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Abstract. Freytes proved a theorem of Cantor-Bernstein type for algbras; he applied
certain sequences of central elements of bounded lattices. The aim of the present paper
is to extend the mentioned result to the case when the lattices under consideration need
not be bounded; instead of sequences of central elements we deal with sequences of internal
direct factors of lattices.
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1. Introduction

In a forthcoming paper [5], Freytes defines the notion of the L-variety of alge-

bras. He proved a theorem of Cantor-Bernstein type for an algebra belonging to an

L-variety. The idea and the method are based on those used by investigating the

validity of Cantor-Bernstein theorem for MV -algebras; cf. De Simone, Mundici and

Navara [2].

If V is an L-variety, then to each A ∈ V there corresponds a bounded lattice L(A)

(for detailed definitions, cf. Section 2 below). The core of the proofs in [5] essentially

applies the properties of bounded lattices.

The class of all MV -algebras (cf. [1]) and, more generally, the class of all pseudo

MV -algebras (cf. Georgescu and Iorgulescu [6], [7], and Rach̊unek [22]; in [22] the

term ‘generalized MV -algebra’ was applied) are examples of L-varieties.

In the present paper we introduce the notion of the L∗-variety of algebras. If V is

an L∗-variety, then to each A ∈ V there corresponds a lattice L(A) which need not

This work was supported by Science and Technology Assistance Agency under the con-
tract No APVT-51-032002.

1



be bounded. Each L-variety is an L∗-variety, but not conversely. The class LG of all

lattice ordered groups is an example of an L∗-variety; LG fails to be an L-variety.

We extend the result of [5] to algebras belonging to an L∗-variety. Our method

is analogous to that of [5] with the distinction that instead of dealing with elements

belonging to the center of a bounded lattice we deal with internal direct factors

of a lattice which need not be bounded. We remark that if L is a bounded lattice

then there is a one-to-one correspondence between central elements of L and internal

direct factors of L.

Theorems of Cantor-Bernstein type (called also theorems of Cantor-Bernstein-

Schröder type) were proved for Boolean algebras (Sikorski [23], Tarski [24]), lattice

ordered groups (the author [10], [12], [13]), MV -algebras and pseudo MV -algebras

(De Simone, Mundici and Navara [2], the author [14], [16], [19]), effect algebras

and pseudo-effect algebras (Dvurečenskij [4], Jenča [20]), orthomodular lattices (de

Simone, Navara and Pták [3]) and lattices (the author [15], [18]).

We remark that the results of [2], [7]–[11], [14], [15], [18] and [19] generalize the

theorem proved by Sikorski and Tarski.

2. L-varieties and L∗-varieties

For an indexed system (Ai)i∈I of algebras belonging to a variety V we denote

by
∏

i∈I

Ai the direct product of this system; if I = {1, 2, . . . , n}, then we write

A1 × . . .×An. Let A ∈ V and let

(1) ϕ : A→
∏

i∈I

Ai

be an isomorphism. Then Ai are called direct factors of A.

Suppose that there is an element v0 of A such that {v0} is a subalgebra of A. Let

v0 be fixed. For a ∈ A and i ∈ I let ai be the component of ϕ(a) in Ai.

Applying v0, we can define the notion of internal direct decomposition and internal

direct factor of A similarly to the case of groups (cf., e.g., Kurosh [21], p. 106).

Namely, we assume that (1) is valid and that

1) all Ai are subalgebras of A with v0 ∈ Ai,

2) if i ∈ I and a ∈ Ai, then ai = a and aj = v0 for each j ∈ I, j 6= i.

Under these assumptions, (1) is defined to be an internal direct decomposition

of A, and Ai are internal direct factors of A.

To each direct decomposition (1) of A there corresponds an internal direct de-

composition determined by an isomorphism ϕ0 and by direct factors A
0
i which are

defined as follows:
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Let i ∈ I. We denote by A0
i the set of all a ∈ A such that aj = v0 for each j ∈ I,

j 6= i.

Further, for a ∈ A and i ∈ I let a0
i be the element of A

0
i such that (a0

i )i = ai. Put

ϕ0(a) = (a0
i )i∈I .

Then

(2) ϕ0 : A→
∏

i∈I

A0
i

is an internal direct decomposition of A with internal direct factors A0
i . For each

i ∈ I we have Ai ≃ A0
i .

For lattices and lattice ordered groups we apply the standard terminology and

notation; the group operation in a lattice ordered group will be written additively.

