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Abstract. We study Toeplitz operators between the pluriharmonic Bergman spaces for
positive symbols on the ball. We give characterizations of bounded and compact Toeplitz
operators taking a pluriharmonic Bergman space bp into another bq for 1 < p, q < ∞ in
terms of certain Carleson and vanishing Carleson measures.
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1. Introduction

Let B be the open unit ball of the complex n-space C n . For 1 6 p <∞, the pluri-

harmonic Bergman space bp = bp(B) is the space of all complex-valued pluriharmonic

functions u on B such that

‖u‖p =

{∫

B

|u|p dV

}1/p

<∞,

where V denotes the normalized Lebesgue volume measure on B. It is well known

that bp is a closed subspace of Lp = Lp(B, V ), and hence is a Banach space. In

particular, b2 is a Hilbert space. We will write Q for the Hilbert space orthogonal

projection from L2 onto b2. Each point evaluation is a bounded linear functional

on b2. Hence, for each z ∈ B, there exists a unique function Rz ∈ b2 which has the

reproducing property

(1.1) u(z) =

∫

B

u(w)Rz(w) dV (w) (z ∈ B)

This research was supported by KOSEF (R01-2003-000-10243-0) and Korea University
Grant.
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for all u ∈ b2. More explicitly, the kernel Rz is given by

(1.2) Rz(w) =
1

(1 − w · z)n+1
+

1

(1 − z · w)n+1
− 1 (w ∈ B).

Here and subsequently z ·w = z1w1+ . . .+znwn denotes the Hermitian inner product

for points z, w ∈ C n . Moreover, using reproducing properties, we have

(1.3) ‖Rz(w)‖2
2 = R(z, z) ≈

1

(1 − |z|)n+1
.

For ϕ ∈ L2 and for each z ∈ B we have

(1.4) Qϕ(z) =

∫

B

ϕ(w)Rz(w) dV (w).

From (1.2), one can see that

(1.5) |R(z, w)| 6
C

|1 − z · w|n+1
(z, w ∈ B)

so that Rz ∈ L∞. Thus, the orthogonal projection Q can be extended to an integral

operator, by means of (1.4), from L1 into the space of all pluriharmonic functions

on B. If 1 < p < ∞, then Q is a bounded projection from Lp onto bp. The integral

transform can be extended to M, the space of all complex Borel measures on B.

Namely, for each µ ∈ M, the integral

Qµ(z) =

∫

B

R(z, w) dµ(w) (z ∈ B)

defines a pluriharmonic function on B. For µ ∈ M, the Toeplitz operator Tµ with

symbol µ is defined by

Tµu = Q(u dµ)

for u ∈ b∞. In case µ = f dV , we will write Tµ = Tf . Note that Tµ is densely defined

on bp for each 1 < p <∞.

Toeplitz operators acting on holomorphic Bergman spaces have been well stud-

ied. Especially, positive symbols of bounded and compact Toeplitz operators from

a Bergman space into itself are completely characterized in terms of Carleson type

measures as in [7]. The analogous characterizations for harmonic Bergman spaces on

the ball have been obtained in [5] and then for the pluriharmonic Bergman space on

the ball in [3]. In the setting of the upper half-space, bounded and compact positive

Toeplitz operators from a Bergman space into another are characterized in [1] and
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the analogous results have been obtained on smooth bounded domains in [2]. In this

paper, we prove analogous results for the pluriharmonic Bergman space on the ball.

In Section 2, we collect some basic facts which we need in later sections. In Sec-

tion 3, we consider certain averaging functions and Berezin transforms. Section 4 is

devoted to characterizations of bounded and compact Toeplitz operators in terms of

Carleson and vanishing Carleson measures.

2. Preliminaries

In this section we collect some basic facts which we need in later sections.

Notation. We use the notation A ≈ B if A . B and B . A by writing A . B for

positive quantities A and B if the ratio A/B has a positive upper bound. Constants

will be explicitly denoted by the same letter C, often with subscripts indicating

dependency, which may change at each occurrence. For 1 < p < ∞, we use p′ to

denote the conjugate exponent of p, i.e., 1/p+ 1/p′ = 1. We also use the usual inner

product notation

〈u, v〉 =

∫

B

uv dV

where uv ∈ L1.

For z, w ∈ B, z 6= 0, define

Φz(w) =
z − |z|−2(w · z)z −

√
1 − |z|2{w − |z|−2(w · z)z}

1 − w · z

and Φ0(w) = −w. Then each Φz is a biholomorphic self-map of B and Φz ◦Φz = id.

For z ∈ B and r, 0 < r < 1, the pseudohyperbolic ball Er(z) with center z and

radius r is defined by

Er(z) = Φz(rB).

