Czechoslovak Mathematical Journal

Ján Jakubík
 On a theorem of Cantor-Bernstein type for algebras

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 1, 1-14

Persistent URL: http: //dml.cz/dmlcz/128242

Terms of use:

(C) Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

ON A THEOREM OF CANTOR-BERNSTEIN TYPE FOR ALGEBRAS

Ján Jakubík, Košice

(Received February 16, 2004)

Abstract

Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied certain sequences of central elements of bounded lattices. The aim of the present paper is to extend the mentioned result to the case when the lattices under consideration need not be bounded; instead of sequences of central elements we deal with sequences of internal direct factors of lattices.

Keywords: lattice, \mathcal{L}^{*}-variety, center, internal direct factor
MSC 2000: 06B99

1. Introduction

In a forthcoming paper [5], Freytes defines the notion of the \mathcal{L}-variety of algebras. He proved a theorem of Cantor-Bernstein type for an algebra belonging to an \mathcal{L}-variety. The idea and the method are based on those used by investigating the validity of Cantor-Bernstein theorem for $M V$-algebras; cf. De Simone, Mundici and Navara [2].

If V is an \mathcal{L}-variety, then to each $A \in V$ there corresponds a bounded lattice $L(A)$ (for detailed definitions, cf. Section 2 below). The core of the proofs in [5] essentially applies the properties of bounded lattices.

The class of all $M V$-algebras (cf. [1]) and, more generally, the class of all pseudo $M V$-algebras (cf. Georgescu and Iorgulescu [6], [7], and Rachůnek [22]; in [22] the term 'generalized $M V$-algebra' was applied) are examples of \mathcal{L}-varieties.

In the present paper we introduce the notion of the \mathcal{L}^{*}-variety of algebras. If V is an \mathcal{L}^{*}-variety, then to each $A \in V$ there corresponds a lattice $L(A)$ which need not

This work was supported by Science and Technology Assistance Agency under the contract No APVT-51-032002.
be bounded. Each \mathcal{L}-variety is an \mathcal{L}^{*}-variety, but not conversely. The class $L G$ of all lattice ordered groups is an example of an \mathcal{L}^{*}-variety; $L G$ fails to be an \mathcal{L}-variety.

We extend the result of [5] to algebras belonging to an \mathcal{L}^{*}-variety. Our method is analogous to that of [5] with the distinction that instead of dealing with elements belonging to the center of a bounded lattice we deal with internal direct factors of a lattice which need not be bounded. We remark that if L is a bounded lattice then there is a one-to-one correspondence between central elements of L and internal direct factors of L.

Theorems of Cantor-Bernstein type (called also theorems of Cantor-BernsteinSchröder type) were proved for Boolean algebras (Sikorski [23], Tarski [24]), lattice ordered groups (the author [10], [12], [13]), $M V$-algebras and pseudo $M V$-algebras (De Simone, Mundici and Navara [2], the author [14], [16], [19]), effect algebras and pseudo-effect algebras (Dvurečenskij [4], Jenča [20]), orthomodular lattices (de Simone, Navara and Pták [3]) and lattices (the author [15], [18]).

We remark that the results of [2], [7]-[11], [14], [15], [18] and [19] generalize the theorem proved by Sikorski and Tarski.

2. \mathcal{L}-varieties and \mathcal{L}^{*}-varieties

For an indexed system $\left(A_{i}\right)_{i \in I}$ of algebras belonging to a variety V we denote by $\prod_{i \in I} A_{i}$ the direct product of this system; if $I=\{1,2, \ldots, n\}$, then we write $A_{1} \times \ldots \times A_{n}$. Let $A \in V$ and let

$$
\begin{equation*}
\varphi: A \rightarrow \prod_{i \in I} A_{i} \tag{1}
\end{equation*}
$$

be an isomorphism. Then A_{i} are called direct factors of A.
Suppose that there is an element v_{0} of A such that $\left\{v_{0}\right\}$ is a subalgebra of A. Let v_{0} be fixed. For $a \in A$ and $i \in I$ let a_{i} be the component of $\varphi(a)$ in A_{i}.

Applying v_{0}, we can define the notion of internal direct decomposition and internal direct factor of A similarly to the case of groups (cf., e.g., Kurosh [21], p. 106).

Namely, we assume that (1) is valid and that

1) all A_{i} are subalgebras of A with $v_{0} \in A_{i}$,
2) if $i \in I$ and $a \in A_{i}$, then $a_{i}=a$ and $a_{j}=v_{0}$ for each $j \in I, j \neq i$.

Under these assumptions, (1) is defined to be an internal direct decomposition of A, and A_{i} are internal direct factors of A.