A lattice L is called bounded if it has the least element 0L and the greatest

element 1L. When no misunderstanding can occur then we write 0 and 1 instead

of 0L and 1L. The system of all elements z of a bounded lattice L such that z is

neutral and has a complement is denoted by Z(L); the elements of Z(L) are central

and Z(L) is the center of L. Each element z ∈ Z(L) has a unique complement which

will be denoted by ¬z. The system Z(L) is a sublattice of L and with respect to the

induced partial order, Z(L) is a Boolean algebra.

If Z0 = {zi}i∈I is a nonempty subset of Z(L) then we have to distinguish between

the supremum of Z0 in L (denoted by
∨

i∈I

zi) and the supremum of Z0 in Z(L)

(denoted by
⊔

i∈I

zi); in fact, these suprema need not exist in general.

Definition 2.1 (Cf. [5], Definition 1.2). A variety V of algebras is an L-variety

iff

(1) there are terms in the language of V defining on each A ∈ V operations ∨,∧, 0, 1

such that L(A) = (A;∨,∧, 0, 1) is a bounded lattice;

(2) for all A ∈ V and all z ∈ Z(L(A)), the binary relation Θz on A defined by aΘzb

iff a ∧ z = b ∧ z is a congruence on A such that A ≃ A/Θz ×A/Θ¬z.

From the definition of the center of a lattice we immediately obtain

Lemma 2.2. Let L be a bounded lattice and let z ∈ L. Then the following

conditions are equivalent:

(i) z is a central element of L;

(ii) the interval [0, z] of L is an internal direct factor of L with respect to the element

v0 = 0.
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Moreover, if (i) holds, then the mapping a → (a ∧ z, a ∧ ¬z) is an internal direct

decomposition of L with respect to the element v0 = 0. Conversely, if L → L1 × L2

is an internal direct decomposition of L with respect to the element 0 and if 1Li
is

the component of 1 in Li (i = 1, 2), then 1L1
, 1L2

are central elements of L and

1L2
= ¬1L1

.

As a consequence of 2.2 and of Definition 2.1 we get

Lemma 2.3. A variety V is an L-variety iff the condition (1) from 2.1 is valid

and

(2′) for all A ∈ V , each internal direct decomposition of the lattice L(A) with two

internal direct factors with respect to the element v0 = 0 is, at the same time,

an internal direct decomposition of A.

In view of 2.3, if V is an L-variety and A ∈ V , then for each z ∈ Z(L(A)), the

interval [0, z] of A is a subalgebra of A; we emphasize this fact by writing [0, z]A for

denoting this subalgebra. In particular, {0} is a subalgebra of A.

Corollary 2.3.1. Let V be an L-variety and A ∈ V . Put v0 = 0. For each

z ∈ Z(L(A)) we set χ(z) = [0, z]A. Then χ is a bijection of Z(A) onto the set of all

internal direct factors of A (with respect to the element v0). For any z1, z2 ∈ Z(L(A))

we have

z1 6 z1 ⇔ χ(z1) ⊆ χ(z2).

In view of [5] we obtain

Proposition 2.4. The variety PMV of all pseudo MV -algebras is an L-variety.

Internal direct product decompositions of pseudo MV -algebras were investigated

in [17].

Proposition 2.5. The variety LG of all lattice ordered groups fails to be an

L-variety.

P r o o f. By way of contradiction, assume that LG is an L-variety. Hence

the conditions (1) and (2) from 2.1 are satisfied for V = LG. Let us write now

0∗ and 1∗ (instead of 0 and 1 as used in 2.1) since the symbol 0 is used for the

neutral element of a lattice ordered group. Let G ∈ V with G 6= {0}. If 0∗ = 1∗

then from the condition (2) of 2.1 and from Proposition 1.4 of [5] we conclude that

G is a one-element set, which is a contradiction. Hence 0∗ 6= 1∗. In view of 2.1,

there exist terms f(x1, . . . , xn) and g(y1, . . . , ym) in the language of LG such that

f(x1, . . . , xn) = 0∗ and g(y1, . . . , ym) = 1∗. Thus 0∗ and 1∗ are elements of G and
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for all a1, . . . , an, b1, . . . , bm ∈ G we have f(a1, . . . , an) = 0∗, g(b1, . . . , bm) = 1∗.

