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Abstract. Idempotent slim groupoids are groupoids satisfying zz ~ z and z(yz) =~ zz.
We prove that the variety of idempotent slim groupoids has uncountably many subvarieties.
We find a four-element, inherently nonfinitely based idempotent slim groupoid; the variety
generated by this groupoid has only finitely many subvarieties. We investigate free objects
in some varieties of idempotent slim groupoids determined by permutational equations.
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This paper is a continuation of the paper [4] which was concerned with general slim
groupoids. Here we are going to investigate the idempotent case. An idempotent
slim groupoid is a groupoid satisfying xz = x and z(yz) ~ zz. In [1] idempotent slim
groupoids (or their duals) were investigated under the name rectangular groupoids.

We are going to prove in the present paper that the variety of idempotent slim
groupoids has uncountably many subvarieties. While all at most three-element idem-
potent slim groupoids are finitely based, we will find a four-element, inherently non-
finitely based idempotent slim groupoid. It will turn out that the variety Y generated
by this groupoid has the following interesting property: although it is finitely gen-
erated and inherently nonfinitely based, it has only finitely many (in fact, precisely
six) subvarieties.

We also investigate a descending chain of varieties W,, of idempotent slim
groupoids determined by permutational equations of restricted length. For many
pairs k,n of natural numbers we determine whether the free object %, in W,
with k generators is finite or infinite, and in some cases we compute the cardinality

The work is a part of the research project MSM0021620839 financed by MSMT and
partly supported by the Grant Agency of the Czech Republic, grant #201,/05/0002.
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of the free groupoid. The intersection W, of the varieties W, is investigated in a
similar way.
The terminology and notation used here are the same as in the paper [4].

1. UNCOUNTABLY MANY VARIETIES

By a subword of a word z ...z, we mean a word x;x; 11 ...x; where1 <7 < j < n.

A word x;...x, (where z; are variables) is said to be I-reduced if z; # ;41
fori =1,...,n — 1. The I-reduction of a word x; ...x, is defined inductively in
the following way: a variable is its own I-reduction; if n > 1 and y; ...y, is the
I-reduction of x; ...z, then the I-reduction of z; ...z, s y1...ym if zp1 =
and y1 ... Ymxn if Tp_1 # x,. It is easy to see that an equation z1 ..., X y1...Ym
is satisfied in all idempotent slim groupoids if and only if the I-reductions of x; ...z,
and y; ...y, coincide.

Theorem 1.1. The variety of idempotent slim groupoids has 2%° subvarieties.

Proof. For a word u, variables y, z and a nonnegative integer n we define a
word u[yz]"™ by induction as follows: u[yz]® = u; ulyz]" Tt = ((u[yz]")y)z.

Let M be a subset of {3,4,5,...}. A word is said to be M-bad if it equals
xyz[zy|*xyzy for some variables x, y, z and an integer k € M. The M-correction of
an M-bad word zyz[zy]Fryzy is the word zyx[yz]*ryzy. An M-significant word is a
word that is either M-bad or is the M-correction of an M-bad word. An I-reduced
word is said to be M-good if it does not contain any M-bad subword.

Claim 1. Let u be an M-significant I-reduced word, u = wyx[yz]*zyzy or u =
zyx[zylFryzy. Then x, y, z are pairwise different variables. Indeed, xy and yz are
subwords of u, so x # y and y # 2. Either zz (in the first case) or 2z (in the second
case) is a subword of u, so x # z.

Claim 2. Let uw =z ...x, be an I-reduced word and let x; ...x; and x, ... x4 be
its two M -significant subwords. Then either (i,j) = (p,q) or ¢ <i+2 orj <p+2.
Put 2 = 2;_3, y = zj_2 and z = z;_;. By Claim 1, z, y, z are three different
variables. If j = ¢ then it is easy to see that ¢ = p and the two subwords are
identical. Let, e.g., ¢ < j. Forc € {i,i+1,i+3,i+4,...,7 — 6,5 — 4} we have
q # ¢+ 3 since z. € {®et2, Tets} while zy_3 ¢ {x4—1,24}. Since 45 # x4—3 while
x; = Xi+2, we have ¢ # i+ 5. Since z4_1 € {Tg—4,zq—5} while z,_3 ¢ {z;_¢,2;_7},
we have ¢ # j — 2.

Claim 3. Any I-reduced word u can be transformed into an M -good word by a
finite sequence of replacements of M-bad subwords with their M -corrections. The
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resulting M -good word is uniquely determined by u and M. By Claim 2, whenever an
M-bad subword v is replaced by its M-correction w then any of the later replacements
can touch it at most at the first three or the last three positions of its variables; but
these positions remain unchanged by the replacements, so w remains unchanged till
the end of the process.

The unique M-good word resulting from an I-reduced word u in this way will
be called the M-correction of u. Define a groupoid Ay, in the following way: its
underlying set is the set of M-good I-reduced words; its binary operation, denoted
by o, is given by

T1... Ty if Yy = Ty,

T1.. . TpOYl. - Ym = . .
" " { the M-correction of xy ... xz,Yn otherwise.

Claim 4. Let ay,...,a, be elements of Ay;. Then agoaso...oay is the M-
correction of the I-reduction of the word ayzs ... z,, where z; is the last variable in
the word a;. This follows from the definition of o by induction on n.

Claim 5. Ajy; is an idempotent slim groupoid. For k > 3, the equation
zyxlyzlFryzy ~ xyz[zy|Fryzy is satisfied in Ay if and only if k € M. This
follows from Claim 4.

Since there are 2% different subsets of {3,4,...}, it follows from Claim 5 that
there are 2% different varieties of idempotent slim groupoids. O

2. I-STRONGLY NONFINITELY BASED SLIM GROUPOIDS

By an I-strongly nonfinitely based slim groupoid we mean a finite idempotent slim
groupoid A such that whenever A satisfies an equation (u, v) where u, v are I-reduced
words and wu is linear then u = v.

Theorem 2.1. Let A be a finite, I-strongly nonfinitely based idempotent slim
groupoid. Then A is inherently nonfinitely based.