Since Φz is an involution, w ∈ Er(z) if and only if |Φz(w)| < r. Note that V (Er(z)) ≈

(1 − |z|)n+1. Recall that the well-known identity

1 − Φz(w) · Φz(a) =
(1 − |z|2)(1 − w · ā)

(1 − w · z)(1 − z · ā)

holds for all w, a ∈ B (see Theorem 2.2.2 of [8]). In particular, it is a consequence of

this that

(2.1) |1 − w · z| ≈ 1 − |z| ≈ 1 − |w|

whenever w ∈ Er(z); see Lemma 2.1 of [3].
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Lemma 2.1. There exist some r0 ∈ (0, 1) and a constant C > 0 such that

C−1 6 R(z, w)(1 − |z|)n+1 6 C

whenever w ∈ Er0
(z) and z ∈ B.

P r o o f. See Lemma 2.2 of [3]. �

In what follows, r0 will always the number provided in Lemma 2.1.

Lemma 2.2. Let 1 < p <∞. Then there is a constant C such that

C−1 6 ‖R(z, ·)‖p(1 − |z|)(1−1/p)(n+1) 6 C

for every z ∈ B.

P r o o f. See Lemma 2.3 of [3]. �

3. Averaging function and Berezin transform

For a positive Borel measure µ on B (simply µ > 0) and r ∈ (0, 1), the averaging

function µ̂r of µ over the pseudohyperbolic balls Er(z) is defined by

µ̂r(z) =
µ(Er(z))

V (Er(z))
(z ∈ B).

Also, for 1 < t <∞, we define the Berezin t-transform µ̃t on B by

µ̃t(z) =

∫

B

|rz,t|
t dµ (z ∈ B)

where

rz,t(w) =
R(z, w)

‖R(z, ·)‖t
(w ∈ B)

is the Lt-normalized reproducing kernel. In case dµ = f dV for f ∈ L1, we will write

µ̂r = f̂r and µ̃t = f̃t for simplicity.

We start with the Lp-boundedness of the averaging operator.
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Proposition 3.1. The averaging operator f 7→ f̂r is bounded on L
p for each

1 6 p 6 ∞ and 0 < r < 1.

P r o o f. Clearly, the averaging operator is bounded on L∞. So, we now assume

1 6 p < ∞ and let 0 < r < 1. For f ∈ Lp, we have by Jensen’s inequality and (2.1)

that

∫

B

|f̂r(z)|
p dV (z) 6

∫

B

{
1

V (Er(z))

∫

Er(z)

|f(w)| dV (w)

}p

dV (z)

.

∫

B

1

(1 − |z|)n+1

∫

Er(z)

|f(w)|p dV (w) dV (z)

≈

∫

B

∫

Er(z)

1

(1 − |w|)n+1
|f(w)|p dV (w) dV (z)

6

∫

B

|f(w)|p
1

(1 − |w|)n+1

∫

Er(w)

1 dV (z) dV (w)

≈

∫

B

|f(w)|p dV (w).

The proof is complete. �

We also need the following submean-value type inequality for averaging functions

of positive finite Borel measures µ on B (we simply write µ > 0).

Lemma 3.2. Let r, ε ∈ (0, 1). Then there exists a constant Cr,ε such that

µ̂r(z) 6 Cr,ε
[(µ̂ε)r(z) for µ > 0 and z ∈ B.

P r o o f. See Lemma 3.1 of [3]. �

Combining the above with Proposition 3.1, we see that Lp-behavior of µ̂r of a

given measure µ > 0 is independent of r.

Proposition 3.3. Let 1 6 p 6 ∞ and µ > 0. If µ̂ε ∈ Lp for some ε ∈ (0, 1), then

µ̂r ∈ Lp for all r ∈ (0, 1).

P r o o f. By Lemma 3.2, we have µ̂r . [̂µ̂ε]r for each fixed r, ε ∈ (0, 1). Thus,

the result follows from Proposition 3.1. �

Given r ∈ (0, 1) and a sequence {wi} in B, we say that {wi} is r-separated if the

sets Er(wi) are pairwise disjoint. Next, we need a decomposition of B whose proof

is essentially the same as the ball version of that for the covering Lemma of [6]. So,

we omit the details.
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Lemma 3.4. Let r ∈ (0, 1). Then there exists a sequence {zi} in B satisfying the

following conditions:

(a) {zi} is an r/6-separated sequence.

(b)
⋃
i

Er/3(zi) = B.

(c) There is a positive integer N = N(n, r) such that each point in B belongs to at

most N of the balls Er(zi).

Note that |zi| → 1 as i → ∞. Whenever we use expressions like µ̂r(zi) in what

follows, the sequence {zi} = {zi(r)} will always refer to the sequence chosen in

Lemma 3.4.

Proposition 3.5. Let 1 6 p <∞ and r, ε ∈ (0, 1). Then, for any µ > 0, we have

µ̂ε ∈ Lp if and only if
∑
i

|µ̂r(zi)|
p(1 − |zi|)

n+1 <∞.

