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Abstract. We examine iteration graphs of the squaring function on the rings Z /nZ when

n = 2kp, for p a Fermat prime. We describe several invariants associated to these graphs
and use them to prove that the graphs are not symmetric when £ = 3 and when k£ > 5 and
are symmetric when k = 4.
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1. INTRODUCTION

If R is any set, a mapping f: R — R induces a directed graph on R, called the
iteration digraph of f, whose vertices are the elements of R and whose directed edges
connect each z € R with its image f(z) € R. The iteration graphs of the squaring
function f(x) = 2% on the rings R = Z /nZ have interesting connections to number
theory (see, e.g., [6] and [2]) and have been extensively studied (see, e.g., [5], [8], [1],
and [6]), yet interesting questions about them remain unanswered. For each positive
integer n, we denote the iteration graph of the squaring function on the ring 7 /nZ
by G(n).

In [6], the authors call an iteration graph symmetric if its connected components
can be partitioned into isomorphic pairs. They offer a theorem, which they attribute
to Léaszlé Szalay [7], that the iteration diagraph of G(n) is symmetric if n = 2 (mod 4)
or n = 4 (mod 8). In this paper we prove that the generalization to higher powers
of 2 is false. In particular, we show that if p is a Fermat prime, and n = 2*p, then
G(n) is not symmetric when k& = 3 and when &k > 5, but it is symmetric when k& = 4.
We are currently working on a generalization of this work to G(n) for arbitrary n.
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2. PRELIMINARIES

t
Theorem 2.1. If n = [[ p$, then G(n) has exactly 2*(") = 2! fixed points.
=1

?

Proof. It is easy to see that 0 and 1 are the only fixed points modulo p® for
any prime p. If a is a fixed point modulo n, then certainly « is a fixed point modulo
p;* for each i, so for each ¢ we know that ¢ = 0 (mod p*) or a = 1 (mod p;*).
Conversely, by the Chinese Remainder Theorem, for each choice ¢; € {0,1} there
is a unique a such that a = ¢; (mod p;*), and clearly, a is a fixed point modulo n.
Since there are 2¢ distinct ways to choose the €;, G(n) has exactly 2! fixed points. [

Theorem 2.2. Suppose that n = 2¥p, where p = 2! + 1 is a Fermat prime and
k > 1. Let a be the smallest even integer such that ol > k and ( the smallest odd
integer such that 31 > k. Then the four fixed points of G(n) are

(1) 0, 1, 2% and 2% +1.

Proof. By the proof of Theorem 2.1, it suffices to show that each listed point
is equivalent to 0 or 1 modulo 2* and to 0 or 1 modulo p. This is obvious for the
points 0 and 1.

Since al > k, it is clear that 2°/ = 0 (mod 2¥). On the other hand, since 2! = —1
(mod p) and « is even, 2°! = (—1)® =1 (mod p).

Similarly, since 31 > k, we see that 2°! 41 =1 (mod 2¥). Since 2/ = —1 (mod p)
and 3 is odd, 2°' +1 =0 (mod p). O

We can also express the fixed points of G(n) in terms of k and [ as follows.

Theorem 2.3. Suppose that n = 2*p, where p = 2! 4+ 1 is a Fermat prime and
k > 1. Suppose that k =t (mod 2l) with 0 < ¢ < 2l. Then the four fixed points of
G(n) are
0, 1, 2M2=t  apg 237t 4,

Proof. Again it suffices to show that each listed point is equivalent to 0 or 1
modulo 2* and to 0 or 1 modulo p, and this is obvious for 0 and 1.

Clearly, k+2]—t > k and k+31—t > k, so 2821t = 0 (mod 2F) and 283141 =1
(mod 2F).