Take a1 = . . . = an = b1 = . . . = bm = 0. Since {0} is an ℓ-subgroup of G we

obtain f(a1, . . . , an) = 0 = g(b1, . . . , bm) whence 0∗ = 1∗; again, we have arrived at

a contradiction. �

Definition 2.6. A variety V of algebras is an L∗-variety if the following condi-

tions are satisfied:

(1′) There are terms of the language V defining on each A ∈ V operations ∨,∧ and

v0 such that L(A) = (A;∨,∧) is a lattice and v0 is a constant on A.

(2′) = condition (2) of 2.3.

Under the notation as in 2.6 we say that v0 is the distinguished element of A.

Proposition 2.7. The variety LG of all lattice ordered groups is an L∗-variety.

P r o o f. It suffices to take v0 = 0 and apply the results of [9]. �

Corollary 2.8. Let V be a variety of algebras. If V is an L-variety, then it is

an L∗-variety. The converse statement does not hold.

P r o o f. The first assertion follows from Definitions 2.1 and 2.6 and from

Lemma 2.3. The second assertion is a consequence of 2.5 and 2.7. �

We remark that if V is an L-variety and A ∈ V , then we always consider 0 to be

the distinguished element of A.

3. Auxiliary results

In this section we deal with the system D(L) of all internal direct factors of

a lattice L with respect to a fixed element v0 of L. All internal direct product

decompositions of L under consideration will be taken with respect to v0. The

system D(L) is partially ordered by the set-theoretical inclusion. Then L is the

greatest element and {v0} is the least element of D(L).

Assume that

(1) ϕ : L→
∏

i∈I

Ai

is an internal direct product decomposition of L. For x ∈ L and i ∈ I, the element

(ϕ(x))i is said to be the component of x in Ai with respect to ϕ.
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Proposition 3.1 (Cf. Theorem (A), [11]). Assume that (1) is valid and that,

moreover,

(1′) ψ : L→
∏

i∈I

Bi

is an internal direct product decomposition of L such that Ai = Bi for each i ∈ I.

Then (ϕ(x))i = (ψ(x))i for each x ∈ L and each i ∈ I.

In other words, if a system {Ai}i∈I yielding an internal direct product decom-

position of L is given, then the mapping ϕ is uniquely determined. In view of 3.1,

instead of (1) we write

(2) L = (int)
∏

i∈I

Ai.

If I = {1, 2, . . . , n}, then we apply the notation

(3) L = (int)A1 ×A2 × . . .×An.

If (2) is valid and x ∈ L, i ∈ I then the component of x in Ai will be denoted by xi

or by x(Ai).

From the definition of the internal direct product decomposition we immediately

obtain

Lemma 3.2. Let (2) be valid and ∅ 6= I(1) ⊆ I. We denote

L1 = {x ∈ L : xi = v0 for each i ∈ I \ I(1)}.

Then L1 ∈ D(L) and L1 = (int)
∏

i∈I(1)

Ai. If, moreover, I(2) = I \ I(1) 6= ∅ and if

L2 is defined analogously to L1, then L = (int)L1 × L2.

From the result of Hashimoto [8] (cf. also Theorem (B) in [11]) we infer

Proposition 3.3. Let (2) be valid. Further, suppose that the relation

L = (int)
∏

j∈J

Bj

holds. Then we have

L = (int)
∏

i∈I, j∈J

(Ai ∩Bj),

Ai = (int)
∏

j∈J

(Ai ∩Bj) for each i ∈ I,

Bj = (int)
∏

i∈I

(Ai ∩Bj) for each j ∈ J.
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Lemma 3.4. Assume that the relations

L = (int)A×B,(4)

L = (int)A× C(5)

are valid. Then B = C.

P r o o f. In view of 3.3 we have

B = (int)(B ∩A) × (B ∩ C).

According to (4) we get B ∩A = {v0}, whence

B = (int){v0} × (B ∩ C) = B ∩ C.

Thus B ⊆ C. Analogously, by using (5) we obtain C ⊆ B. �

Hence if (4) is valid, then A uniquely determines B; we write B = ¬A and A = ¬B.

Lemma 3.5 (Cf. [15]). The system D(L) is a Boolean algebra.

Let A,B ∈ D(L). Then we have

L = (int)A× ¬A, L = (int)B × ¬B.

In view of 3.3 we obtain

(6) L = (int)(A ∩B) × (A ∩ ¬B) × (¬A ∩B) × (¬A ∩ ¬B).