Proof. The proofis essentially the same as that of Theorem 6.1 of [4]; the small
difference is that for a term ¢, one should consider (instead of just t*) the I-reduction
of t*. Observe, however, that our present result is not a consequence of that theorem:
an I-strongly nonfinitely based idempotent slim groupoid is not strongly nonfinitely
based. O

1291



Consider the idempotent slim groupoid %, 3 with elements a, b, ¢, d and multipli-
cation table

cd
alaacec
blbbcec
claacec
d|bbdd

Theorem 2.2. ¥, 3 is an I-strongly nonfinitely based idempotent slim groupoid.

Proof. For a homomorphism & of the groupoid T of terms into ¥, 3 and for a
word t = 1 ...z, (where z; are variables) we have
(1) h(t) =diff h(x1) = d and h(z;) € {c,d} for all i
(2) h(t) = ciff h(z,) € {c,d} and either h(x1) # d or h(x;) ¢ {c,d} for at least
one i;
(3) h(t) = b iff one of the following two cases takes place:
e h(z1) =band h(z;) € {a,b} for all 4,
e h(x1) = d and there exists an index k < n such that h(z;) € {c,d} for all
i <k and h(z;) € {a,b} for all i > k;
(4) h(t) = a in the other cases.
This will help in the following computations.

Since %3 has a two-element subgroupoid satisfying zy ~ x (the subgroupoid
{a,b}) and a two-element factor satisfying zy ~ y (the factor ¥, 3/0, ,), any equa-
tion satisfied in ¢, 3 has the same first variables and the same last variables at both
sides.

Let (z1...%n,Y1...Ym) be satisfied in ¥, 3, where x; and y; are variables. Then
{z1,...,2n} = {y1,...,ym}. In order to prove this, suppose that there exists an 4
with «; ¢ {y1,...,ym} and let i be the largest index with this property. Take the
homomorphism h: T — ¥, 3 with h(x;) = b and h(z) = d for all other variables z.
Then h(z1...2,) € {a,b,c} while h(y1 ...ym) = d, a contradiction.

Let (x1...2Zn, Y1 -..Ym) be satisfied in 4 3, where 21 ... 2, and y; ...y, are both
I-reduced and x7 ... x, is linear. Suppose z1...Zy, Z Y1 ... Ym. We have 1 <n < m.

Let us prove that y,,—; = x,—; for i =0,...,n—1. Suppose Ymm—_; 7# Tn_; for some
i, and let ¢ be the least number with this property; then ¢ > 0. If y,,,_; = x; for some
j <n—i,then h(z1...2,) # h(y1...ym) where h(z1) = ... = h(z,—;) = d and
hMzn—itv1) = ... = h(zy) =b. If yp—; = x; for some j > n — 4, then h(zi...z,) #
h(y1...Ym) where h(z1) = ... =h(zp—i—1) =d and h(zp—;) = ... = h(z,) =b.

SO, Ym = Tny -+ oy Ym—nt1 = T1. 1. 20 # Y1 ... Ym, we get m > n. We have
Ym—n = x; for some ¢ > 3. Define h by h(xz1) = ... = h(z;—1) =d and h(z;) = ... =
h(zn) =b. Then h(z;...x,) =b while h(y1 ...ym) = ¢, a contradiction. O
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Theorem 2.3. The groupoid ¥, 3 is, up to isomorphism, the only I-strongly
nonfinitely based idempotent slim groupoid with at most four elements.

Proof. It is possible to generate all idempotent slim groupoids with at most
four elements that do not satisfy the equation zyzu ~ zyzuzuzu. Only one such
groupoid is obtained, the groupoid ¥ s. O

3. THREE-ELEMENT IDEMPOTENT SLIM GROUPOIDS

Theorem 3.1. All idempotent slim groupoids with at most three elements are
finitely based.

Proof. According to Gerhard [2], all varieties of idempotent semigroups are
finitely based. According to Jacobs and Schwabauer [3], all varieties of algebras with
one unary operation are finitely based. Thus it remains to consider the at most
three-element idempotent slim groupoids that are not semigroups and do not satisfy
zy ~ xz. It is easy to find that there is, up to isomorphism, precisely one such
groupoid. It has three elements a, b, ¢ and multiplication

abc

c|aac

It has been shown in [1] that the equational theory of this groupoid is based on the
three equations z(zy) =~ zy, zz ~ x and xyzu ~ rzyu. O

Proof of this theorem. Denote this groupoid by S. We are going to show that
the equational theory of S is based on the three equations x(zy) = zy, zz =~ z
and zyzu ~ zzyu. One can easily check that these three equations are satisfied
in S. Clearly, an equation x1...%, &~ y1...Ym (where z; and y; are variables)
is a consequence of the three equations if and only if 1 = y1, =, = vy, and
{z1,...,xn} ={y1,. -, Ym}- Let x1...2, = y1...ynm be satisfied in S. If z1 # 41,
take the homomorphism h: T' — S with A(z1) = b and h(z) = a for all other
variables z; we have h(z1...2,) = b while h(y1...ym) € {a,c}, a contradiction.
If ©, # ym, take h: T — S with h(z,) = c and h(z) = a for all other vari-
ables z; we have h(zy...z,) = ¢ while h(y1...ym) € {a,b}, a contradiction. If
{z1...,20} # {y1,.-.,Ym}, then without loss of generality z; ¢ {y1,...,ym} for
some i; take h: T — S with h(z;) = ¢ and h(z) = b for all other variables z; we have
h(z1...zyn) € {a,c} while h(y; ...ym) = b, a contradiction. O
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Remark 3.2. In idempotent slim groupoids, xyzx ~ x implies zyz ~ xz. Indeed,
TYZ = TYTZYYz = TYTZ = TZ.

Remark 3.3. In idempotent slim groupoids, the equations xyx ~ x and xyzuzr ~
xp(y)p(z)p(u)z for all permutations p of {y,z,u} imply zyzu =~ xzyu. Indeed,

TYZU = TYZUTU = TZYUTU = TZYU.

4. THE VARIETIES W,

For n > 1 denote by W, the variety of idempotent slim groupoids satisfying
TYL .. YnZ R TYp(1) - - - Yp(n) 2 for all permutations p of {1,...,n}.