On the other hand, since k¥ = t (mod 2l), we can write kK — ¢ = 2la for some
integer a and therefore 28t2/—t = 92l(a+1) = jo+1 = 1 (mod p) and 253t 4+ 1 =
22lat3l 4 1 =221a23l 4 1 = —1+1=0 (mod p). O
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In the table below we list the fixed points for G(n) for p = 3 and p = 5.

p n k Fixed Points

313:28| k=0 (mod2)|0|1| 2F |2k 41
31328 |k=1(mod2)|0|1]2:| 2841
5|5-28 | k=0 (mod4) |0 |1| 2F |2k+2 41
5|5-28 | k=1 (mod4) | 0|1 |2k |2kt 1
5|5-28 | k=2 (mod4) |0 |1|2k2| 2k41
5|5-28 | k=3 (mod 4) | 0|1 |2k |2k3 1

Theorem 2.4. If n = 2¥p, where p = 2! + 1 is a Fermat prime, then G(n) has
exactly four components.

Proof. By a straight-forward graph theoretic argument, each component of
G(n) has exactly one cycle. Therefore it suffices to show that G(n) has no cycles of
length greater than one.

To this end, suppose that a lies in a cycle. We will show that a is one of the four
fixed points of G(n). By the argument of Theorem 2.1 once again, it suffices to show
that a is congruent to 0 or 1 modulo 2* and to 0 or 1 modulo p.

Since a lies in a cycle, there is a smallest positive integer ¢ such that ' =a
(mod n). But then a(a® "' —1) = a2 —a =0 (mod n).

Now a and a2 ~! — 1 are relatively prime, so one or the other, but not both, is
divisible by 2*, and one or the other, but not both, is divisible by p. Thus there are
four cases corresponding to which of them is divisible by p and by 2*.

Obviously if a is divisible by 2¥ or by p then a = 0 (mod 2*) or a = 0 (mod p),
respectively.

If a2 ~1 — 1 is divisible by p, then a2 =1 = 1 (mod p), and a has odd order dividing
2! — 1 in the unit group (Z /pZ)*. Since |(Z /pZ)*| = p — 1 = 2!, the only element of
odd order in (Z/pZ)* is the identity, and it follows that a = 1 (mod p).

Similarly, if a2 =1 — 1 is divisible by 2%, then a2 ~! = 1 (mod 2¥). Again, this
implies that a has odd order in the unit group (Z /2¥7)*, which has order 2=!. The
only element of odd order in (Z /2¥Z)* is the identity, so a = 1 (mod 2¥).

Thus, in all four cases a is congruent to 0 or 1 modulo p and to 0 or 1 modulo 2%,
and hence a is one of the fixed points of G(n). O
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3. COMPONENT HEIGHTS

Definition 3.1. For a € Z/nZ, denote by Comp(a) the connected component of
a in the graph G(n).

Definition 3.2. For any component Comp(a), denote by Height(Comp(a)) the
greatest distance of any point in Comp(a) to the unique cycle of Comp(a).

Theorem 3.3. Ifn = 2*p, then Height(Comp(0)) = m, where m is the smallest
positive integer such that 2™ > k, i.e., m = [logy(k)].

Proof. Suppose that a € Comp(0). Then a2 = 0 (mod n) for some t, and
obviously a is divisible by 2p. Since all powers of a will be divisible by p, the distance
of a to 0 is the smallest ¢ such that 2% ‘ a2, and this is maximized when 2 | a. But
then ¢ is the smallest positive integer such that 2 > k, i.e., t = m, as desired. O

Note that for k& = 1,2,3,... the corresponding sequence of heights of Comp(0)
is 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4, ..., and the heights grow logarithmically as a
function of k.

Theorem 3.4. If n = 2Fp, where p = 2! + 1 is a Fermat prime, then
Height(Comp(1)) = max(k — 2,1).

Proof. Ifa e Comp(1), then a?° =1 (mod n) for some positive integer t. It
follows that a is invertible modulo n, so a € (Z/nZ)*, and that the order of a divides
2¢. Conversely, any element a € (7 /nZ)* whose order is 2! lies in the component of
1 and is a distance ¢ from 1.

It follows that an element farthest from 1 in Comp(1) is an element of greatest
two-power order in (Z /nZ)*.

By the (extended) Chinese Remainder Theorem,

(2) (Z/n2)" = (2/2"2)* x ( [p)*,

and by the structure theorem for unit groups,

Zoi when k =1,
(3) (Z/nl)" = Zy X Zy when k = 2,
Z2k—2 X ZQ X Z2l when k > 3.