P r o o f. First, assume µ̂ε ∈ Lp. By Lemma 3.2 and Jensen’s inequality, we have

∑

i

|µ̂r(zi)|
p(1 − |zi|)

n+1 .
∑

i

∫

Er(zi)

|µ̂ε|
p dV 6 N

∫

B

|µ̂ε|
p dV <∞,

where N is the positive integer provided by Lemma 3.4.

Conversely, suppose
∑
i

|µ̂r(zi)|
p(1 − |zi|)

n+1 < ∞. For z ∈ B and w ∈ Er/3(z),

we note that Er/3(w) ⊂ Er(z). It follows from (2.1) that

µ̂r/3(w) 6 µ̂r(zi)
V (Er(zi))

V (Er/3(w))
. µ̂r(zi), w ∈ Er/3(zi)

for i = 1, 2, . . .. Thus, we have

∫

B

|µ̂r/3|
p dV 6

∑

i

∫

Er/3(zi)

|µ̂r/3(w)|p dV (w)

.
∑

i

|µ̂r(zi)|
pV (Er/3(zi))

≈
∑

i

|µ̂r(zi)|
p(1 − |zi|)

n+1.

So, we have µ̂r/3 ∈ Lp. Now, by Proposition 3.3, we have µ̂ε ∈ Lp. The proof is

complete. �

Next, we prove the Lp-boundedness of Berezin transforms. To that purpose, we

need the following fact (see Proposition 1.4.10 of [8]).
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Lemma 3.6. For −1 < α <∞, c real and z ∈ B, let

Iα,c(z) =

∫

B

(1 − |w|)α

|1 − z · w|n+1+α+c
dV (w)

for z ∈ B. Then the following estimates hold:

Iα,c(z) ≈





1 if c < 0,

log
1

1 − |z|2
if c = 0,

1

(1 − |z|2)c
if c > 0

as |z| → 1.

Proposition 3.7. Let 1 < p 6 ∞ and 1 < t <∞. Then the Berezin t-transform

f 7→ f̃t is bounded on L
p.

P r o o f. The case p = ∞ is clear. Now, let f ∈ L1. By Hölder’s inequality,

Lemma 2.2 and (1.5), we have

|f̃t(z)|
p .

(∫

B

(1 − |z|)(t−1)(n+1)|f(w)|

|1 − z · w|(n+1)t
dV (w)

)p

6 (1 − |z|)p(t−1)(n+1)

(∫

B

(1 − |w|)t/p′

|f(w)|p

|1 − z · w|(n+1)t
dw

)

×

(∫

B

(1 − |w|)−t/p

|1 − z · w|(n+1)t
dw

)p/p′

. (1 − |z|)(t−1)(n+1)−t/p′

∫

B

(1 − |w|)t/p′

|f(w)|p

|1 − z · w|(n+1)t
dV (w)

for z ∈ B where the last inequality holds by Lemma 3.6. Thus, it follows from

Fubini’s theorem and Lemma 3.6 that

∫

B

|f̃t(z)|
p dV (z) .

∫

B

(1 − |z|)(t−1)(n+1)−t/p′

∫

B

(1 − |w|)t/p′

|f(w)|p

|1 − z · w|(n+1)t
dV (w) dV (z)

=

∫

B

|f(w)|p(1 − |w|)t/p′

∫

B

(1 − |z|)(t−1)(n+1)−t/p′

|1 − z · w|(n+1)t
dV (z) dV (w)

.

∫

B

|f(w)|p dV (w).

The proof is complete. �

We now turn to relations between Lp-behavior of averaging functions and Berezin

transforms. We first prove the following.
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Lemma 3.8. Given r ∈ (0, 1), there is a constant Cr such that

∫

B

f dµ 6 Cr

∫

B

fµ̂r dV

for all f > 0 subharmonic on B and µ > 0.

P r o o f. Fix r ∈ (0, 1). Let µ > 0 and f be a positive subharmonic function. By

subharmonicity and Fubini’s theorem, we have

∫

B

f(z) dµ(z) 6

∫

B

1

V (Er(z))

∫

Er(z)

f(w) dV (w) dµ(z) .

∫

B

f(w)µ̂r(w) dV (w).

The proof is complete. �

Lemma 3.9. Let r ∈ (0, 1) and 1 < t <∞, there exists a constant C = Cr,t such

that µ̂r 6 Cµ̃t for any µ > 0.

P r o o f. See Lemma 3.3 of [3]. �

Proposition 3.10. Let r ∈ (0, 1) and 1 < t <∞. Suppose µ > 0 and 1 < p 6 ∞.

Then, µ̂r ∈ Lp if and only if µ̃t ∈ Lp.