Clearly, W1 is the variety of all idempotent slim groupoids, W5 is determined
(together with the equations of idempotent slim groupoids) by zyzx ~ xzyx, W3 by
TYzuT X ruzyr ~ rzyux, etc. We have W; D Wo D W3 D .... Denote by ~,, the
equational theory of W,,.

It can be easily checked (with an aid of computer) that every groupoid in W3
with at most 8 elements belongs to Wy.

We denote by .#j,,, the free groupoid in W,, with &k generarors. In the following
we are going to describe .%j ,, for small numbers k.

Theorem 4.1. %, ,, is infinite for n < 2. For n > 3, %, has 8 elements and its

multiplication table is

Fapo | @ Y TY Yr TYT YTy ITYITY YTy
T x xy Ty T T Ty Y T
Y yr oy Y yr  yr oy Y yx
Ty TYyr TY TY TYT YT TY TY TYT
yx yr o yry yry yr yr yry yry yz
TYT | TYT TYTY TYTY TYT TYT TYTY TYTY TYT
yry | YyryT yry  Yry Yryr yryr yry yry yryz
TYTY | TYT TYTY TYTY TYT TYT TYTY TYTY TYT
Yyryr | yryr yry Yry Yyryr yryr yry yry yryw

Proof. Denote the two generators by x and y. Clearly, every word over {z,y}
is ~p-equivalent to a word that is a beginning of either zyzyxy ... or yzyxyz.... All
these words are pairwise ~,,-inequivalent if n < 2. For n > 3, we have zyzyx ~,, ryz
and yxyxy ~n yxy, so every word is ~,-equivalent to one of the eight words. It is
easy to check that the eight-element groupoid belongs to W,,. Consequently, it is
the free groupoid. O
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We say that a word z; . ..x, precedes a word ¥ ...y, if one of the following three
cases takes place:

(1) n<m,
(2) n=m >3, z1 = z3 and y1 # y3,
(3) n=m =4, x1 # a3, y1 # Y3, ¥2 = x4 and Y2 # ya.

A word t is said to be ~,,-minimal if there is no word preceding ¢t and ~,,-equivalent
with ¢. Clearly, every word (in a fixed number of variables) is ~,-equivalent with at
least one ~,-minimal word.

A word y; ...y, is said to be an extension of x; ...z, if n < m and x; = y; for all
i <n. Let t,u,v,... be words over {z1...,x5}. We write t <jn (u,v,...) if u,v,...
are extensions of u and every ~,-minimal extension of u (containing only z1,...,xy)
is extended by one of the words u, v, .. ..

We are now going to describe .#3 3. So, in the next lemmas let <1 stand for <13 3.
Denote the three generators by x, y, 2.

Lemma 4.2. zyzy < (zyzyz).

Proof. It follows from xyxyzr ~3 xyryrzr ~3 TYTZT ~3 TYZL. O

Lemma 4.3. zyxzz < (zyzzy).

Proof. ayzzyxr ~3 xyzryza ~3 ryze and xyrzyz ~s TYZryz ~3 TZYTYzZ ~3
TZYYTZ ~3 TLYTZ ~3 TYZTZ. ]

Lemma 4.4. zyzz < (vyzz).

Proof. xzyzzy ~3 xyzzy and zyzarz ~3 x2yrz ~3 TZTYZ. O

Lemma 4.5. zyzy < (xyzyzx).

Proof. axyzyx ~3 zyzz, vyzyzy ~3 xyzy, ryzyzrz ~3 ryzryz and xyzyzry ~s
TYZYTZY ~3 TYZTZY. (]

From these lemmas it follows that every word in the variables z, y, z is ~s3-
equivalent with at least one word that can be extended to a word similar to one of
the words zyzyz, xyxzy, ryzz, xyzyzz. (Two words are said to be similar if one is
obtained by a permutation of variables in the other.) It is not difficult to write all
such words; their number is 66. Now we know that .%3 3 has at most 66 elements
and we suspect that 66 could be the precise number. In order to prove it, we try
to write the multiplication table for .#3 3; clearly, if the groupoid given by this table
satisfies the equations of W3, it is the free groupoid in W3. The trouble is that
the multiplication table would be too big. However, it is sufficient to consider just
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a fragment. First of all, instead of the 66 columns it is sufficient to write the three
columns corresponding to the three generators: the product of two words is equal
to the product of the first word with the last variable in the second. And instead
of 66 rows, it is sufficient to write the representative 12 of them; the other ones are
obtained by permutations of variables. We obtain the displayed fragment. In this
fragment, each of the first 2 rows can be permuted to 3 different rows and each of
the next 10 rows to 6.

F3.3 x Yy z

x x Ty xz
TYzT TYZT  TYTZY TZTYZ
Ty TYx Ty 1Yz
TYx TYx TYry TYILZ
Tyz TYzr  TYY TYZ

TYTY TYT TYTY TYITYZ
TYTYz | TYZX  TYTRY TYTYZ

TYTZ TYZT — TYTZY TYTZ
TYTZY | TYZX  TYTZY TIXYZ
TYzyY TYZX  TYLY TYZYZ

TYZYZ | TYZYZT TYZY TYZYZ
TYZYZT | TYZYZT TYTZY TZTYZ

We can check easily that this groupoid satisfies the equations of W3. (Observe
that in order to check a permutational equation of the form considered here, it
is sufficient to interpret its leftmost variable as an arbitrary element and all the
remaining variables as variables only.) So, this groupoid is the groupoid %3 3 and
the free groupoid has precisely 66 elements.

The groupoid does not belong to Wy, since the element zyzyzz can be reduced
to xyzz. It easily follows that the groupoid %3 4 (which has to be a factor of Z3 3)
has 60 elements. We get

Theorem 4.6. The groupoid %3 3 has 66 elements and its multiplication table
can be reconstructed from the above given fragment of 12 rows and 3 columns. The
groupoid %3 4 has 60 elements and its multiplication table can be reconstructed from
the fragment for %33 in which the last row is deleted and the element xyzyzx is
replaced by xyzx.

Next we are going to describe the groupoid %4 5. So, in the next lemmas let <
stand for <14 5. Denote the four generators by z, y, z, .

1296



Lemma 4.7. zyzry < (Tyryzuzu, TYryuzuz).