It follows that the element of greatest two-power order in (Z /nZ)* lies a distance [
from 1 when k£ — 2 <[, and a distance k£ — 2 from 1 when k — 2 > [, as desired. [
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Note that for k = 1,2, 3, ... the corresponding sequence of heights of Comp(1) is

Ll L+ 1,04+2,0+3,14+4,1+5,...,
——

[4+2 times

and, after an initial constant segment, the heights grow linearly as a function of k.

Theorem 3.5. Suppose n = 2¥p, where p = 2! + 1 is a Fermat prime, and set
m = [logy(k)]. Then, using the notation of Theorem 2.2, Height(Comp(2®!)) =
max(m, ).

Proof. Suppose that a € Comp(2®'). Then for some t, a2 — 24l = (mod n),
and it follows that a is even. Since a is even and 2™ > k, we know that a2mx(m'l)
290 = () (mod 2*). On the other hand, a2" = 2°! = 1 (mod p), so a € (Z /pZ)*. Since
|(Z /pZ)*| = 2!, we know that a2’ = 1 (mod p). Thus ™"

2D = gal (;mod 2%) and a = 2% (mod p), we know that a
(mod n). Therefore Height(Comp(2*!)) < max(m, 1).

To show that Height(Comp(2*)) = max(m,l), it now suffices to find a €

Comp(2!) whose distance to 2°! is at least max(m,[). We claim that this maximal

=1 (mod p). Since
= 2

gmax(m,1) gmax(m,1)

distance is attained by a = 6 when [ > 2 and by a = 2 when [ < 2.

By definition of m, we have 2! < k < 2™. Consequently, 62" = 0 (mod 2¥),
while 62" % 0 (mod 2¥). It follows that the distance from 6 to 2 at least m.

On the other hand, if [ > 1, we claim that 3 is a generator of the cyclic unit
group (Z /pZ)*. Since |(Z /pZ)*| = p—1 = 2!, (Z/pZ)* is a cyclic two group. The
generators of (Z /pZ)* are exactly those elements that are not quadratic residues
modulo p. However, since p is a Fermat prime, [ is a power of 2, so if [ > 1, then
p=2'+1=(-1)+1=2 (mod 3). Since 2 is not a quadratic residue modulo 3,
quadratic reciprocity yields

) -EE -

SO (1—)) = —1. Thus 3 is not a quadratic residue modulo p, and hence 3 generates
(Z /pZ)*. In particular, 32" =1 (mod p), while 32" # 1 (mod p).

Now if [ > 2, since [ is a power of 2, we know 2 | 2'~1. It follows that 227" =
22l = 1 (mod p). Therefore 62° = 1 (mod p), while 62 ' % 1 (mod p). In this case,
it follows that the distance from 6 to 2 is at least I.

We now know that the distance of 6 to 2°! is at least max(m,!) when [ > 2.

If I =2, s0p =5, it is easy to check that 22 = 4 # 1 (mod 5), while 22' = 1
(mod 5). Obviously, 22" % 0 (mod 2*), while 22" = 0 (mod 2¥). Therefore 2 is a
distance at least max(m, 1) to 2.
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Finally, if { = 1, then p = 3 and 22 = 2 # 0 (mod 3), while 22' = 4 = 1
(mod 3). Again, 22" # 0 (mod 2¥), while 22" = 0 (mod 2¥). Therefore 2 is
distance at least max(m, 1) to 2.

=

Having found the desired element a, we now conclude that Height(Comp(2!)) =
max(m, (). O

Corollary 3.6. If n = 2¥p, where p = 2! + 1 is a Fermat prime, then
Height(Comp(2°!)) = Height(Comp(0)) exactly when m > 1.
In particular,

Height(Comp(2%!)) = Height(Comp(0)) when k > 2'"1 = (p —1)/2.