To each direct decomposition (1) of A there corresponds an internal direct decomposition determined by an isomorphism φ_{0} and by direct factors A_{i}^{0} which are defined as follows:

Let $i \in I$. We denote by A_{i}^{0} the set of all $a \in A$ such that $a_{j}=v_{0}$ for each $j \in I$, $j \neq i$.

Further, for $a \in A$ and $i \in I$ let a_{i}^{0} be the element of A_{i}^{0} such that $\left(a_{i}^{0}\right)_{i}=a_{i}$. Put

$$
\varphi_{0}(a)=\left(a_{i}^{0}\right)_{i \in I} .
$$

Then

$$
\begin{equation*}
\varphi_{0}: A \rightarrow \prod_{i \in I} A_{i}^{0} \tag{2}
\end{equation*}
$$

is an internal direct decomposition of A with internal direct factors A_{i}^{0}. For each $i \in I$ we have $A_{i} \simeq A_{i}^{0}$.

For lattices and lattice ordered groups we apply the standard terminology and notation; the group operation in a lattice ordered group will be written additively.

A lattice L is called bounded if it has the least element 0_{L} and the greatest element 1_{L}. When no misunderstanding can occur then we write 0 and 1 instead of 0_{L} and 1_{L}. The system of all elements z of a bounded lattice L such that z is neutral and has a complement is denoted by $Z(L)$; the elements of $Z(L)$ are central and $Z(L)$ is the center of L. Each element $z \in Z(L)$ has a unique complement which will be denoted by $\neg z$. The system $Z(L)$ is a sublattice of L and with respect to the induced partial order, $Z(L)$ is a Boolean algebra.

If $Z_{0}=\left\{z_{i}\right\}_{i \in I}$ is a nonempty subset of $Z(L)$ then we have to distinguish between the supremum of Z_{0} in L (denoted by $\bigvee_{i \in I} z_{i}$) and the supremum of Z_{0} in $Z(L)$ (denoted by $\bigsqcup_{i \in I} z_{i}$); in fact, these suprema need not exist in general.

Definition 2.1 (Cf. [5], Definition 1.2). A variety V of algebras is an \mathcal{L}-variety iff
(1) there are terms in the language of V defining on each $A \in V$ operations $\vee, \wedge, 0,1$ such that $L(A)=(A ; \vee, \wedge, 0,1)$ is a bounded lattice;
(2) for all $A \in V$ and all $z \in Z(L(A))$, the binary relation Θ_{z} on A defined by $a \Theta_{z} b$ iff $a \wedge z=b \wedge z$ is a congruence on A such that $A \simeq A / \Theta_{z} \times A / \Theta_{\neg z}$.

From the definition of the center of a lattice we immediately obtain

Lemma 2.2. Let L be a bounded lattice and let $z \in L$. Then the following conditions are equivalent:
(i) z is a central element of L;
(ii) the interval $[0, z]$ of L is an internal direct factor of L with respect to the element $v_{0}=0$.

Moreover, if (i) holds, then the mapping $a \rightarrow(a \wedge z, a \wedge \neg z)$ is an internal direct decomposition of L with respect to the element $v_{0}=0$. Conversely, if $L \rightarrow L_{1} \times L_{2}$ is an internal direct decomposition of L with respect to the element 0 and if $1_{L_{i}}$ is the component of 1 in $L_{i}(i=1,2)$, then $1_{L_{1}}, 1_{L_{2}}$ are central elements of L and $1_{L_{2}}=\neg 1_{L_{1}}$.

As a consequence of 2.2 and of Definition 2.1 we get
Lemma 2.3. A variety V is an \mathcal{L}-variety iff the condition (1) from 2.1 is valid and
$\left(2^{\prime}\right)$ for all $A \in V$, each internal direct decomposition of the lattice $L(A)$ with two internal direct factors with respect to the element $v_{0}=0$ is, at the same time, an internal direct decomposition of A.

In view of 2.3 , if V is an \mathcal{L}-variety and $A \in V$, then for each $z \in Z(L(A))$, the interval $[0, z]$ of A is a subalgebra of A; we emphasize this fact by writing $[0, z]_{A}$ for denoting this subalgebra. In particular, $\{0\}$ is a subalgebra of A.

Corollary 2.3.1. Let V be an \mathcal{L}-variety and $A \in V$. Put $v_{0}=0$. For each $z \in Z(L(A))$ we set $\chi(z)=[0, z]_{A}$. Then χ is a bijection of $Z(A)$ onto the set of all internal direct factors of A (with respect to the element v_{0}). For any $z_{1}, z_{2} \in Z(L(A))$ we have

$$
z_{1} \leqslant z_{1} \Leftrightarrow \chi\left(z_{1}\right) \subseteq \chi\left(z_{2}\right)
$$

In view of [5] we obtain
Proposition 2.4. The variety $P M V$ of all pseudo $M V$-algebras is an \mathcal{L}-variety.
Internal direct product decompositions of pseudo $M V$-algebras were investigated in [17].