P r o o f. First, suppose µ̂r ∈ Lp. Applying Lemma 3.8 to functions f = |rz,t|
t,

we obtain µ̃t . ˜[µ̂r]t and thus µ̃t ∈ Lp by Proposition 3.7. Conversely, if µ̃t ∈ Lp,

then by Lemma 3.9, we have µ̂r ∈ Lp for 0 < r < 1. This completes the proof. �

4. Carleson measure

To characterize Toeplitz operators, we need the notion of certain Carleson mea-

sures. Let 1 < p, q < ∞. Given µ > 0, we say that µ is a (p, q)-Carleson measure if

there exists a constant C such that

{∫

B

|f |q dµ

}1/q

6 C‖f‖p

for all f ∈ bp. In other words, µ is a (p, q)-Carleson measure if and only if the inclu-

sion ip,q : bp → Lq(µ) is bounded. Carleson measures in various settings have been

well studied as in [5], [7] and the references therein. In this section, we also char-

acterize (p, q)-Carleson measures in terms of Lp-behavior of the averaging functions

and Berezin transforms. We first consider the case where p 6 q.
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Theorem 4.1. Assume 1 < p 6 q < ∞, s = p/q, 1/s < t < ∞ and ε, r ∈ (0, 1).

Suppose µ > 0. Then the following conditions are all equivalent:

(1) µ is a (p, q)-Carleson measure.

(2) sup
z∈B

µ̃t(z)(1 − |z|)(n+1)(1−1/s) <∞.

(3) sup
z∈B

µ̂ε(z)(1 − |z|)(n+1)(1−1/s) <∞.

(4) sup
i
µ̂r(zi)(1 − |zi|)

(n+1)(1−1/s) <∞.

P r o o f. First, suppose (1) and show (2) with t = q. Let z ∈ B. By Lemma 2.2

we have

|rz,p|
q =

(‖R(z, ·)‖q

‖R(z, ·)‖p

)q

|rz,q|
q ≈ (1 − |z|)n(1−q/p)|rz,q|

q.

Integrating with respect to dµ, we obtain

(4.1) µ̃q(z)(1 − |z|)(n+1)(1−q/p) ≈

∫

B

|rz,p|
q dµ.

Since ‖rz,p‖p = 1 and µ is a (p, q)-Carleson measure, the above shows that (2) holds

for t = q.

Next, by Lemma 3.9, we have (2) ⇒ (3).

The implication (3) ⇒ (4) can also be easily seen from Lemma 3.2.

Now, suppose (4) and show (1). Let u ∈ bp. Since |u|p is plurisubharmonic, we

have

|u(w)|p .
1

(1 − |w|)n+1

∫

Er/3(w)

|u|p dV

for w ∈ B. This, together with Lemma 2.1, yields

sup
w∈Er/3(z)

|u(w)|p 6 sup
w∈Er/3(z)

1

(1 − |w|)n+1

∫

Er/3(w)

|u|p dV

.
1

(1 − |z|)n+1

∫

Er(z)

|u|p dV

for all z ∈ B. Hence, we have

∫

Er/3(z)

|u|q dµ .
µ(Er(z))

(1 − |z|)q(n+1)/p

{∫

Er(z)

|u|p dV

}q/p

≈ µ̂r(z)(1 − |z|)(n+1)(1−q/p)

{∫

Er(z)

|u|p dV

}q/p
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for z ∈ B. Note that q/p > 1. Let M = sup
i
µ̂r(zi)(1 − |zi|)

(n+1)(1−1/s). It follows

from Lemma 3.4 that

∫

B

|u|q dµ 6
∑

i

∫

Er/3(zi)

|u|q dµ

.
∑

i

µ̂r(zi)(1 − |zi|)
(n+1)(1−1/s)

{∫

Er(zi)

|u|p dV

}q/p

6 M
∑

i

{∫

Er(zi)

|u|p dV

}q/p

6 M

{∑

i

∫

Er(zi)

|u|p dV

}q/p

6 N q/pM‖u‖q
p,

where N is the number provided by Lemma 3.4. Hence, µ is a (p, q)-Carleson mea-

sure, as desired.

Finally, suppose (1) and show (2) for general t. We have seen that Condition (1)

is equivalent to Condition (3), which does not depend on particular values of p and

q, but depends on the ratio s = p/q. Therefore, we may take p = st > 1 and q = t

in order to see that (1) implies (2) for general t. The proof is complete. �

Let 1 < p <∞ and {zi} be a sequence in B. For a sequence λ = {λi} ∈ ℓp, we let

S(λ) be the function defined by

(4.2) S(λ)(z) =
∑

λi(1 − |zi|)
(n+1)(1−1/p)R(z, zi), z ∈ B.

Proposition 4.2. Let 1 < p <∞. Then S : ℓp → bp is bounded whenever {zi} is

r-separated for some r.

P r o o f. Note that for z, w, zi ∈ B, we have

|1 − z · w|1/2 6 |1 − z · zi|
1/2 + |1 − zi · w|

1/2

by Proposition 5.1.2 of [8]. This, together with (2.1), gives the following estimate

|1 − z · w| . |1 − z · zi|, w ∈ Er(zi).