Proof. Lett be a ~s-minimal extension of zyxy. Clearly, ¢t cannot start with
either zyzyxr or zyxyy, so (if it is different from xyxy) it must start with either
xyxyz or zyxryu. Each of these words can continue (to remain ~s-minimal) only in
the indicated way. We have zyzryzuzux ~5 ryryzur ~5 rxyzur and xyryzuzuy ~s
ryxryzuy, so that xyryzuzu has no proper ~5-minimal extension. O

Lemma 4.8. zyxzy < (xyxzyu).

Proof. We cannot continue with z, since zyzzyz ~5 xyzryz ~5 ryzycrz ~s
TYyzrz ~5 TYzrz. S0, clearly we can continue with u only. It is evident that the
word zyzrzyu can be continued neither with x nor y nor u. It also cannot be con-
tinued with z, since xyzzyuz ~5 Tyrzuyz ~5 TYZUTYZ ~5 TZYUTYZ ~5 TZYYULZ ~5
TZYUTZ. O

Lemma 4.9. zyzzu < (xyrzuzu, cyrzuy).

Proof. Clearly, the word can continue neither with x nor » and if it is contin-
ued with z then there is only one possible further continuation, zyxzuzu. For the
continuations of xyxrzuy, consider

TYTZUYZ ~5 TYZUTYZ ~5 TYZUYTZ ~5 TYYzurz ~5 ryzurz and

TYTZUYU ~5 TYURZTYU ~5 TYUZYTU ~5 TYYULZTU ~5 TYUZTU.

Lemma 4.10. zyxz < (xyxzyu, LYTzuzu, LYT2uy).

Proof. It follows from 4.8 and 4.9, since clearly the word cannot be continued
with either x or z. O

Lemma 4.11. zyzr < (xyryzuzu, LYTYuzuz, LYrzyu, LYTrzuzi, LYT2uY, LYTUY2,

Proof. It follows from 4.7 and 4.10. O

Lemma 4.12. zyzx < {(xyzau).

Proof. A continuation of zyzzy (of zyzxz) is ~5-equivalent to a continuation
of zyxzy (of zzxyz, respectively, since xyzaz ~j xzyzrz ~5 xzryz) of the same
length and so it need not be considered. We have xyzzuz ~5 zyzuxrz ~5 xzyucz ~s
rzryuz, a word starting with xzz. O
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Lemma 4.13. zyzy < (xyzyzu, vyzyuz).

Proof. It iseasy tosee that zyzyz < (xyzyzu). Since zyzyuzu ~5 ryzuyzu ~sy
TYUZYZU ~5 TYUZZYU ~ cyuzyu, we have xyzyu < (xyzyuz). (]

Lemma 4.14. zyzu < (xyzuz, zYyzuy, TYZUzU).

Proof. Since

TYZUTY ~5 TYTZUY,
TYZUTZ ~5 TYZTUZ ~5 TLYTUZ ~5 TZTYUZ,

TYZUTU ~5 TUYZTU ~5 TUTYZU,
we have xyzuzr < (zyzux). Since

TYZUYZ ~5 TYZYUZ,

TYZUYU ~5 TYUZYU ~5 TYUYZU,

we have zyzuy < (zyzuy). Clearly, zyzuz < (zyzuzu). O

From these lemmas it follows that every word in the variables z, y, 2z, u is ~5-
equivalent to at least one word that can be extended to a word similar to one of
the words zyxyzuzu, xyrzyu, Tyrzuzu, TYTzUyY, TYZTU, TYZY2U, TYZYUZ, TYZUL,
xyzuy, ryzuzu. It is not difficult to write all such words; their number is 548. Now
we know that .%#, 5 has at most 548 elements and, similarly to the case of three
generators, we can write a fragment of the multiplication table. This fragment that
is displayed has 4 columns and 28 representative rows. Each of the first 2 rows can
be permuted to 4 different rows, each of the next 7 rows to 12, and each of the last
19 rows to 24.

One can verify that the groupoid satisfies the equations of W3 either with an aid
of computer or also manually. The result is that the equations are indeed satisfied,
and we obtain

Theorem 4.15. The groupoid %45 has 548 elements and its multiplication table
can be reconstructed from the fragment of 28 rows and 4 columns.

It is easy to see that the groupoids %4 ,, are infinite for n < 4. The reason is that
the terms xyxyzuzuryryzuzu ... are pairwise ~,-inequivalent.
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Fap T Y z u

T x Ty Tz TU
TYZUT TYZUT TYTZUY TZTYUZ TUTYZU
Ty Tyr  xy TYZ TYu

TYT TYTr  TYTY ~—TYTZ TYTU
TYTY TYT  TYTY —TYTYZ  TYTYU
TYZT TYZT TYTZY TITYZ — TYITU
TYTZUY TYZUT TYTZUY TZTYUZ TUTYIU
TYZaTU TYZUT TYTZUY TZTYUZ TYZTU
TYyzZUY TYZUT TYZUY TYZYUZ TYUYZU
TYZ TYZT TYLY ~— AYZ TYZU
TYTYZ TYZT TYTZY TYTYZ — TYTYZU
TYTZ TYZT TYTZY TYTZ TYTZU
TYTZY TYZT TYTZY TIZTYZ  TYTZYU
TYzY TYZT TYZY — TYRYZ  TYIYU
TYZYZ TYZT TYZY — TYZYZ  TYIYRU
TYZU TYZUT TYZUY TYZUZ — TYIU
TYTYZU TYZUT TYTZUY TYTYZUZ TYTYZU
TYTYZUZ | TYZUT TYTZUY TYTYZUZ TYTYZUZU
TYTYZUZU | TYZUT TYTZUY TYTYZUZ TYTYZUZU
TYTZU TYZUT TYTZUY TYTZUZ TYT2U
TYTZYU TYZUT TYTZUY TITYUZ TYTZYU
TYTZUZ TYZUT TYTZUY TYTZUZ TYTZUZU
TYTZUZU | TYZUT TYTZUY TYTZUZ TYTZUZU
TYZYZU TYZUT TYZUY TYZYUZ TYZYZU
TYzZYyu TYZUT TYZUY TYZYUZ TYIYU
TYZYUZ TYZUT TYZUY TYZYUZ TYUYZU
TYZUZ TYZUT TYZUY TYZUZ — TYIUZU
TYZUZU TYZUT TYZUY TYZUZ — TYIUZU

Theorem 4.16. If k is even and n < 2k — 3 then %}, ,, is infinite. If k is odd and
n < 2k — 4 then %y ,, is infinite.