Proposition 2.5. The variety $L G$ of all lattice ordered groups fails to be an \mathcal{L}-variety.

Proof. By way of contradiction, assume that $L G$ is an \mathcal{L}-variety. Hence the conditions (1) and (2) from 2.1 are satisfied for $V=L G$. Let us write now 0^{*} and 1^{*} (instead of 0 and 1 as used in 2.1) since the symbol 0 is used for the neutral element of a lattice ordered group. Let $G \in V$ with $G \neq\{0\}$. If $0^{*}=1^{*}$ then from the condition (2) of 2.1 and from Proposition 1.4 of [5] we conclude that G is a one-element set, which is a contradiction. Hence $0^{*} \neq 1^{*}$. In view of 2.1, there exist terms $f\left(x_{1}, \ldots, x_{n}\right)$ and $g\left(y_{1}, \ldots, y_{m}\right)$ in the language of $L G$ such that $f\left(x_{1}, \ldots, x_{n}\right)=0^{*}$ and $g\left(y_{1}, \ldots, y_{m}\right)=1^{*}$. Thus 0^{*} and 1^{*} are elements of G and
for all $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in G$ we have $f\left(a_{1}, \ldots, a_{n}\right)=0^{*}, g\left(b_{1}, \ldots, b_{m}\right)=1^{*}$. Take $a_{1}=\ldots=a_{n}=b_{1}=\ldots=b_{m}=0$. Since $\{0\}$ is an ℓ-subgroup of G we obtain $f\left(a_{1}, \ldots, a_{n}\right)=0=g\left(b_{1}, \ldots, b_{m}\right)$ whence $0^{*}=1^{*}$; again, we have arrived at a contradiction.

Definition 2.6. A variety V of algebras is an \mathcal{L}^{*}-variety if the following conditions are satisfied:
(1') There are terms of the language V defining on each $A \in V$ operations \vee, \wedge and v_{0} such that $L(A)=(A ; \vee, \wedge)$ is a lattice and v_{0} is a constant on A.
$\left(2^{\prime}\right)=$ condition (2) of 2.3 .
Under the notation as in 2.6 we say that v_{0} is the distinguished element of A.

Proposition 2.7. The variety $L G$ of all lattice ordered groups is an \mathcal{L}^{*}-variety.
Proof. It suffices to take $v_{0}=0$ and apply the results of [9].

Corollary 2.8. Let V be a variety of algebras. If V is an \mathcal{L}-variety, then it is an \mathcal{L}^{*}-variety. The converse statement does not hold.

Proof. The first assertion follows from Definitions 2.1 and 2.6 and from Lemma 2.3. The second assertion is a consequence of 2.5 and 2.7.

We remark that if V is an \mathcal{L}-variety and $A \in V$, then we always consider 0 to be the distinguished element of A.

3. Auxiliary results

In this section we deal with the system $D(L)$ of all internal direct factors of a lattice L with respect to a fixed element v_{0} of L. All internal direct product decompositions of L under consideration will be taken with respect to v_{0}. The system $D(L)$ is partially ordered by the set-theoretical inclusion. Then L is the greatest element and $\left\{v_{0}\right\}$ is the least element of $D(L)$.

Assume that

$$
\begin{equation*}
\varphi: L \rightarrow \prod_{i \in I} A_{i} \tag{1}
\end{equation*}
$$

is an internal direct product decomposition of L. For $x \in L$ and $i \in I$, the element $(\varphi(x))_{i}$ is said to be the component of x in A_{i} with respect to φ.

Proposition 3.1 (Cf. Theorem (A), [11]). Assume that (1) is valid and that, moreover,

$$
\psi: L \rightarrow \prod_{i \in I} B_{i}
$$

is an internal direct product decomposition of L such that $A_{i}=B_{i}$ for each $i \in I$. Then $(\varphi(x))_{i}=(\psi(x))_{i}$ for each $x \in L$ and each $i \in I$.

In other words, if a system $\left\{A_{i}\right\}_{i \in I}$ yielding an internal direct product decomposition of L is given, then the mapping φ is uniquely determined. In view of 3.1, instead of (1) we write

$$
\begin{equation*}
L=(\text { int }) \prod_{i \in I} A_{i} . \tag{2}
\end{equation*}
$$

If $I=\{1,2, \ldots, n\}$, then we apply the notation

$$
\begin{equation*}
L=(\text { int }) A_{1} \times A_{2} \times \ldots \times A_{n} . \tag{3}
\end{equation*}
$$

If (2) is valid and $x \in L, i \in I$ then the component of x in A_{i} will be denoted by x_{i} or by $x\left(A_{i}\right)$.