Therefore, by (1.5) we have

|R(z, zi)| .
1

|1 − z · zi|n+1
.

1

|1 − z · w|n+1
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for all w ∈ Er(zi) and z ∈ B. It follows that

|S(λ)(z)| .
∑

|λi|(1 − |zi|)
(n+1)(1−1/p)V (Er(zi))

−1

∫

Er(zi)

1

|1 − z · w|n+1
dV (w)

for z ∈ B. Thus, setting

u =
∑

|λi|(1 − |zi|)
(n+1)(1−1/p)V (Er(zi))

−1χEr(zi),

we have

|S(λ)| .

∫

B

u(w)

|1 − z · w|n+1
dV (w).

For u ∈ L1, we define Ψ by

Ψu(z) =

∫

B

u(w)

|1 − z · w|n+1
dV (w), z ∈ B.

Note that Ψ is bounded on Lp. Thus, since {zi} is r-separated, we have

‖S(λ)‖p
p . ‖u‖p

p =
∑

|λi|
p(1 − |zi|)

(n+1)(p−1)V (Er(zi))
1−p ≈

∑
|λi|

p,

which shows that S : ℓp → Lp is bounded and the series in (4.2) converges in norm.

Since each term is pluriharmonic, the series converges uniformly on every compact

subsets of B. It follows that S maps ℓp into bp. The proof is complete. �

In order to characterize (p, q)-Carleson measures for q < p, we will utilize Lueck-

ing’s idea in [4]. To do so, we first need Khinchine’s inequality. Recall that the

Rademacher functions ψi are defined by

ψ0(t) =

{
1 if 0 6 t− [t] < 1/2,

−1 if 1/2 6 t− [t] < 1,

and ψi(t) = ψ0(2
it) for positive integers i. Then Khinchine’s inequality is the fol-

lowing.

Lemma 4.3 (Khinchine’s inequality). For 0 < p <∞, there exists a constant Cp

such that

C−1
p

( m∑

k=1

|λk|
2

)p/2

6

∫ 1

0

∣∣∣
m∑

k=1

λkψk(t)
∣∣∣
p

dt 6 Cp

( m∑

k=1

|λk|
2

)p/2

for all m > 1 and complex numbers λ1, λ2, . . . , λm.

We now characterize (p, q)-Carleson measures for the case q < p.
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Theorem 4.4. Let 1 < q < p <∞, s = p/q, 1 < t <∞ and r, ε ∈ (0, 1). Suppose

µ > 0. Then the following conditions are equivalent:

(1) µ is a (p, q)-Carleson measure.

(2)
∑
i

|µ̂r(zi)|
s′

(1 − |zi|)
(n+1) <∞.

(3) µ̂ε ∈ Ls′

.

(4) µ̃t ∈ Ls′

.

P r o o f. Assume (1) and show (2). First, consider r = r0. Corresponding to

each {λi} ∈ ℓp, we put

u =
∑

λi(1 − |zi|)
(n+1)(1−1/p)R(·, zi).

Since {zi} is r/6-separated, by Proposition 4.2, we have ‖u‖p . ‖(λi)‖ℓp and hence,

by Assumption (1),

∫

B

∣∣∣
∑

λi(1 − |zi|)
(n+1)(1−1/p)R(w, zi)

∣∣∣
q

dµ(w) .
(∑

|λi|
p
)q/p

.

In the above inequality, replace λi with ψi(t)λi and then integrate with respect to t

from 0 to 1. Then, after making use of Fubini’s theorem and Khinchine’s inequality,

the result becomes

(4.3)

∫

B

(∑
|λi|

2(1 − |zi|)
2(n+1)(1−1/p)|R(w, zi)|

2
)q/2

dµ(w) .
(∑

|λi|
p
)q/p

.

Since χEr(zi) . (1 − |zi|)
(n+1)|R(·, zi)| for all i by Lemma 2.1, it follows from (4.3)

that

∑
|λi|

qµ̂r(zi)(1 − |zi|)
(n+1)(1−q/p)

.

∫

B

∑
|λi|

q(1 − |zi|)
−(n+1)q/pχEr(zi) dµ

. max{N1−q/2, 1}

∫

B

(∑
|λi|

2χEr(zi)(1 − |zi|)
−2(n+1)/p

)q/2

dµ

.

∫

B

(∑
|λi|

2(1 − |zi|)
2(n+1)(1−1/p)|R(w, zi)|

2
)q/2

dµ(w)

.
(∑

|λi|
p
)q/p

,

where N is the number provided in Lemma 3.4. This shows that

∑
|bi|µ̂r(zi)(1 − |zi|)

(n+1)/s′

.
(∑

|bi|
s
)1/s
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for all {bi} ∈ ℓs. Thus, a duality argument yields (2) for r = r0. Now, an application

of Proposition 3.5 shows that (2) holds for a given r.

