Kn be the set of all b ∈ G which can be

expressed in the form b = a1 + . . .+ am for some m ∈ N and a1, . . . , am ∈ Kn. We

denote
∞⋃

n=1

Kn = K, K0 = A ∩K.

Further, we denote by ¯̺̄ the least element of S. In view of the results of Section 3 of

[8] we easily obtain the relation

0( ¯̺̄) = K0;

hence for each z ∈ A we have

z( ¯̺̄) = z ⊕K0.

The question of characterizing ¯̺̄ internally (in terms of elements of A and opera-

tions in A ) remains open.
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