From the definition of the internal direct product decomposition we immediately obtain

Lemma 3.2. Let (2) be valid and $\emptyset \neq I(1) \subseteq I$. We denote

$$
L_{1}=\left\{x \in L: x_{i}=v_{0} \text { for each } i \in I \backslash I(1)\right\}
$$

Then $L_{1} \in D(L)$ and $L_{1}=$ (int) $\prod_{i \in I(1)} A_{i}$. If, moreover, $I(2)=I \backslash I(1) \neq \emptyset$ and if L_{2} is defined analogously to L_{1}, then $L=($ int $) L_{1} \times L_{2}$.

From the result of Hashimoto [8] (cf. also Theorem (B) in [11]) we infer
Proposition 3.3. Let (2) be valid. Further, suppose that the relation

$$
L=(\text { int }) \prod_{j \in J} B_{j}
$$

holds. Then we have

$$
\begin{gathered}
L=(\mathrm{int}) \prod_{i \in I, j \in J}\left(A_{i} \cap B_{j}\right), \\
A_{i}=(\text { int }) \prod_{j \in J}\left(A_{i} \cap B_{j}\right) \quad \text { for each } i \in I, \\
B_{j}=(\text { int }) \prod_{i \in I}\left(A_{i} \cap B_{j}\right) \quad \text { for each } j \in J .
\end{gathered}
$$

Lemma 3.4. Assume that the relations

$$
\begin{align*}
& L=(\text { int }) A \times B \tag{4}\\
& L=(\text { int }) A \times C
\end{align*}
$$

are valid. Then $B=C$.
Proof. In view of 3.3 we have

$$
B=(\text { int })(B \cap A) \times(B \cap C)
$$

According to (4) we get $B \cap A=\left\{v_{0}\right\}$, whence

$$
B=(\text { int })\left\{v_{0}\right\} \times(B \cap C)=B \cap C .
$$

Thus $B \subseteq C$. Analogously, by using (5) we obtain $C \subseteq B$.
Hence if (4) is valid, then A uniquely determines B; we write $B=\neg A$ and $A=\neg B$.
Lemma 3.5 (Cf. [15]). The system $D(L)$ is a Boolean algebra.
Let $A, B \in D(L)$. Then we have

$$
L=(\text { int }) A \times \neg A, \quad L=(\text { int }) B \times \neg B
$$

In view of 3.3 we obtain

$$
\begin{equation*}
L=(\text { int })(A \cap B) \times(A \cap \neg B) \times(\neg A \cap B) \times(\neg A \cap \neg B) \tag{6}
\end{equation*}
$$

From (6) and from 3.2 we infer that there exist $P, Q \in D(L)$ such that

$$
P=A \cap B, \quad Q=(\text { int })(A \cap B) \times(A \cap \neg B) \times(\neg A \cap B)
$$

Lemma 3.5.1. Let A, B, P and Q be as above. Then $P=A \wedge B$ and $Q=A \vee B$.
Proof. From $P \in D(L)$ we immediately obtain $P=A \wedge B$. Further, in view of 3.3 we have

$$
\begin{aligned}
& A=(\text { int })(A \cap B) \times(A \cap \neg B), \\
& B=(\text { int })(A \cap B) \times(\neg A \cap B),
\end{aligned}
$$

thus $A \subseteq Q$ and $B \subseteq Q$. Let Y be an element of $D(L)$ such that $A \subseteq Y$ and $B \subseteq Y$. According to (6) and 3.3,

$$
Y=(\text { int })(A \cap B \cap Y) \times(A \cap \neg B \cap Y) \times(\neg A \cap B \cap Y) \times(\neg A \cap \neg B \cap Y)
$$

whence

$$
\begin{gathered}
Y=(\text { int })(A \cap B) \times(A \cap \neg B) \times(\neg A \cap B) \times(\neg A \cap \neg B \cap Y), \\
Y=(\text { int }) Q \times(\neg A \cap \neg B \cap Y) .
\end{gathered}
$$

Thus $Q \subseteq Y$. Therefore $Q=A \vee B$.

Lemma 3.6. Let $A \in D(L)$. Then $\neg A$ is the unique complement of A in $D(L)$.
Proof. We have $L=($ int $) A \times \neg A$, whence $A \wedge \neg A=A \cap \neg A=\left\{v_{0}\right\}$. Further, in view of 3.5.1,

$$
A \vee \neg A=(\mathrm{int})(A \cap \neg A) \times(A \cap \neg \neg A) \times(\neg A \cap \neg A)=(\mathrm{int})\left\{v_{0}\right\} \times A \times \neg A=L
$$

Hence $\neg A$ is a complement of A. The uniqueness is a consequence of 3.5.