Proof.

Denote the generators by z, ..

.,xk. For k even the words

L1X2X1X2 .. . Xp—1TL—1TEpX1TX2L1TY ...

and for k£ odd the words

L1X2X1X2 ... Xfp—2Lf—1Xf—2L|—1TLELT ...

are pairwise inequivalent with respect to the equations of W,,.
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Theorem 4.17. Let k > 3. Then %}, 953 is finite.

Proof. For k = 3 it follows from the above theorem. So, let kK > 4. Put
n = 2k — 3 and denote by ~ the equational theory of W,,. Consider only words in
k fixed variables. By a minimal word we will mean a word that is not ~-equivalent
to a shorter word. Clearly, every minimal word is I-reduced.

Suppose that there exists a minimal word x7 ...z, containing at least three oc-
currences of some variable, and take such a minimal word of minimal possible length.
Then z1 = x; = x,, for precisely one i € {2,...,m — 1} and each variable differ-
ent from z; has at most two occurrences in z; ...z,,. Consequently, m < 2k + 1.
Since i —2 < m —4 < 2k—3 = n and z;1 = x;, the variables ws,...,z;_1 can
be arbitrarily permuted and (consequently) are pairwise different. For the same
reason, Ti1,-..,Tm—1 can be arbitrarily permuted and are pairwise different. If
Ta,...,Tm_1 are pairwise different or if there is at most one pair of equal elements
among them then m — 2 < k+1 < 2k — 3 = n (since k > 4), so that the inner vari-
ables in x1 ...x,, can be arbitrarily permuted; in particular, they can be permuted
in such a way that x; gets to the position with index 2, so that the word starts with
two equal variables and can be shortened, a contradiction. Hence there exist four
different indexes j, m, r, s with x; = 2, 2, = 25, j <i<mand j <r <i < s.
We can assume that s < m, because the two places can be permuted. Take such a
quadruple j, m, r, s with the largest possible j. Then z;11,...,Tm,—1 are all different
with the only exception x,, = x4, so the length of this sequence is at most k which is
less than n, and x,, s can be permuted to become neighbors and then one of them
deleted, a contradiction.

So, every minimal word contains at most two occurrences of each of the k variables.
There are only finitely many such words and every word in the k variables is ~-
equivalent to at least one minimal word. 0

Theorem 4.18. Let k > 3. If k is odd put n = 2k — 2, and if k is even put
n =2k — 3. Then i, = Fpm for allm > n.

Proof. It is sufficient to prove for every m > n that if %, € W,, then
Fim € Wip1; the statement will then follow by induction on m. Let m > n
and Fj, € Wp,. We need to prove zyi ... Ym1T = TYp(1) - - - Yp(m4+1)T 0 Fip
for all elements z,y1,...,Ym+1 of F, and all permutations p of {1,...,m + 1}.
However, clearly it is sufficient to prove it only in the case when all the elements
T, Y15 - -, Ym+1 are from the k-element set of generators of .%}, ,,. In order to do this,
it is sufficient to prove that xyy ...ym4+12 = 221 ... 2,2 for a sequence zi,..., 2y
such that {x,21,...,2m} ={z,y1,- -, Ym+1}-
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If some member of the sequence x,y1,...,Ym+1, is equal to the immediately
following member, we can delete it and the claim is confirmed. So, we can assume
that y; # y;41 for all ¢ and y1 # @ # Ym41-

Suppose that y; = y; = y, for some i« < j < 7. Then zy;...Ym41z =
TYL - Yl Yitl - Yj—1Yjtl - Yr oo Yml® = TY1 .- Yj—1Yjhl - - - Ym1L. S0, We
can assume that every element occurs at most twice in y1, ..., Ym+1.

Consider first the case when y; = y; = = for some 1 <i < j < m+ 1. Then

TYL -« - Ym+1T = TYiY1 - - - Yi—1Yi+1 - Y5 .- - Ym4+1T

=2Y1---Yi-1Yi+1 - - - Ym+12T.

Now let y; = « for precisely one i. Since the sequence yi,...,Yym+1 With y;
deleted contains at most k£ — 1 different elements and k& < m, we have y; = y, and
yr = ys for two different pairs j < ¢ and r < s. Without loss of generality, j < r.
If j < g < ithen zy1...Ym+1T = TY1-- - YjYg¥i+1 - Yq—1Yg+1 - Yi - - Yn+1T =
TY1 - Yg—1Yq+1 - - - Yn+1T. So, we can assume that j < ¢ < g and, similarly, r < i < s.
Since ¥4, ys are between y; and the last occurrence of x, they can be permuted and
thus we can suppose that s < g. But then the two occurrences of y, = y5 are between
the two occurrences of y; = y,, they can be moved to get one the elements next to
the other and then one of them can be deleted. It remains to consider the case when
2 does not occur in Y1, ..., Ym+1-

Let k£ be odd. The sequence y1, . .., Ym+1 contains at most k— 1 different elements.
If each of them occurs at most twice, we get m + 1 < 2k — 2 = n, a contradiction.
Thus at least one of these elements occurs at least three times; this case has been
handled above.