The implication (2) ⇒ (3) is also a consequence of Proposition 3.5.

Now, assume (3) and show (1). Using Lemma 3.8 and Hölder’s inequality, we have

∫

B

|u|q dµ .

∫

B

|u|qµ̂ε dV 6 ‖u‖q
p‖µ̂ε‖s′

for u ∈ bp so that (1) holds.

Finally, the equivalence (3) ⇔ (4) is a consequence of Proposition 3.10. The proof

is complete. �

For µ > 0 and 1 < p, q <∞, we say that µ is a vanishing (p, q)-Carleson measure

if the inclusion ip,q : bp → Lq(µ) is compact, or equivalently, if

∫

B

|uj|
q dµ→ 0

whenever uj → 0 weakly in bp. Note that the kernels rz,p converges to 0 weakly in bp

as |z| → 1 for each 1 < p <∞; see Lemma 3.10 of [3].

Now, we characterize vanishing (p, q)-Carleson measures. We first consider the

case p 6 q.

Theorem 4.5. Let µ > 0. Assume 1 < p 6 q < ∞, s = p/q, 1/s < t < ∞, and

r, ε ∈ (0, 1). Then the following conditions are equivalent:

(1) µ is a vanishing (p, q)-Carleson measure.

(2) µ̃t(z)(1 − |z|)(n+1)(1−1/s) → 0 as |z| → 1.

(3) µ̂ε(z)(1 − |z|)(n+1)(1−1/s) → 0 as |z| → 1.

(4) µ̂r(zi)(1 − |zi|)
(n+1)(1−1/s) → 0 as i→ ∞.

P r o o f. First, suppose (1) and show (2) with t = q. Since rz,p → 0 weakly in bp

as |z| → 1, it follows from (4.1) that (2) holds for t = q.

Next, by Lemma 3.9, we have (2) ⇒ (3) for a given ε.

The implication (3) ⇒ (4) follows from Lemma 3.2 as before, because |zi| → 1 as

i→ ∞.

Now, assume (4) and show (1). Let {uk} be a sequence converging to 0 weakly

in bp. Let Mj = sup
i>j

µ̂r(zi)(1 − |zi|)
(n+1)(1−1/s) for positive integers j. By the proof

of (4) ⇒ (1) of Theorem 4.1, we have

(4.4)

∫

B

|uk|
q dµ .

∑

i<j

∫

Er(zi)

|uk|
q dµ+Mj‖uk‖

q
p
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for each j and k. Since uk → 0 weakly in bp, one can easily see that uk → 0 uniformly

on compact subsets of B and {uk} is bounded in L
p-norm. Thus, fixing j and taking

the limit k → ∞ in (4.4), we obtain

lim sup
k

∫

B

|uk|
q dµ . Mj

for each j. Note that we have Mj → 0 as j → ∞ by assumption. Thus, taking the

limit j → ∞, we conclude that

lim sup
k

∫

B

|uk|
q dµ = 0.

Namely, µ is a vanishing (p, q)-Carleson measure, as desired.

Finally, as in the proof of Theorem 4.1, one can see that (1) implies (2) for general t.

The proof is complete. �

The case p > q is a little bit more subtle and we have the following.

Theorem 4.6. Let µ > 0 and assume 1 < q < p < ∞. Then the following

conditions are equivalent:

(1) µ is a (p, q)-Carleson measure.

(2) µ is a vanishing (p, q)-Carleson measure.

P r o o f. We only need to prove (1) ⇒ (2). So assume µ is a (p, q)-Carleson

measure. Take any sequence {uj} converging weakly to 0 in bp. Then {uj} is a

bounded sequence in bp and uj → 0 on each compact subset of B. Let K be any

compact subset of B and µK be the restriction of µ to B \K. Let s = p/q and fix

ε ∈ (0, 1). Then, as in the proof of (3) ⇒ (1) of Theorem 4.4, we have

∫

B\K

|uj|
q dµ =

∫

B

|uj|
q dµK . ‖uj‖

q
p‖µ̂K,ε‖s′

for all j. Therefore, letting M = sup
j

‖uj‖
q
p <∞, we have by assumption

∫

B

|uj |
q dµ .

{∫

K

|uj|
p dV

}q/p

+M‖µ̂K,ε‖s′ .

Take the limit j → ∞. Since uj converges to 0 uniformly on K, we have

lim sup
j

∫

B

|uj |
q dµ . M‖µ̂K,ε‖s′ .
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Note that µ̂K,ε → 0 as K increases to B. Also, we have |µ̂K,ε|
s′

6 |µ̂ε|
s′

∈ L1 by

Theorem 4.4. Thus, an application of the dominated convergence theorem yields

lim sup
j

∫

B

|uj |
q dµ = 0,

and therefore µ is a vanishing (p, q)-Carleson measure. This completes the proof. �

By Theorem 4.1 and Theorem 4.4, the notion of (vanishing) (p, q)-Carleson mea-

sures depends only on the ratio p/q. Thus we will simply say (vanishing) s-Carleson

measures in what follows. Having characterized s-Carleson measures, we turn to

characterizations of positive Toeplitz operators. In characterizing bounded positive

Toeplitz operators, the key step is the justification of the equality

(4.5) 〈Tµu, v〉 =

∫

B

uv dµ, u, v ∈ b∞,

which enables us to make a connection between Carleson measures and positive

Toeplitz operators.