Proof. The first statement follows immediately from Theorem 3.3 and Theo-
rem 3.5. Clearly, if & > 271, then 2 > k > 271, so m > I. Conversely, if m > [,
then m — 1 > 1 — 1. Since k > 2™~1, it follows that k& > 2!=1, as desired. O

Theorem 3.7. Suppose n = 2Fp, where p = 2! + 1 is a Fermat prime. Then,
using the notation of Theorem 2.2,

0 ifk=1,
Height(Comp(2°! + 1)) =< 1 if k=2, and
k—2 ifk>2.

Proof. Suppose that a € Comp(2%! + 1). Then for some ¢, a?=20lr1=1
(mod 2%) and a2’ = 2°'4+1 = 0 (mod p). Clearly a is divisible by p and a is invertible
modulo 2%, Since 2°, 2!, and 2¥~2 are, respectively, the greatest order of an element
of (Z/2%7)* when k = 1, 2, and k > 2, it follows that a* = 2% + 1 (mod n) when
k=1,a% =241 (mod n) when k = 2, and a* ~ = 2%/ +1 (mod n) when k > 2.
It follows that Height(Comp(2°*1)) < 1, 2, and k — 2, respectively, when k = 1, 2,
and k > 2.

It remains to identify elements a € Comp(2°+1) that attain the maximal distance
to 200 4+ 1.

Choose any s of maximal order ¢ in (7 /2¥7)*. Thus t = 2°, 2!, or 282, respec-
tively, as k = 1, k = 2, or kK > 2. By the Chinese Remainder Theorem, there is a
unique @ modulo n such that @ = s (mod 2¥) and a = 0 (mod p). Clearly a has the
desired maximal order ¢+ modulo 2, so a’ = 1 (mod 2¥) and, since a is divisible by
p, a® = 0 (mod p). It follows that a! = 2% + 1 (mod n) and a € Comp(2° + 1),
a distance at most ¢ from 2% + 1. On the other hand, a'~! # 1 (mod 2¥), so the
distance from a to 2% 4 1 is exactly t, as desired. O
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Corollary 3.8. If n = 2¥p, where p = 2! + 1 is a Fermat prime, then
Height(Comp(2°! + 1)) = Height(Comp(1)) when k —2 > 1,

and also when p = 3 and k = 2.

Proof. The result follows immediately from Theorem 3.4 and Theorem 3.7. [

4. WEAK SYMMETRY

Definition 4.1. The graph G(n) is said to be symmetric if the connected com-
ponents can be partitioned into isomorphic pairs.

In order to study symmetry, we define a weaker notion, which we call weak sym-

metry.

Definition 4.2. The graph G(n) is said to be weakly symmetric if the connected
components can be partitioned into pairs such that there is a bijection of the form
7(a) = a+e¢, between paired components. When there exists such a bijection between
components Comp(a) and Comp(b) we write Comp(a) ~ Comp(b).

It is a consequence of weak symmetry that paired components have the same
cardinality, but they may fail to have the same graph topology.

Theorem 4.3. If n = 2¥p, where p = 2! + 1 is a Fermat prime, then G(n) is
weakly symmetric. In particular, using the notation of Theorem 2.2,

Comp(0) ~ Comp(2?! +1) and Comp(1) ~ Comp(2°!).

Proof. First, to show that Comp(0) ~ Comp(2°! 4 1), define 7(a) = a+28'+1.
To prove that 7 is the desired bijection, we will show that 7(a) € Comp(2°! + 1) if
and only if a € Comp(0).

Suppose that a € Comp(0). Then by Theorem 3.3, a>” = 0 (mod n), where as
usual m = [logy(k)]. In particular, a = 0 (mod p). Since 2°! + 1 = 0 (mod p) as
well, 7(a) =0 (mod p). We also note that a is even. Since 5l > k,

ok—1

7(a) =(a+2° + 1)21971 = (a+ 1)2}671 (mod 2%).
A simple induction starting with (a+1) = 1 (mod 2) yields (aJrl)Qkf1 =1 (mod 2%),

and hence
2k —1

7(a)

1 (mod 2%).
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Since 7(a)?" ' = 28'4+1 =0 (mod p) and 7(a)2" " = 2% 41 =1 (mod 2¥), it follows
that 7(a)2" = 2% + 1 (mod n), and therefore 7(a) € Comp(2°! + 1), as desired.