Lemma 3.7. Let $A \in D(L)$. Then
(i) $D(A)=\{X \in D(L): X \leqslant A\}$;
(ii) if $A_{1} \in D(A)$, then the complement of A_{1} in $D(A)$ is equal to $\neg A_{1} \cap A$.

Proof. a) Let $X \in D(A)$. Then $X \subseteq A$ and there exists $Y \in D(A)$ with $A=($ int $) X \times Y$. From the relation $L=($ int $) A \times \neg A$ and from the definition of the internal direct product decomposition we obtain $L=$ (int) $X \times Y \times \neg A$, whence $X \in D(L)$.
b) Assume that $X \in D(L), X \leqslant A$. Then $L=($ int $) X \times \neg X$, thus in view of 3.3,

$$
A=(\text { int })(A \cap X) \times(A \cap \neg X)=(\text { int }) X \times(A \cap \neg X)
$$

hence $X \in D(A)$.
c) The assertion (ii) is a consequence of 3.5 .

From 3.7 and 2.3.1 we obtain

Corollary 3.7.1 (Cf. [5], Proposition 3.1). Let L be a bounded lattice and $z \in Z(L)$. Then
(i) $Z([0, z])=Z(L) \cap[0, z]$;
(ii) if $x \in Z([0, z])$, then the complement of x relative to $[0, z]$ is $z \wedge \neg x$, where $\neg x$ is the complement of x in L.

4. Conditions $C B S$ and $C B S^{*}$

If V is an \mathcal{L}-variety and $A \in V$, then we write $Z(A)$ rather than $Z(L(A))$.
Dealing with the Cantor-Bernstein theorem for algebras we will apply the following definitions.

Definition 4.1 (Cf. [5]). Let V be an \mathcal{L}-variety and $A \in V$. We say that A possesses the $C B S$-property if, whenever $B \in V, a \in Z(A), b \in Z(B)$ and

$$
A \simeq[0, b]_{B}, \quad B \simeq[0, a]_{A},
$$

then $A \simeq B$.
Similarly to Section 3, when dealing with internal direct product decompositions of an algebra A belonging to an \mathcal{L}^{*}-variety V we always assume that the investigation is taken with respect to the distinguished element v_{0} of A.

Definition 4.2. Let V be an \mathcal{L}^{*}-variety and $A \in V$. We say that A possesses the $C B S^{*}$-property if, whenever $B \in V$, such that A is isomorphic to a direct factor of B and B is isomorphic to a dirct factor of A, then $A \simeq B$.

In view of Section 2, the term 'direct facotr' can be replaced by the term 'internal direct factor' in 4.2 .

Lemma 4.3. Let V be an \mathcal{L}-variety and $A \in V$. Then the properties $C B S$ and $C B S^{*}$ for A are equivalent.

Proof. This is a consequence of 2.2 .

Lemma 4.4. Let V be an \mathcal{L}^{*}-variety and $A \in V$. Then the following conditions are equivalent:
(i) A has the $C B S^{*}$-property;
(ii) whenever A_{1} and A_{2} are internal direct factors of A such that $A_{1} \subseteq A_{2}$ and $A_{1} \simeq A$, then $A_{2} \simeq A$.

Proof. Let (i) be valid. Assume that A_{1} and A_{2} are internal direct factors of A such that $A_{1} \subseteq A_{2}$. Then A_{1} is, at the same time, an internal direct factor of A_{2}. Put $B=A_{2}$. In view of $C B S^{*}$, we have $A \simeq A_{2}$. Hence (ii) holds.

Conversely, assume that (ii) is valid. Let $B \in V$. Suppose that B_{1} is an internal direct factor of B and A_{1} is an internal direct factor of A such that there exist isomorphisms

$$
\varphi_{1}: A \rightarrow B_{1}, \quad \varphi_{2}: B \rightarrow A_{2} .
$$

Put $\varphi_{2}\left(B_{1}\right)=A_{1}$. Then A_{1} is an internal direct factor of A_{2}. Thus A_{1} is also an internal direct factor of A. Since $\varphi_{2}\left(\varphi_{1}(A)\right)=A_{1}$, we have $A \simeq A_{1}$. Therefore in view of (ii) we obtain $A \simeq A_{2}$, hence $A \simeq B$. We have proved that A has the property $C B S^{*}$.

Let us recall the notions of an A-sequence, B-sequence and $C B S$-sequence as defined in [5].