Let k be even and let us work again under the assumption that no element occurs
more than twice in y1,...,Ym+1. If some of these elements occurs only once, we get
m+1 < 2k — 3 = n, a contradiction. Thus every element occurs precisely twice in
Y1, .-+, Ym+1- Clearly, we can assume that there is no quadruple 4, j, r, s of indexes
with 7 <j <r <s,y;, = ys and y; = y,. We are going to prove by induction on ¢ > 0
that if 4i+1 < m+1then4di+4 < m+1and zy; ... Ym+1T = T21 . .. Zm+1x for some
215+ Zm+1 such that 24511 = 24543 and 24512 = 24544 for all j < 7. Let this be true
for all numbers less than . So, we can suppose that ya;4+1 = Y443 and yYaj42 = Yaj+4
for all j < ¢. Since y4i4+1 does not occur in ¥y, ..., Y4, we have ys;41 = y, for some
q = 41+ 3. If ¢ > 4¢ + 3 then y4;42 = y, for some r > ¢ and the variables between
Yai+2 and y, can be permuted so that y, is moved to the position of y4;43. So, we
can assume that y4;,11 = y4;+3. Since y4;4+2 does not occur in yi, ..., ys;4+1, we have
Yaito = Ys for some s > 4i + 4. If s > 4i + 4, then for a similar reason ys can be
moved to the position of y4;+4, and thus we can also suppose that y4;12 = Y4it4.
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It follows that the number of different elements in yi,...,Ym+1 is even. But the
number is k— 1, which is odd. So, if &k is even, the assumption that no element occurs
more than twice in y1, ..., ym=1 is contradictory. O

The following table summarizes what we know about the cardinalities of .%, ,, for
k<6andn<9.

[ Fenl |2 3 4 5 6 7 8 9
k=2 |08 8 8 8 8 8 8
= oo 66 60 60 60 60 60 60
k=4 | 0o 0o oo 548 548 548 548 548
k=5 |ococooooo 7 fi fa fa
k=6 |0 o000 0 00 o0 o f3

Here f1, f2 and f3 are some finite numbers that we did not compute. In particular,
we do not know whether f; = fo. We do not know whether %5 ¢ is finite.

5. THE VARIETY W

We denote by W, the intersection of the varieties W,, (n = 1,2,...). In this
section ~ always denotes the equational theory of W .

Lemma 5.1. Let x1,...,x, be variables and let 1 < i < j < k < m < n be such
that x; =z}, and x; = x,,. Then

T1...Tp ~YT1... xixp(iﬂ) .. .xp(m_l)xm oIy

for any permutation p of {i +1,...m — 1} such that p(j) < p(k).

Proof. x; can be moved to the position i+ 1 and then x;, can be moved to the
position ¢ 4+ 2. Since the remaining variables of ;41 ...2;,—1 are now between two
occurrences of the same variable x,,, they can be arbitrarily permuted. Then the
variable at position ¢ + 2 can be moved to an arbitrary place p with i +2 < p <m
and the variable at position ¢ + 1 to an arbitrary place ¢ with i+ 1 < ¢ < p. O

Let us fix a strict linear ordering [ of the set of variables. A word zy . ..x, is said
to be admissible if
(1) x1...xy, is I-reduced,
(2) every variable has at most two occurrences in zj ...z,
(3) whenever 1 < i < j < n and z; = =z, then the variables z;41,...,2;_1 are
pairwise different and if each of them has only one occurrence in z7 ...z, then
Ti+1 C T2 C ... C Tj—1,
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(4) whenever1 <i<j<k<m<mn,z; =z, and x; =z, then j =i+1, k = i+2,
each of the variables x;43,...,2;,—1 has only one occurrence in z; ...z, and
Tiy3 C Tipa O .. C Typ—1.-

Lemma 5.2. Every word is ~-equivalent to at least one admissible word.

Proof. It is sufficient to consider a word x; ...z, that is not ~-equivalent with
any shorter word. Clearly, z; ...z, is I-reduced. If 1 <i<j<k<nandz;, =2; =
x, then x; can be moved to position ¢ 4+ 1 and then, because of the idempotency,
deleted. If 1 < ¢ < j < n, z; = x; and the variables z, (r =¢+1,...,j — 1) are
pairwise different then these variables can be permuted to obtain z;41 T ... C x;_1.
Let 1 <i<j<k<m<n,x =2, and 2; = 2. By 5.1 we can suppose that
j=4+1and k = i+ 2. Suppose z. = x4 for some ¢ € {i +3,...,m — 1} and
some d # c. If i +3 < d < m —1 then z. and x4 are between the two occurrences
of x,,, and thus x4 can be deleted. If d < i then z; and ;2 are between the two
occurrences of z.. If d > m then z;11 and z;;5 can be moved to positions m — 2
and m — 1 respectively, so that then both occurrences of x,, are between the two
occurrences of z. and the word z; ...z, can be again shortened. Thus each of the
variables x;y3,...,2y—1 has only one occurrence in z;...xz,. These variables can
be permuted to obtain x;43 C ... C Zp—1- O

Lemma 5.3. Let x1 ...z, and y; ... Yym be two different admissible words. Then
the equation xy ...T, X Y1 ... Ym together with the equations of W o, implies one of
the following three equations:

(1) zyzy =~ zy,
(2) yayzz = yeyu,
(3) ayzyz = zzyz.

Proof. By induction on n+ m. If 2, # ym, then z(z1...2,) = 2(Y1. .- Ym)
gives z&, & 2y, which implies zy ~ = and then the equation (1). So, let z,, = y,.

Suppose {z1,...,2Zn} # {Y1,. -, Ym}. Without loss of generality, y; ¢ {x1,...,2,}
for some i. Substitute y for y; and x for any other variable. We get one of the
equations x &~ yx, x ~ xyx or x ~ yxyx. Each of these equations implies (1). (In
the case of & = yryx take the substitution z — yx.)

If 1 # y1, take a new variable z and substitute zz; for 1. We get zz1...zx, =
Y1...Yym where {z,21,...,20} # {y1,...,ym} and thus we get the equation (1) as
before.

Thus we can assume that {x1,...,2,} = {y1,..-,Ym}, 21 = y1 and x, = Ym.
Since x1...Tp £ Y1 - .- Ym, we have n > 1 and m > 1.
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Suppose that z, has only one occurrence in z; ...z, and only one occurrence
inyy...Ym- If £n_1 # Ym—1, substitute = for x,, y for x,_1; and z for all other
variables. We get that either zyx or yzyz or zyzyx is ~-equivalent with either yzx
or zyzx or yzyzx. In each of the four cases (the two terms must start with the same
variable) we get either (1) or (2). Now let x,—1 = yYm—1. If we substitute z,_1
for x,,, we get x1...Zn—1 ~ Y1...Ym—1 where z1...2,_1 and y1...Ym_1 are two
different admissible terms, so that the induction hypothesis can be applied.