Lemma 4.7. Let µ > 0, u, v ∈ b∞. If Tµu ∈ b1, then we have (4.5).

P r o o f. Note that the kernel function has the symmetry

R(rz, w) = R(z, rw), z, w ∈ B, 0 6 r 6 1

and R(z, w) is bounded on |z| 6 r < 1. Let µ > 0 and assume that Tµu ∈ b1. Thus,

for u, v ∈ b∞, we have by Fubini’s theorem and the dominated convergence theorem

〈Tµu, v〉 = lim
r→1

∫

rB

v(z)

∫

B

u(w)R(z, w) dµ(w) dV (z)

= lim
r→1

∫

B

u(w)

∫

rB

v(z)R(z, w) dV (z) dµ(w)

= lim
r→1

r2n

∫

B

u(w)

∫

B

v(rz)R(rz, w) dV (z) dµ(w)

= lim
r→1

r2n

∫

B

u(w)

∫

B

v(rz)R(z, rw) dV (z) dµ(w)

= lim
r→1

r2n

∫

B

u(w)v(r2w) dµ(w) =

∫

B

uv dµ.

This completes the proof. �

We now characterize bounded (resp. compact) Toeplitz operators in terms of

(resp. vanishing) s-Carleson measures. We first consider the case p 6 q.
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Theorem 4.8. Let 1 < p 6 q < ∞, 1/s = 1 − 1/q + 1/p and µ > 0. Then the

following conditions are equivalent:

(1) Tµ : bp → bq is bounded (resp. compact).

(2) µ is an s-Carleson measure (resp. vanishing).

P r o o f. Assume (1) and show (2). First, assume that Tµ : bp → bq is bounded.

Let z ∈ B and take r = r0, where r0 is the number provided by Lemma 2.1. Then

we have

µ(Er(z)) . (1 − |z|)2(n+1)

∫

B

|R(z, w)|2 dµ(w) = (1 − |z|)2(n+1)Tµ[R(z, ·)](z),

and therefore

µ̂r(z) . (1 − |z|)n+1Tµ[R(z, ·)](z) ≈ (1 − |z|)(n+1)(1/p)Tµrz,p(z).

On the other hand, since point evaluation is continuous on bq, we have

|Tµrz,p(z)| . (1 − |z|)−(n+1)/q‖Tµrz,p‖q.

Combining these estimates, we have

(4.6) µ̂r(z)(1 − |z|)(n+1)(1−1/s) . ‖Tµrz,p‖q.

Now, since ‖rz,p‖p = 1, we see that

µ̂r(z)(1 − |z|)(n+1)(1−1/s) . ‖Tµ‖,

where ‖Tµ‖ denote the operator norm of Tµ : bp → bq. This is true for all z ∈ B and

the constants abbreviated above are independent of z. Hence, µ is an s-Carleson

measure by Theorem 4.1.

Recall that rz,p → 0 weakly in bp as |z| → 1. Hence, if Tµ : bp → bq is compact,

then we have by (4.6)

µ̂r(z)(1 − |z|)(n+1)(1−1/s) . ‖Tµrz,p‖q → 0

as |z| → 1. Hence, µ is a vanishing s-Carleson measure by Theorem 4.5.

Now, assume (2) and show (1). First, assume µ is an s-Carleson measure. Note

that the function w 7→
∫

B
|R(z, w)| dV (z) is subharmonic on B. Fix r ∈ (0, 1). Since

s < 1, µ̂r(w) . (1 − |w|2)(n+1)(1/s−1) . 1 by Theorem 4.1. Thus, by (1.5) and

Lemma 3.8, we have
∫

B

∫

B

|R(z, w)| dV (z) dµ(w) .

∫

B

µ̂r(w)

∫

B

1

|1 − z · w|n+1
dV (z) dV (w)(4.7)

.

∫

B

∫

B

1

|1 − z · w|n+1
dV (z)d.V (w).
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We therefore have by Lemma 3.6, for u ∈ b∞

‖Tµu‖1 . ‖u‖∞

∫

B

∫

B

1

|1 − z · w|n+1
dV (z) dV (w) <∞.

Since 1/s = 1/q′ + 1/p, we note that p/s is the conjugate exponent of q′/s. Hence,

for u, v ∈ b∞, we have by Lemma 4.7 and Hölder’s inequality

(4.8) |〈Tµu, v〉| =

∣∣∣∣
∫

B

uv dµ

∣∣∣∣ 6

{∫

B

|u|p/s dµ

}s/p{∫

B

|v|q
′/s dµ

}s/q′

. ‖u‖p‖v‖q′ .