Assume that A is an algebra belonging to an \mathcal{L}-variety V. Suppose that $b \in Z(A)$ and that there exists an isomorphism $\alpha: A \rightarrow[0, b]_{A}$. Further, let $z \in Z(A), z \geqslant b$, $a \in Z(A)$. Put $B=[0, z]_{A}$ and let $\beta: B \rightarrow[0, a]_{A}$ be an isomorphism.

We define recursively sequences $\left(a_{n}\right),\left(b_{n}\right)(n=0,1,2, \ldots)$ by putting

$$
\begin{array}{ll}
a_{0}=1_{A}, & b_{0}=1_{B}=z, \\
a_{1}=\beta(z)=a, & b_{1}=\alpha\left(a_{0}\right)=b, \\
\alpha_{n+1}=\beta\left(b_{n}\right), & b_{n+1}=\alpha\left(a_{n}\right) .
\end{array}
$$

Further, we consider the sequence

$$
\left(c_{n}\right)_{n \in \mathbb{N}}=\left(a_{2 n} \wedge \neg a_{2 n+1}\right)_{n \in \mathbb{N}}
$$

which is called a $C B S$-sequence and denoted by $\langle b, z, \alpha, \beta\rangle$.
Now assume that A is an algebra belonging to an \mathcal{L}^{*}-variety V. We denote by $D(A)$ the set of all internal direct factors of $L=L(A)$ with respect to the distinguished element v_{0} of A. Then each element of $D(A)$ is also an internal direct factor of A.

Suppose that $B^{*} \in D(A)$ and that there exists an isomorphism $\alpha: A \rightarrow B^{*}$. Further, let $B_{0} \in D(A), B_{0} \supseteq B^{*}$. Put $A_{0}=A$. Assume that there exists $A_{1} \in D(A)$ and an isomorphism $\beta: B_{0} \rightarrow A_{1}$. Put $B_{1}=B^{*}$. For $n \in \mathbb{N}$ we define by induction

$$
A_{n+1}=\beta\left(B_{n}\right), \quad B_{n+1}=\alpha\left(A_{n}\right)
$$

Further, under the notation as in Section 3, we consider the sequence

$$
\left(C_{n}\right)_{n \in \mathbb{N}}=\left(A_{2 n} \wedge \neg A_{2 n+1}\right)_{n \in \mathbb{N}}
$$

this will be called a $C B S^{*}$-sequence and denoted by $\left\langle B^{*}, B_{0}, \alpha, \beta\right\rangle$.
Let χ be as in 2.3.1.

Lemma 4.5. Assume that V is an \mathcal{L}-variety and $A \in V$.
(i) Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a $C B S$-sequence. Then $\left(\chi\left(c_{n}\right)\right)_{n \in \mathbb{N}}$ is a $C B S^{*}$-sequence.
(ii) Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a $C B S^{*}$-sequence. Then $\left(\chi^{-1}\left(C_{n}\right)\right)_{n \in \mathbb{N}}$ is a $C B S$-sequence.

Proof. This is a consequence of Lemma 2.3.1.

5. $C B S^{*}$-COMPLETENESS

In this section we prove that the $C B S^{*}$-property is equivalent to a condition concerning $C B S^{*}$-sequences.

Definition 5.1 (Cf. [5]). Let V be an \mathcal{L}-variety and $A \in V$. We say that A is $C B S$-complete if for all $b \in Z(L(A))$ such that $A \simeq[0, b]_{A}$ and for all $z \in Z(L(A))$ such that $z \geqslant b$ there exists a $C B S$-sequence $\langle b, z, \alpha, \beta\rangle$ such that (under the notation as above) the supremum $\bigsqcup_{n \in \mathbb{N}}\left(A_{2 n} \wedge a_{2 n+1}\right)$ of this sequence exists in $Z(L(A))$.

Definition 5.2. Let V be an \mathcal{L}^{*}-variety. An algebra $A \in V$ is called $C B S^{*}$ complete if for all $B^{*} \in D(A)$ such that $A \simeq B^{*}$ and for all $B_{0} \in D(A)$ with $B_{0} \supseteq B^{*}$ there exists a $C B S^{*}$-sequence $\left\langle B^{*}, B_{0}, \alpha, \beta\right\rangle$ such that the supremum of this sequence exists in $D(A)$.

Lemma 5.3. Let V be an \mathcal{L}-variety and $A \in V$. Then A is $C B S$-complete iff it is $C B S^{*}$-complete.

Proof. This is a consequence of 4.5 and of 2.3.1.
Lemma 5.4. Let V be an \mathcal{L}^{*}-variety and $A \in V$. Assume that A has the $C B S^{*}$-property. Then A is $C B S^{*}$-complete.

Proof. Let $B^{*} \in D(A)$ be such that $A \simeq B^{*}$. Further, let $B_{0} \in D(A)$ with $B_{0} \supseteq B^{*}$.