Conversely, suppose that 7(a) € Comp(2°! + 1). Then, by Theorem 3.7,
(a+20+1)2""" =20 1+ 1 (mod n). In particular, (a +2% +1)2" ' =201 1=0

mod p). Since 2% + 1 = 0 (mod p), it follows that =0 (mod p), and hence

a = 0 (mod p). Similarly, (a + 2% + 1) = 1 (mod 2¥). Since 20! + 1 = 1
(mod 2*), we conclude that (a +1)2" " =1 (mod 2¥). It follows that a is even, and
hence a®” = 0 (mod 2¥). But now a®>” = 0 (mod n) and @ € Comp(0), as desired.
This proves that Comp(0) ~ Comp(2°! + 1).

Next, to show that Comp(1) ~ Comp(2®!), define 7(a) = a + 2% — 1. Suppose
that a € Comp(1). Then a2 = 1 (mod n) for some t. Therefore a2 = 1 (mod p)
and ¢ =1 (mod 2%). Since a® =1 (mod p), we know that a is not divisible by p.
But 2% — 1 =0 (mod p), so 7(a) = a + 2%! — 1 is not divisible by p. It follows that
7(a) € (Z/pZ)*, and hence (7(a))* =1 (mod p). On the other hand, since a2 =
(mod 2%), we know that a is odd. Therefore 7(a) = a+2% —1 is even. Consequently
(7(a))?" =0 (mod 2¥). We now conclude that (7(a))™**(2"2") = 29 (mod n), and
hence 7(a) € Comp(2).

Conversely, suppose that 7(a) € Comp(2*!). Then (7(a))? = 2% (mod n), for
some t. It follows that (7(a))2 =1 (mod p) and (7(a))?" = 0 (mod 2¥). The first of
these congruences implies that 7(a) is not divisible by p. Since 7(a) = a+2% —1 and
221 —1 =0 (mod p), it follows that a is not divisible by p. Therefore a € (7 /pZ)* and

a? = (mod p). The second congruence implies that 7(a) is even. But then a is odd.
Consequently a € (Z/2%7)*, so a2 = 1 (mod 2%). It follows that amax(2'2") = 1
(mod n), so a € Comp(1), as desired. O

Theorem 4.4. If n = 2*p, where p = 2! 4 1 is a Fermat prime, then, using the
notation of Theorem 2.2,

|Comp(0)| = [Comp(2°! 4 1)| = 2~~!
and

[Comp(1)| = [Comp(2°')| = 257 (p — 1).

Proof. It is easy to see that a € Comp(0) if and only if a is even and divisible
by p. Clearly Z /nZ contains 2¥ multiples of p, of which 2¥~1 are even. Therefore
|Comp(0)| = 2¥~1. By Theorem 4.3, Comp(0) ~ Comp(2%! + 1), which implies that
|Comp(0)| = |Comp(2°! + 1)].

Similarly, the elements of Comp(1) are invertible elements of Z/nZ that have
2-power order. Thus the elements of Comp(1) are just those integers belonging
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to the Sylow 2-subgroup of the unit group (Z/nZ)*. Since p is a Fermat prime,
|(Z/pZ)*| = p—1 = 2! is a power of two, and we conclude that |Comp(1)]
|(Z /nZ)*|2 = 2*~1(p — 1). Since Theorem 4.3 implies that Comp(1) ~ Comp(2%
we conclude that [Comp(1)| = |Comp(2)]|, as desired.

~—

)

O

5. SYMMETRY

It is known [6] that the iteration graph G(n) is symmetric when n = 2 (mod 4)
and when n = 4 (mod 8). However, beyond these two infinite families of graphs,
symmetry seems to be quite rare. In this section we offer a characterization of the
symmetry of the graphs G(n) for n = 2¥p, where p is a Fermat prime, by applying
the invariants described in the previous sections. In particular, we show that for each
Fermat prime p, the graphs G(n) fail to be symmetric when k¥ = 3 and when & > 5.
Thus, each Fermat prime contributes an infinite family of nonsymmetric iteration
graphs.