From (6) and from 3.2 we infer that there exist P,Q ∈ D(L) such that

P = A ∩B, Q = (int)(A ∩B) × (A ∩ ¬B) × (¬A ∩B).

Lemma 3.5.1. Let A, B, P and Q be as above. Then P = A∧B and Q = A∨B.

P r o o f. From P ∈ D(L) we immediately obtain P = A ∧ B. Further, in view

of 3.3 we have

A = (int)(A ∩B) × (A ∩ ¬B),

B = (int)(A ∩B) × (¬A ∩B),

thus A ⊆ Q and B ⊆ Q. Let Y be an element of D(L) such that A ⊆ Y and B ⊆ Y .

According to (6) and 3.3,

Y = (int)(A ∩B ∩ Y ) × (A ∩ ¬B ∩ Y ) × (¬A ∩B ∩ Y ) × (¬A ∩ ¬B ∩ Y ),
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whence

Y = (int)(A ∩B) × (A ∩ ¬B) × (¬A ∩B) × (¬A ∩ ¬B ∩ Y ),

Y = (int)Q× (¬A ∩ ¬B ∩ Y ).

Thus Q ⊆ Y . Therefore Q = A ∨B. �

Lemma 3.6. Let A ∈ D(L). Then ¬A is the unique complement of A in D(L).

P r o o f. We have L = (int)A×¬A, whence A ∧ ¬A = A ∩ ¬A = {v0}. Further,

in view of 3.5.1,

A ∨ ¬A = (int)(A ∩ ¬A) × (A ∩ ¬¬A) × (¬A ∩ ¬A) = (int){v0} ×A× ¬A = L.

Hence ¬A is a complement of A. The uniqueness is a consequence of 3.5. �

Lemma 3.7. Let A ∈ D(L). Then

(i) D(A) = {X ∈ D(L) : X 6 A};

(ii) if A1 ∈ D(A), then the complement of A1 in D(A) is equal to ¬A1 ∩A.

P r o o f. a) Let X ∈ D(A). Then X ⊆ A and there exists Y ∈ D(A) with

A = (int)X × Y . From the relation L = (int)A × ¬A and from the definition of

the internal direct product decomposition we obtain L = (int)X × Y × ¬A, whence

X ∈ D(L).

b) Assume that X ∈ D(L), X 6 A. Then L = (int)X × ¬X , thus in view of 3.3,

A = (int)(A ∩X) × (A ∩ ¬X) = (int)X × (A ∩ ¬X),

hence X ∈ D(A).

c) The assertion (ii) is a consequence of 3.5. �

From 3.7 and 2.3.1 we obtain

Corollary 3.7.1 (Cf. [5], Proposition 3.1). Let L be a bounded lattice and

z ∈ Z(L). Then

(i) Z([0, z]) = Z(L) ∩ [0, z];

(ii) if x ∈ Z([0, z]), then the complement of x relative to [0, z] is z ∧ ¬x, where ¬x

is the complement of x in L.
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4. Conditions CBS and CBS∗

If V is an L-variety and A ∈ V , then we write Z(A) rather than Z(L(A)).

Dealing with the Cantor-Bernstein theorem for algebras we will apply the following

definitions.

Definition 4.1 (Cf. [5]). Let V be an L-variety and A ∈ V . We say that

A possesses the CBS-property if, whenever B ∈ V , a ∈ Z(A), b ∈ Z(B) and

A ≃ [0, b]B, B ≃ [0, a]A,

then A ≃ B.

Similarly to Section 3, when dealing with internal direct product decompositions

of an algebra A belonging to an L∗-variety V we always assume that the investigation

is taken with respect to the distinguished element v0 of A.

Definition 4.2. Let V be an L∗-variety and A ∈ V . We say that A possesses

the CBS∗-property if, whenever B ∈ V , such that A is isomorphic to a direct factor

of B and B is isomorphic to a dirct factor of A, then A ≃ B.

In view of Section 2, the term ‘direct facotr’ can be replaced by the term ‘internal

direct factor’ in 4.2.

Lemma 4.3. Let V be an L-variety and A ∈ V . Then the properties CBS and

CBS∗ for A are equivalent.

P r o o f. This is a consequence of 2.2. �

Lemma 4.4. Let V be an L∗-variety and A ∈ V . Then the following conditions

are equivalent:

(i) A has the CBS∗-property;

(ii) whenever A1 and A2 are internal direct factors of A such that A1 ⊆ A2 and

A1 ≃ A, then A2 ≃ A.