There exists an isomorphism $\alpha: A \rightarrow B^{*}$. Since A has the $C B S^{*}$-property, in view of 4.4 there exists an isomorphism $\beta: B_{0} \rightarrow A$. Consider the corresponding $C B S^{*}$-sequence $\left\langle B^{*}, B_{0}, \alpha, \beta\right\rangle$. An easy calculation shows that all elements of this sequence are equal to $\left\{v_{0}\right\}$, hence the join of the elements of this sequence is $\left\{v_{0}\right\}$ as well. Therefore A is $C B S^{*}$-complete.

Again, let V be an \mathcal{L}^{*}-variety and $A \in V$. Consider a $C B S^{*}$-sequence $\left(B^{*}, B_{0}\right.$, $\alpha, \beta)$ in A. We apply the notation as in Section 4.

By induction we can verify that $A_{n} \in D\left(A_{n-1}\right)$ for each $n \in \mathbb{N}$. We have

$$
\begin{equation*}
\beta\left(\alpha\left(A_{n}\right)\right)=\beta\left(B_{n+1}\right)=A_{n+2} \text { for } n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Lemma 5.5. For each $n \in \mathbb{N}, C_{n}$ is a relative complement of $A_{2 n+1}$ in the Boolean algebra $D\left(A_{2 n}\right)$.

Proof. This is a consequence of 3.6 and 3.7.
From (1) and 5.5 we obtain

$$
\begin{equation*}
\beta\left(\alpha\left(C_{n}\right)\right)=C_{n+1} \quad \text { for each } n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Let $X_{1}, X_{2}, X_{3} \in D(A)$. The notation $X_{1} \vee^{0} X_{2}=X_{3}$ will mean that $X_{1} \vee X_{2}=X_{3}$ and $X_{1} \wedge X_{2}=\left\{v_{0}\right\}$ in $D(A)$.

Lemma 5.6. $\beta\left(\alpha\left(\neg A_{1}\right)\right)=C_{1}$.
Proof. We have

$$
\begin{aligned}
& \alpha(A)=\alpha\left(A_{0}\right)=B_{1}, \\
& \alpha(A)=\alpha\left(A_{1} \vee^{0} \neg A_{1}\right)=\alpha\left(A_{1}\right) \vee^{0} \alpha\left(\neg A_{1}\right),
\end{aligned}
$$

whence

$$
\begin{gathered}
B_{1}=B_{2} \vee^{0} \alpha\left(\neg A_{1}\right), \\
A_{2}=\beta\left(B_{1}\right)=\beta\left(B_{2}\right) \vee^{0} \beta\left(\alpha\left(\neg A_{1}\right)\right), \\
A_{2}=A_{3} \vee^{0} \beta\left(\alpha\left(\neg A_{1}\right)\right) .
\end{gathered}
$$

Therefore in view of 5.5 we get $\beta\left(\alpha\left(\neg A_{1}\right)\right)=C_{1}$.
Lemma 5.7. Assume that there exists $C^{0}=\bigvee_{n \in \mathbb{N}} C_{\mathbb{N}}$ in $D(A)$. Put $X=C^{0} \vee \neg A_{1}$. Then $X \simeq C^{0}$.

Proof. We have

$$
X \simeq \beta(\alpha(X))=\beta\left(\alpha\left(C^{0}\right)\right) \vee \beta\left(\alpha\left(\neg A_{1}\right)\right)
$$

Further, in view of (2),

$$
\beta\left(\alpha\left(C^{0}\right)\right)=\beta\left(\alpha\left(\bigvee_{n \in \mathbb{N}} C_{n}\right)\right)=\bigvee_{n \in \mathbb{N}} \beta\left(\alpha\left(C_{n}\right)\right)=\bigvee_{n=2,3, \ldots} C_{n}
$$

Thus according to 5.6,

$$
\beta(\alpha(X))=\left(\bigvee_{n=2,3, \ldots} C_{n}\right) \vee C_{1}=\bigvee_{n \in \mathbb{N}} C_{n}=C^{0}
$$

Hence $X \simeq C^{0}$.