The last inequality holds by our assumption µ is an s-Carleson measure. Now, a

duality argument shows the boundedness of Tµ : bp → bq, because b∞ is dense in bp.

Next, assume µ is a vanishing s-Carleson measure. Let {uj} be a sequence of

functions such that uj → 0 weakly in bp. Then we have

∫

B

|uj|
p/s dµ→ 0.

Hence, by (4.8) and a duality argument, we obtain

‖Tµuj‖q .

{∫

B

|uj |
p/s dµ

}s/p

→ 0.

Therefore, Tµ : bp → bq is compact. The proof is complete. �

Now, we turn to the case q < p. In this case we will prove that bounded Toeplitz

operators are all compact.

Lemma 4.9. Let s > 1 and µ > 0. Then the following conditions are equivalent:

(1) Tµ : bp → bq is bounded whenever 1 < q < p <∞ and 1/s = 1 − 1/q + 1/p.

(2) Tµ : b2s → b2s/(2s−1) is bounded.

(3) µ is an s-Carleson measure.

P r o o f. The implication (1) ⇒ (2) is trivial.

Assume (2) and show (3). Let p = 2s. Then, by the proof of (1) ⇒ (2) of

Theorem 4.8, we have

µ̂r(z)(1 − |z|)(n+1)(1−1/s) . ‖Tµ‖

for any z ∈ B, where ‖Tµ‖ denotes the operator norm of Tµ : b2s → b2s/(2s−1).

Hence, µ is an s-Carleson measure.

Finally, assume µ is an s-Carleson measure. Let u, v ∈ b∞. We only need to show

that Tµu ∈ b1. The rest of the proof is exactly the same as the proof of (2) ⇒

109



(1) of Theorem 4.8. Note that (4.7) is still available. It follows from Lemma 3.6,

Theorem 4.4 and Hölder’s inequality that

∫

B

µ̂r(w)

∫

B

1

|1 − z · w|n+1
dV (z) dV (w)

.

∫

B

µ̂r(w) log
1

1 − |w|2
dV (w)

6 ‖µ̂r‖s′

{∫

B

(
log

1

1 − |w|2

)s

dV (w)

}1/s

<∞.

So, we have the implication (3) ⇒ (1). The proof is complete. �

Theorem 4.10. Let 1 < q < p < ∞ and s > 1. Then the following conditions

are equivalent:

(1) Tµ : bp → bq is compact whenever 1/s = 1 − 1/q + 1/p.

(2) Tµ : bp → bq is bounded whenever 1/s = 1 − 1/q + 1/p.

(3) Tµ : b2s → b2s/(2s−1) is compact.

(4) Tµ : b2s → b2s/(2s−1) is bounded.

(5) µ is a vanishing s-Carleson measure.

(6) µ is an s-Carleson measure.

P r o o f. By Lemma 4.9 we have the equivalences (2) ⇔ (4) ⇔ (6). By Theo-

rem 4.6, we have the equivalence (5) ⇔ (6). The implications (1) ⇒ (3) ⇒ (4) are

trivial. Also, we have (5) ⇒ (1), as in the proof of (2) ⇒ (1) of Theorem 4.8. The

proof is complete. �

Ackowledgement. The author gratefully thanks professor Boo Rim Choe for

several helpful comments about the material in this paper.

References

[1] B.R. Choe, H. Koo, and H. Yi: Positive Toeplitz operators between the harmonic
Bergman spaces. Potential Anal. 17 (2002), 307–335. zbl

[2] B.R. Choe, Y. J. Lee, and K. Na: Positive Toeplitz operators from a harmonic Bergman
space into another. Tohoku Math. J. 56 (2004), 255–270. zbl

[3] E. S. Choi: Positive Toeplitz operators on pluriharmonic Bergman spaces. J. Math.
Kyoto Univ. 47 (2007), 247–267.

[4] D. Luecking: Embedding theorem for spaces of analytic functions via Khinchine’s in-
equality. Mich. Math. J. 40 (1993), 333–358. zbl

[5] J. Miao: Toeplitz operators on harmonic Bergman spaces. Integral Equations Oper.
Theory 27 (1997), 426–438.

[6] K. Zhu: Operator Theory in Function Spaces. Marcell Dekker, New York, 1990. zbl

110



[7] K. Zhu: Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric
domains. J. Oper. Theory 20 (1988), 329–357. zbl

[8] W. Rudin: Function Theory in the Unit Ball of Cn . Springer-Verlag, New York, 1980. zbl

Author’s address: E u n S u n Ch o i, Department of Mathematics, Korea University,
Seoul 136-701, Korea, e-mail: eschoi93@korea.ac.kr.

111


		webmaster@dml.cz
	2020-07-03T17:11:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