P r o o f. Let (i) be valid. Assume that A1 and A2 are internal direct factors of A

such that A1 ⊆ A2. Then A1 is, at the same time, an internal direct factor of A2.

Put B = A2. In view of CBS
∗, we have A ≃ A2. Hence (ii) holds.

Conversely, assume that (ii) is valid. Let B ∈ V . Suppose that B1 is an internal

direct factor of B and A1 is an internal direct factor of A such that there exist

isomorphisms

ϕ1 : A→ B1, ϕ2 : B → A2.
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Put ϕ2(B1) = A1. Then A1 is an internal direct factor of A2. Thus A1 is also an

internal direct factor of A. Since ϕ2(ϕ1(A)) = A1, we have A ≃ A1. Therefore

in view of (ii) we obtain A ≃ A2, hence A ≃ B. We have proved that A has the

property CBS∗. �

Let us recall the notions of an A-sequence, B-sequence and CBS-sequence as

defined in [5].

Assume that A is an algebra belonging to an L-variety V . Suppose that b ∈ Z(A)

and that there exists an isomorphism α : A → [0, b]A. Further, let z ∈ Z(A), z > b,

a ∈ Z(A). Put B = [0, z]A and let β : B → [0, a]A be an isomorphism.

We define recursively sequences (an), (bn) (n = 0, 1, 2, . . .) by putting

a0 = 1A, b0 = 1B = z,

a1 = β(z) = a, b1 = α(a0) = b,

αn+1 = β(bn), bn+1 = α(an).

Further, we consider the sequence

(cn)n∈N = (a2n ∧ ¬a2n+1)n∈N
which is called a CBS-sequence and denoted by 〈b, z, α, β〉.

Now assume that A is an algebra belonging to an L∗-variety V . We denote byD(A)

the set of all internal direct factors of L = L(A) with respect to the distinguished

element v0 of A. Then each element of D(A) is also an internal direct factor of A.

Suppose that B∗ ∈ D(A) and that there exists an isomorphism α : A → B∗.

Further, let B0 ∈ D(A), B0 ⊇ B∗. Put A0 = A. Assume that there exists A1 ∈ D(A)

and an isomorphism β : B0 → A1. Put B1 = B∗. For n ∈ N we define by induction
An+1 = β(Bn), Bn+1 = α(An).

Further, under the notation as in Section 3, we consider the sequence

(Cn)n∈N = (A2n ∧ ¬A2n+1)n∈N;

this will be called a CBS∗-sequence and denoted by 〈B∗, B0, α, β〉.

Let χ be as in 2.3.1.
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Lemma 4.5. Assume that V is an L-variety and A ∈ V .

(i) Let (cn)n∈N be a CBS-sequence. Then (χ(cn))n∈N is a CBS∗-sequence.

(ii) Let (Cn)n∈N be a CBS∗-sequence. Then (χ−1(Cn))n∈N is a CBS-sequence.
P r o o f. This is a consequence of Lemma 2.3.1. �

5. CBS∗-completeness

In this section we prove that the CBS∗-property is equivalent to a condition

concerning CBS∗-sequences.

Definition 5.1 (Cf. [5]). Let V be an L-variety and A ∈ V . We say that A is

CBS-complete if for all b ∈ Z(L(A)) such that A ≃ [0, b]A and for all z ∈ Z(L(A))

such that z > b there exists a CBS-sequence 〈b, z, α, β〉 such that (under the notation

as above) the supremum
⊔

n∈N(A2n ∧ a2n+1) of this sequence exists in Z(L(A)).

Definition 5.2. Let V be an L∗-variety. An algebra A ∈ V is called CBS∗-

complete if for all B∗ ∈ D(A) such that A ≃ B∗ and for all B0 ∈ D(A) with

B0 ⊇ B∗ there exists a CBS∗-sequence 〈B∗, B0, α, β〉 such that the supremum of

this sequence exists in D(A).

Lemma 5.3. Let V be an L-variety and A ∈ V . Then A is CBS-complete iff it

is CBS∗-complete.

P r o o f. This is a consequence of 4.5 and of 2.3.1. �

Lemma 5.4. Let V be an L∗-variety and A ∈ V . Assume that A has the

CBS∗-property. Then A is CBS∗-complete.