Suppose that x,, has only one occurrence in zj ...z, but two occurrences in
Y1 -..Ym. Substitute = for x, and y for all other variables. We get yx ~ yzyz,
ie., we get (1).

It remains to consider the case when z,, = y,, has two occurrences in z; ...z,
and two occurrences in ¥ ...Ym. Let ¢ < n, j < m, z; = z, and y; = ym. Put
C= {LUH_l, . ,{L‘n_l} and D = {yj+17 N ,ym_l}.

Suppose that each variable from C' has only one occurrence in z7 ...z, and each
variable from D has only one occurrence in ¥ ...y, fC —D # @ and D — C = (),
substitute x for x,, = for every variable from C'N D and y for all other variables
to obtain yryxr ~ yz, ie., we get (1). If C — D # 0 and D — C # (, substitute
x for z,, x for every variable from C and y for all other variables to obtain that
yx ~ yxyx. If C = D, substitute a variable x ¢ {z1,...,z,} for every variable from
{zi,...,zp} toobtain 1 ... 2,1 ~y1...yj—1x where 1 ... x;_1x and y1...y;—1T
are two different admissible words, so that the induction hypothesis can be applied.

Next suppose that each variable from C' has only one occurrence in z ...x,,
while y;_1 = yj+1. If yj41 ¢ C, substitute x for all variables from {z;,...,z,}
and y for all other variables to obtain yz ~ yxyz. Let yj41 € C. If C — D # 0,
substitute z for all variables from {y;,...,ym} and y for all other variables to obtain
yryr ~ yx. If D — C # (), substitute x for all variables from {z;,...,x,} and y for
all other variables to obtain yx ~ yzyx. If C = D, substitute z for all variables from
{ziy...,xn}—{yit1}, y for y;+1 and z for all other variables to obtain zzyx ~ zyxyx;
we get (3).

Finally, let ;1 = ;41 and y;—1 = yj4+1. If 2541 = y;41, substitute =z, for
Zit1 to obtain xq ... 2 1Tip2 ... Tn ~ Y1...Yj—1Yj+2 - - - Ym and use the induction
hypothesis. Let z;41 # yj+1. If yj41 € {2s,..., 2.}, substitute = for every variable
from {z;,...,z,} and y for all other variables to obtain yz ~ yxyz. If y;41 €
{zi,...,zn} and zi41 € {y;,...,Ym}, substitute = for x,, = for z;41, z for every
variable from {z;;2,...,2,-1} and y for every other variable to obtain either zzyz ~

zyxyzx or zryxr ~ zyzryr and thus (substitute x for y in the first equation) either (1)
or (3). O
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Theorem 5.4. The variety W, is generated by %34 and every word is W oo~
equivalent with precisely one admissible word.

Proof. By 5.2, every word is W -equivalent with at least one admissible word.
If two different admissible words are W -equivalent then W, satisfies one of the
three equations 5.3(1), 5.3(2) and 5.3(3). However, it is easy to check that none of
these three equations is satisfied in .#3 4. Since %3 4 belongs to W, it follows that
every word is W-equivalent with precisely one admissible word. If %34 satisfies
an equation not satisfied by all algebras in W, then, again by 5.3, it satisfies one
of the three equations, which is not possible. O

Remark 5.5. The variety W is not generated by % 5. Indeed, %5 o satisfies
ryzyz ~ xzyz and this equation is not satisfied in W .

Remark 5.6. According to 5.4, the cardinality C(k) of the k-generated free
algebra in W, can be computed in the following way. Denote by Sy the set of finite
sequences (nq,...,n,) of positive integers such that n; + ...+ n, = k. Put

k
Then C(k) = 3 (k)D(z) In particular,

C(2) =8, C(3) =60, C(4) = 548,
C(5) = 6180, C(6) = 83502.

Remark 5.7. The equations of W, together with xyxry ~ xy imply the equation
TYTZ] ... Zny = TYZ21 ... 2nYy. Indeed, xyxzy ... 2,0 = TYTY21 ... Z2nY = TYZ1 - . - ZnY-

Remark 5.8. The equations of W, together with the equation xzyxz; ... z,yu =~
xyxrz1 ... zpu (n = 1) imply zyxy ~ xy. Indeed, take the substitution sending y to x,
Z1,.-.,%2n to y and u to y.

Theorem 5.9. The intersection of W3 with the variety determined by ryzy =~ xy
is the variety of idempotent slim groupoids satisfying xyzu ~ xzyu.
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Proof. Denote by ~ the equational theory of W3 extended by zyzry ~ xy. We
have

TYTZY ~ TYTYZY ~ TYZY,
TYTZY ~ TYZTY ~ TZYTY ~ TZTYTY ~ TZTY,
TYZY ~ TZTY,

TZXY ~ TYTZY ~ TZYZY ~ TZY.

TYZU ~ TYTZU ~ TYTZTU ~ TZTYTU ~ TZYU

6. THE VARIETY Y

Denote by Y the variety determined by the equations of W, together with the
equations zyryz ~ xyrz and zaxyry ~ zyzry. In this section we denote by ~ the
equational theory of Y.

Lemma 6.1. We have

(1) zzyzu ~ zyzyu,

(2) zzyvy ... vp2U ~ ZYTUL ... VYU,
(3) zyzuy ... upyz ~ TyYuy ... ULRTZ,
(4) zzyzuy ... upy ~ 2YTUI - . . URY.

Proof. (1) zzyzu ~ zzxyryu ~ zyryu.

(2) zzyvy ... VpTU ~ ZTYTV] ... Vp&U ~ ZYTYV] ... Vp@U ~ ZYTYV] . .. UpTYTU ~
ZYTYV] . . . UpYTYU ~ ZYTV] . . . UpYU.

(3) zyzuy .. . URYZ ~ TYUT - . . UpYTYZ ~ TYUT . . . UpTYTZ ~ TYU] - . . UpT2.