Our argument is motivated by the observation that the heights of two components,
Comp(0) and Comp(2?) increase logarithmically, while the heights of the other two
components Comp(1) and Comp(2”! + 1) increase linearly as a function of k. Thus,
for large k the heights must differ, and components from the two groups cannot be
isomorphic. However, within the two groups, the cardinalities differ, again preventing
isomorphism. Our asymptotic argument works for all k¥ > 6, and specific comparison
of component heights also provides a proof when k£ = 3. When k = 5, all components
may have the same height, and an ad hoc argument must be applied.

As remarked above, it is known that G(n) is symmetric when & = 1 and when
k = 2. To this list we add the case k = 4. Thus, each Fermat prime p, contributes an
iteration graph G(n) = G(16p) that is symmetric. We offer no opinion as to whether
this provides an infinite family of symmetric graphs. We suspect, however, that the
methods we apply here may be modified to work for integers n that are not of the
from 2Fp. In a future paper we intend to investigate conditions under which graphs
G(n) for which n = 16 (mod 32) are symmetric.

Theorem 5.1. Suppose n = 25p, where p = 2 4+ 1 is a Fermat prime. Then the
iteration graph G(n) is not symmetric when k = 3 and when k > 6.

Proof. If G(n) is symmetric, Comp(0) must be isomorphic to one of the
other three components. Since isomorphic components have the same cardinality,
and 281 £ 2k=1(p — 1), Theorem 4.4 implies that Comp(0) is not isomorphic to
Comp(1) or to Comp(2°!). However, isomorphic components must also have the same
height. By Theorem 3.3, Height(Comp(0)) = m = [log,(k)] and, by Theorem 3.7,
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Height(Comp(2%! + 1) = k — 2 when k£ > 2. It is an easy exercise in calculus to
verify that £k — 2 > m when k > 6. Furthermore, when k£ = 3 we obtain £k — 2 =
1 # 2 = [logy(3)]. Tt follows that Comp(0) is not isomorphic to Comp(27! + 1) when
k = 3 and when k > 6. We conclude that Comp(0) is not isomorphic to any of the
other three components, and therefore G(n) is not symmetric, when ¥ = 3 and when
k> 6. O

Since it is known that G(n) is symmetric when k = 1 and k = 2, Theorem 5.1
leaves open two cases: k = 4 and k = 5. In our last two theorems we show that G(n)

is symmetric when k£ = 4 and is not symmetric when k = 5.

Theorem 5.2. Suppose n = 2¥p, where p = 2! 4 1 is a Fermat prime. Then the
iteration graph G(n) is not symmetric when k = 5.

Proof. As in the proof of Theorem 5.1, Comp(0) cannot be isomorphic to
Comp(1) or to Comp(2°!), so it suffices to show that Comp(0) is also not isomorphic
to Comp(2°! +1).

By Theorem 3.3 and Theorem 3.7, we see that Height(Comp(0)) = m = 3 and
Height(Comp(2%! + 1)) = k — 2 = 3, so both components have height 3. Let
A C Comp(0) be the set of elements whose distance from 0 is equal to 3 and
B C Comp(2° + 1) the set of elements whose distance from 27! + 1 is 3. An
isomorphism between Comp(0) and Comp(2%! 4 1) must induce a bijection between
A and B.

Clearly, if a € A, then ¢® = 0 (mod n) while a* # 0 (mod n). It follows that
a = 2ps for some odd s. Now, if 2ps and 2pt are two elements of A, then we claim
that (2ps)? = (2pt)? (mod n). Clearly, (2pt)? — (2ps)? = 4(t*> — s*)p? = 0 (mod p).
Moreover, t2 —s? = 0 (mod 8), because 1 is the only square of an odd integer modulo
8,50 4(t>—s%)p? = 0 (mod 32). Thus (2ps)? = (2pt)? (mod n), as desired. It follows
that any two elements of A connect to the same element of G(n).

By the Chinese Remainder Theorem, for each integer s of order 8 in the unit group
(Z/322)* there is a unique b € Z /nZ such that b = 0 (mod p) and b = s (mod 32).
Clearly each b chosen in this way belongs to B. Since 3 and 5 have order 8 modulo
32, we can find a and b € B with a = 3 (mod 32) and b = 5 (mod 32). But then
b? —a? =25—9 =16 (mod 32). Consequently, a? # b* (mod n), and hence a and b
connect to distinct elements of G(n).