P r o o f. Let B∗ ∈ D(A) be such that A ≃ B∗. Further, let B0 ∈ D(A) with

B0 ⊇ B∗.

There exists an isomorphism α : A → B∗. Since A has the CBS∗-property, in

view of 4.4 there exists an isomorphism β : B0 → A. Consider the corresponding

CBS∗-sequence 〈B∗, B0, α, β〉. An easy calculation shows that all elements of this

sequence are equal to {v0}, hence the join of the elements of this sequence is {v0} as

well. Therefore A is CBS∗-complete. �

Again, let V be an L∗-variety and A ∈ V . Consider a CBS∗-sequence (B∗, B0,

α, β) in A. We apply the notation as in Section 4.

By induction we can verify that An ∈ D(An−1) for each n ∈ N. We have
(1) β(α(An)) = β(Bn+1) = An+2 for n = 0, 1, 2, . . . .

11



Lemma 5.5. For each n ∈ N, Cn is a relative complement of A2n+1 in the

Boolean algebra D(A2n).

P r o o f. This is a consequence of 3.6 and 3.7. �

From (1) and 5.5 we obtain

(2) β(α(Cn)) = Cn+1 for each n ∈ N.
LetX1, X2, X3 ∈ D(A). The notationX1∨0X2 = X3 will mean thatX1∨X2 = X3

and X1 ∧X2 = {v0} in D(A).

Lemma 5.6. β(α(¬A1)) = C1.

P r o o f. We have

α(A) = α(A0) = B1,

α(A) = α(A1 ∨
0 ¬A1) = α(A1) ∨

0 α(¬A1),

whence

B1 = B2 ∨
0 α(¬A1),

A2 = β(B1) = β(B2) ∨
0 β(α(¬A1)),

A2 = A3 ∨
0 β(α(¬A1)).

�

Therefore in view of 5.5 we get β(α(¬A1)) = C1.

Lemma 5.7. Assume that there exists C0 =
∨

n∈NCN inD(A). PutX = C0∨¬A1.

Then X ≃ C0.

P r o o f. We have

X ≃ β(α(X)) = β(α(C0)) ∨ β(α(¬A1)).

Further, in view of (2),

β(α(C0)) = β

(

α

(

∨

n∈NCn

))

=
∨

n∈Nβ(α(Cn)) =
∨

n=2,3,...

Cn.

Thus according to 5.6,

β(α(X)) =

(

∨

n=2,3,...

Cn

)

∨ C1 =
∨

n∈NCn = C0.

Hence X ≃ C0. �
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Lemma 5.8. Under the assumption as in 5.7 we have A ≃ B0.

P r o o f. Since B0 ≃ A1 it suffices to verify that A ≃ A1. In view of 5.7 we have

A = (int)X × ¬X ≃ C0 × ¬X.

From X = C0 ∨ ¬A1 we obtain ¬X = ¬C0 ∧A1. Further,

A = (int)C0 × ¬C0,

whence

A1 = (int)(A1 ∩ C
0) × (A1 ∩ ¬C0).

But Cn ⊆ A1 for each n ∈ N, whence C0 ⊆ A1 and thus

A1 = (int)C0 × ¬X.

Therefore A ≃ A1. �

In view of 4.4 and 5.8 we have

Corollary 5.9. Let V be an L∗-variety and A ∈ V . If A is CBS∗-complete,

then it satisfies the CBS∗-property.

Theorem 5.10. Let V be an L∗-variety and A ∈ V . Then A satisfies the

CBS∗-property if and only if it is CBS∗-complete.

P r o o f. This is a consequence of 5.4 and 5.9. �

The next theorem is the main result of [5]; it follows from 4.3, 5.3 and 5.10.

Theorem 5.11 (Cf. [5], Theorem 3.7). Let V be a variety and A ∈ V . Then

A has the CBS-property iff it is CBS-complete.

We conclude by remarking that the variety VL of all lattices fails to be an

L∗-variety. In fact, if A is a lattice having more than one element then there does

not exist any term in the language of VL such that this term defines a constant on A.

Nevertheless, if A ∈ VL and if we take any (fixed) element v0 of A then by con-

sidering internal direct decompositions of A with respect to v0, the definitions of the

CBS∗-property and the CBS∗-completeness can be applied for A; we can perform

the same steps as above for the variety VL and we obtain a result analogous to 5.10

saying that the CBS∗-property and the CBS∗-completeness are equivalent.
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