Lemma 5.8. Under the assumption as in 5.7 we have $A \simeq B_{0}$.
Proof. Since $B_{0} \simeq A_{1}$ it suffices to verify that $A \simeq A_{1}$. In view of 5.7 we have

$$
A=(\text { int }) X \times \neg X \simeq C^{0} \times \neg X
$$

From $X=C^{0} \vee \neg A_{1}$ we obtain $\neg X=\neg C_{0} \wedge A_{1}$. Further,

$$
A=(\text { int }) C^{0} \times \neg C^{0},
$$

whence

$$
A_{1}=(\text { int })\left(A_{1} \cap C^{0}\right) \times\left(A_{1} \cap \neg C_{0}\right) .
$$

But $C_{n} \subseteq A_{1}$ for each $n \in \mathbb{N}$, whence $C^{0} \subseteq A_{1}$ and thus

$$
A_{1}=(\text { int }) C^{0} \times \neg X
$$

Therefore $A \simeq A_{1}$.
In view of 4.4 and 5.8 we have

Corollary 5.9. Let V be an \mathcal{L}^{*}-variety and $A \in V$. If A is $C B S^{*}$-complete, then it satisfies the $C B S^{*}$-property.

Theorem 5.10. Let V be an \mathcal{L}^{*}-variety and $A \in V$. Then A satisfies the $C B S^{*}$-property if and only if it is $C B S^{*}$-complete.

Proof. This is a consequence of 5.4 and 5.9.
The next theorem is the main result of [5]; it follows from 4.3, 5.3 and 5.10.
Theorem 5.11 (Cf. [5], Theorem 3.7). Let V be a variety and $A \in V$. Then A has the $C B S$-property iff it is $C B S$-complete.

We conclude by remarking that the variety V_{L} of all lattices fails to be an \mathcal{L}^{*}-variety. In fact, if A is a lattice having more than one element then there does not exist any term in the language of V_{L} such that this term defines a constant on A.

Nevertheless, if $A \in V_{L}$ and if we take any (fixed) element v_{0} of A then by considering internal direct decompositions of A with respect to v_{0}, the definitions of the $C B S^{*}$-property and the $C B S^{*}$-completeness can be applied for A; we can perform the same steps as above for the variety V_{L} and we obtain a result analogous to 5.10 saying that the $C B S^{*}$-property and the $C B S^{*}$-completeness are equivalent.

References

[1] R. Cignoli, I. D. D'Ottaviano, and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
[2] A. De Simone, D. Mundici, and M. Navara: A Cantor-Bernstein theorem for σ-complete MV-algebras. Czechoslovak Math. J. 53 (2003), 437-447.
[3] A. De Simone, M. Navara, and P. Pták: On interval homogeneous orthomodular lattices. Commentat. Math. Univ. Carolinae 42 (2001), 23-30.
[4] A. Dvurečenskij: Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras. J. Aust. Math. Soc. 74 (2003), 121-143.
[5] H. Freytes: An algebraic version of the Cantor-Bernstein-Schröder theorem. Czechoslovak Math. J. 54 (2004), 609-621.
[6] G. Georgescu, A. Iorgulescu: Pseudo MV-algebras: a noncommutative extension of $M V$-algebras. Proc. Fourth Int. Symp. Econ. Informatics, Bucharest. 1999, pp. 961-968.
[7] G. Georgescu, A. Iorgulescu: Pseudo MV-algebras. Multiple-valued Logics 6 (2001), 95-135.
[8] J. Hashimoto: On the product decomposition of partially ordered sets. Math. Jap. 1 (1948), 120-123.
[9] J. Jakubik: Direct product decompositions of partially ordered groups. Czechoslovak Math. J. 10 (1960), 231-243. (In Russian.)
zbl
[10] J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175.
zbl
[11] J. Jakubik, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-378.
zbl
[12] J. Jakubik: Complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221-230.
[13] J. Jakubik: Convex isomorphisms of archimedean lattice ordered groups. Mathware and Soft Computing 5 (1998), 49-56.
[14] J. Jakubik: Cantor-Bernstein theorem for $M V$-algebras. Czechoslovak Math. J. 49 (1999), 517-526.
[15] J. Jakubik: Direct product decompositions of infinitely distributive lattices. Math. Bohemica 125 (2000), 341-354.
[16] J. Jakubik: Convex mappings of archimedean $M V$-algebras. Math. Slovaca 51 (2001), 383-391.
[17] J. Jakubik: Direct product decompositions of pseudo $M V$-algebras. Arch. Math. 37 (2002), 131-142.
[18] J. Jakubik: Cantor-Bernstein theorem for lattices. Math. Bohem. 127 (2002), 463-471. zbl
[19] J. Jakubik: A theorem of Cantor-Bernstein type for orthogonally σ-complete pseudo MV-algebras. Tatra Mt. Math. Publ. 22 (2002), 91-103.
zbl
[20] G. Jenča: A Cantor-Bernstein type theorem for effect algebras. Algebra Univers. 48 (2002), 399-411.
zbl
[21] A. G. Kurosh: Group Theory. Nauka, Moskva, 1953. (In Russian.)
zbl
[22] J. Rachůnek: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
zbl
[23] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144.
[24] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.
Author's address: J. Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: kstefan@saske.sk.