It now follows that no bijection from Comp(0) to Comp(2?! + 1) can preserve the
graph topology of G(n). Therefore Comp(0) is not isomorphic to Comp(2° + 1),
and the graph G(n) is not symmetric. O

140



Theorem 5.3. Suppose n = 25p, where p = 2 4+ 1 is a Fermat prime. Then the
iteration graph G(n) is symmetric when k = 4.

Proof. Toshow that G(n) is symmetric, we prove that Comp(0) = Comp(2°! +
1) and Comp(1) = Comp(2°).

By Theorem 4.4, |Comp(0)| = |Comp(2° + 1)| = 8 and, by Theorem 3.3 and
Theorem 3.7, Height(Comp(0)) = Height(Comp(2°" + 1)) = 2. As in the proof of
Theorem 5.2, the elements of Comp(0) that lie a maximal distance from 0 have the
form 2ps for odd s. In particular, there are four such elements: 2p, 6p, 10p, and 14p.
Each of these elements satisfies (2ps)? = 4p?s? = 0 (mod p) and (2ps)? = 4p?s? =
4p? (mod 16), so in G(n) they connect to the same element 4p®>. The elements a
distance one from 0 have the form 4p®s or 8p?s for odd s. There are exactly three
of them: 4p?, 8p?, and 12p>.

Also as in the proof of Theorem 3.7, the elements of Comp(2°! 4 1) that lie a
maximal distance from 2°! + 1 are divisible by p and congruent to an element of
maximal order 4 in (Z /16Z)*. Since (Z/16Z)* has four elements of order 4, namely
3, 5, 11, and 13, exactly four elements lie a distance two from 2°! + 1. In particular,
since p = 241 with I > 1, it follows that p* = (2!4+1)* = 2444234622 +4.21+1 =1
(mod 16), so we can write these four elements as 3p*, 5p*, 11p*, and 13p*. Since
each of these elements has square congruent to 9 modulo 16 and 0 modulo p, they
all connect to the same element in G(n). In particular, they all connect to 9p*. The
elements a distance one from 27! + 1 are divisible by p and congruent to an element
of order 2 in (Z/16Z)*. The elements of order two in (Z/16Z)* are 7, 9, and 15, so
the elements a distance one from 28! +1 are 7p*, 9p*, and 15p*. Note that 20/ +1 =1
(mod 16) and 2%/ +1 =0 (mod p), so 27! + 1 = p* (mod n).

It follows that the map 7: Comp(0) — Comp(2°! + 1) defined by

2p— 3p* 6p i 5pt, 10p— 11pt,  14p — 13p*,
ap* = 9p*, 8p® = Tpt, 127 — 15p*, 04— pt

is an isomorphism.

Next we consider the structure of Comp(1) and Comp(2°!). As noted in the proof
of Theorem 3.4, the elements of Comp(1) belong to the Sylow 2-subgroup of (Z /nZ)*,
which is isomorphic to Z4 X Zy X Zy.

From the analysis in Theorem 3.5 it is evident that the elements of Comp(2?!) are
congruent to 0 (mod 2) and are relatively prime to p. Under the natural multipli-
cation in Z /nZ, the elements of Comp(2*!) do not form a group. We will introduce
a new operation x on Comp(2*!) which coincides with squaring in Z /nZ and under
which Comp(2%!) forms a group isomorphic to Z; X Zy x Zy . It will then follow that
Comp(2*!) = Comp(1), as desired.
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To begin, we identify each of the eight even integers a € {0,2,4,6,8,10,12,14}
with a corresponding element o(a) € Z /4Z x 7 /27 as follows:

U(O) = (070)7 0(2) = (170)7 0(4) = (270)7 0(6) = (370)7
o(8) =(0,1), o(10) = (1,1), o(12) = (2,1), o(14) = (3,1).