(4) zxyxuy ... UpY ~ ZYTYUL . . . UpY ~ ZYTU] - . . UpY- O

By a 2-admissible word we mean a word z; ...z, such that

(1) x1...xy, is I-reduced,

(2) every variable has at most two occurrences in 1 ...z,

(3) whenever 1 < i < j < n and z; = =z; then the variables z;41,...,2;_1 are
pairwise different and if each of them has only one occurrence in z7 ...z, then
Ti+1 C T2 C ... C Tj—1,

(4) whenever 1 <i< j<mnandz, =xz; thenz; Czy1 T ... C zj_1,

(5) whenever 1 < i< j<k<m<mn, 2z, =, and x; = z,,, then i = 1, j = 2,
k=3, m=nandazsCos5C...C Tp_1.
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Lemma 6.2. Let z1...x, and y;...ym be two different 2-admissible words.
Then the equation x; ...x, ~ yi...Ym together with the equations of Y implies
TYTY = TY.

Proof. By induction on n+ m. If 2, # ym, then z(z1...2,) = 2(Y1. .. Ym)
gives zx, = 2Ym, which implies xy ~ x and then zyxry ~ zy. So, let x,, = Y.

Suppose {z1,...,2Zn} # {Y1,. -, Ym}. Without loss of generality, y; ¢ {x1,..., 2}
for some i. Substitute y for y; and = for any other variable. We get one of the
equations x = yx, x ~ zyr or x ~ yxyx. Each of these equations implies zyzy ~ zy.
(In the case of © ~ yxyz take the substitution z — yx.)

If 1 # y1, take a new variable z and substitute zz; for 1. We get zz1...zx, =
Y1 ...Ym where {z,21,..., 2} # {y1,...,Ym} and thus we get the equation xyxy ~
zy as before.

Thus we can assume that {z1,...,z,} = {y1,..-,ym}, 1 = y1 and z, = Y.
Since x1...Tp £ Y1 - .- Ym, we have n > 1 and m > 1.

Suppose that z,, has only one occurrence in z; ...z, and only one occurrence in
Y1--Ym. If Tp_1 = Ym—1 then we can substitute x,,_1 for x,, to obtain x1 ...x,_1 ~
Y1...Ym—1 where x1 ...2,_1 and y1 .. .ym,—1 are two different 2-admissible terms, so
that the induction hypothesis can be applied. Let z,,—1 # ym—1. If z,_1 has only one
occurrence in zj ... Iy, substitute z for x,,, x for x,,—; and y for all other variables
to obtain yx ~ yxyzr. If y,,—1 has a single occurrence in ¥ ...%¥m, we can proceed
similarly. It remains to consider the case when z,_1 = z; and y,,—1 = y; for some
i<n—1and j < m—1. We cannot have z,—1 € {yj+1,...,Ym—2} and ym—1 €
{Zit1,...,Tn_2} at the same time, since then we would get both x,,—1 T ym—1 and
Ym—1 C Tp—1. Let ypm_1 & {@it1,...,2n—2} (the other case is similar). Substituting
x for x;,...,z, and y for all other variables we get yx ~ yryz.

Suppose that z, has only one occurrence in x ...z, but two occurrences in
Y1 -..Ym. Substitute = for x,, and y for all other variables. We get yz ~ yxyzx.

It remains to consider the case when x, = ¥, has two occurrences in x1...x,
and two occurrences in ¥ ...Ym. Let ¢ < n, j < m, z; = z, and y; = ym. Put
C={zit1,...,xn—1}and D = {yq1, ..., Ym—-1}.

Suppose that each variable from C' has only one occurrence in z; ...z, and each
variable from D has only one occurrence in 1 ...4m. fC —D # (@ and D — C =0,
substitute x for x,, = for every variable from C' N D and y for all other variables
to obtain yxyr ~ yxr. If C — D # 0 and D — C # 0, substitute z for x,, =
for every variable from C and y for all other variables to obtain that yz ~ yryx. If
C = D, substitute a variable x ¢ {x1,...,2,} for every variable from {z;,...,z,} to
obtainz;...z;—1x ~y1...yj—1x wherez; ... 2,1z and y; ...y _12 are two different
admissible words, so that the induction hypothesis can be applied.
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Now consider the case when a variable from D has two occurrences in y; ... Ym.
Then y1 = y3, y2 = ym and y4 C ... C Ym—1. If also some variable from C has two
occurrences in xy...x,, we get x1...Xy, = Y1...T,, a contradiction. Thus every
variable from C' has only one occurrence in z; ...x,. In particular, the variable
x1 = y1 = ys does not belong to C'. Substitute x for z;,...,x, and y for all other
variables to obtain yx ~ yxyz.

Finally, the case when a variable from C' has two occurrences in x7 ...z, can be
handled similarly. O

The free groupoid in Y with three generators can be obtained from the groupoid
Fs 4 if we take its factor by the congruence generated by all pairs (ababc, abac) and
(abebe, acbe). Tt is easy to construct the multiplication table of this groupoid. It has
48 elements and we will denote it by .#3v. One can easily check that the groupoid
does not satisfy xyzy ~ zy.

Theorem 6.3. The variety Y is generated by #3y and every word is Y-
equivalent to precisely one 2-admissible word.

Proof. It follows from 6.1 that every word is Y-equivalent to at least one
2-admissible word. If two different 2-admissible words were Y-equivalent then Y
would satisfy zyzy ~ xy by 6.2. However, this equation is not satisfied in Z3vy.
Since %3 v belongs to Y, it follows that every word is Y-equivalent to precisely one
2-admissible word. If %3y satisfied an equation not satisfied by all algebras in Y
then, again by 6.2, it would satisfy zyzy =~ xy, which it does not. O

Theorem 6.4. The lattice of subvarieties of Y has six elements: the trivial variety
Vb, the variety Vi of left zero semigroups, the variety Va of right zero semigroups,
the variety V3 of rectangular bands, the variety V; of idempotent slim groupoids
satisfying xyxy ~ xy, and itself. The only proper inclusions are Vo C V3 C V3 C
ViCY and Vo C Vo C V3.

Proof. It follows from the above results that every proper subvariety of Y is
contained in V4. The lattice of subvarieties of V4 has been described in [1]. O
Theorem 6.5. The variety Y is generated by the inherently nonfinitely based

four-element groupoid ¥, 3 introduced in 2.2.

Proof. It is easy to check that ¢, 3 satisfies all the equations of Y but not the
equation ryxry ~ xy. O
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