We now associate each element a € Comp(2®!) with an element 7(a) € Zy x Za x Zy
by setting 7(a) = (0(a),a), where G is the natural image of a in 7 /167 and a is
the natural image of a in (Z/pZ)* = Zy. Note that we have written the first two
components of Z4 X Zy X Zy additively and the third component multiplicatively, so
7(a)7(b) = (o(a) + o(b),ab).

The map 7 is easily seen to be a bijection. By the Chinese Remainder Theorem,
each element of Comp(2%) is uniquely determined by its residues modulo 16 and p.
Conversely, via the identification 7, each element of Z, X Zy X Zy corresponds to a
unique residue modulo n that is even and relatively prime to p.

Since 7 is a bijection, we can use 7 to induce a multiplication * on Comp(2°!) by
setting a * b = 771(7(a)7(b)), and it is immediate that under this induced multipli-
cation Comp(2!) is isomorphic as a group to Z; X Zo X Zoi.

It remains to show that squaring under the induced multiplication * coincides with
the standard squaring operation in Comp(2!). Clearly, if a, b € Comp(2!), ab = ab,
so @® = a2. On the other hand, note that (&) + o(a) = (0,0) when a € {0,4,8,12},
i.e., when a = 0 (mod 4) and o(a) + o(a) = (2,0) when a € {2,6, 10,14}, i.e., when
a =2 (mod 4). However, if a € Comp(2*) and @ = 0 (mod 4), then certainly a? = 0
(mod 16), so O’((J/,\2) = (0,0) = o(a) +o(a) and if a = 2 mod 4, then a? = 4 (mod 16),
so o(a?) = (2,0) = o(a) + o(a).

It now follows that the graphs Comp(1) and Comp(2%!) are both isomorphic to
the graph of the group Z4 x Z3 X Zy, and are hence isomorphic to each other.

We have now shown that Comp(0) 22 Comp(2°! + 1) and Comp(1) = Comp(2°!),
and hence G(n) is symmetric. 0
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6. DIAGRAMS

The following twelve diagrams, constructed with the aid of the computational
mathematics package Gap [4] and displayed using the Graphviz visualization tool [3]
display the iteration graphs G(3 - 2¥) and G(5 - 2%) for 1 < k < 6.
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143



@?@ o) elololo ololols o

GO || &GO & L

G(160) G(320)

References
[1] Earle L. Blanton, Jr., Spencer P. Hurd and Judson S. McCranie: On a digraph defined
by squaring modulo n. Fibonacci Quart. 30 (1992), 322-334.
[2] Guy Chassé: Combinatorial cycles of a polynomial map over a commutative field. Dis-
crete Math. 61 (1986), 21-26.
[3] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North and Gordon Wood-
hull: Graphviz-open source graph drawing tools. Graph drawing (Petra Mutzel, Michael
Jiinger, and Sebastian Leipert, eds.), Lecture Notes in Computer Science, vol. 2265,
Springer-Verlag, Berlin, 2002, Selected papers from the 9th International Symposium
(GD 2001) held in Vienna, September 23-26, 2001, pp. 483-484. (In English.)

144



[4] The GAP Group, Gap-groups, algorithms, and programming, version 4.4, 2005,
(http://www.gap-system.org).
[6] Thomas D. Rogers: The graph of the square mapping on the prime fields. Discrete Math.

148 (1996), 317-324.
[6] Lawrence Somer and Michal KiiZek: On a connection of number theory with graph
theory. Czechoslovak Math. J. 54 (2004), 465-485.

[7] L. Szalay: A discrete iteration in number theory. BDTF Tud. Kozl. 8 (1992), 71-91.
[8] Troy Vasiga and Jeffrey Shallit: On the iteration of certain quadratic maps over GF(p).
Discrete Math. 277 (2004), 219-240.

Authors’ addresses: Walter Carlip, Department of Mathematics, Franklin & Mar-
shall College, Lancaster, Pennsylvania 17604, USA, e-mail: c3ar@math.uchicago.edu;
Martina Mincheva, Department of Mathematics, Franklin & Marshall College, Lan-
caster, Pennsylvania 17604, USA.

145



		webmaster@dml.cz
	2020-07-03T17:12:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




