Czechoslovak Mathematical Journal

Futaba Okamoto; Ping Chang; Varaporn Saenpholphat The upper traceable number of a graph

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 1, 271-287
Persistent URL: http://dml.cz/dmlcz/128257

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE UPPER TRACEABLE NUMBER OF A GRAPH

Futaba Okamoto, Kalamazoo, Ping Zhang, Kalamazoo, Varaporn Saenpholphat, Bangkok

(Received February 20, 2006)

Abstract. For a nontrivial connected graph G of order n and a linear ordering s : $v_{1}, v_{2}, \ldots, v_{n}$ of vertices of G, define $d(s)=\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)$. The traceable number $t(G)$ of a graph G is $t(G)=\min \{d(s)\}$ and the upper traceable number $t^{+}(G)$ of G is $t^{+}(G)=$ $\max \{d(s)\}$, where the minimum and maximum are taken over all linear orderings s of vertices of G. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which $t^{+}(G)-t(G)=1$ are characterized and a formula for the upper traceable number of a tree is established.

Keywords: traceable number, upper traceable number, Hamiltonian number
MSC 2000: 05C12, 05C45

1. Introduction and some known results

We refer to the book [6] for graph-theoretical notation and terminology not described in this paper. For a connected graph G of order $n \geqslant 3$ and a cyclic ordering $s: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ of vertices of G, the number $d(s)$ is defined as

$$
d(s)=\sum_{i=1}^{n} d\left(v_{i}, v_{i+1}\right)
$$

where $d\left(v_{i}, v_{i+1}\right)$ is the distance between v_{i} and v_{i+1}. Therefore, $d(s) \geqslant n$ for each cyclic ordering s of vertices of G. The Hamiltonian number $h(G)$ of G is defined in [5] by

$$
h(G)=\min \{d(s)\},
$$

Research supported by Srinakharinwirot University, the Thailand Research Fund and the Commission on Higher Education, Thailand under the grant number MRG 5080075.
where the minimum is taken over all cyclic orderings s of the vertices of G. Therefore, $h(G)=n$ if and only if G is Hamiltonian. In [7], [8] Goodman and Hedetniemi introduced the concept of a Hamiltonian walk in a connected graph G, defined as a closed spanning walk of minimum length in G. During the 10-year period 1973-1983, this concept received considerable attention. For example, Hamiltonian walks were also studied by Asano, Nishizeki and Watanabe [1], [2], Bermond [3], Nebeský [9], and Vacek [12]. It was shown in [5] that the Hamiltonian number of a connected graph G is, in fact, the length of a Hamiltonian walk in G. This concept was studied further in [4], [10], [11].

A concept related to the Hamiltonian number of a graph was introduced in [10]. A graph has been called traceable if it contains a Hamiltonian path. Therefore, every Hamiltonian graph is traceable. The converse is not true of course. For a connected graph G of order $n \geqslant 2$ and an ordering (also called a linear ordering) $s: v_{1}, v_{2}, \ldots, v_{n}$ of vertices of G, the number $d(s)$ is defined as

$$
d(s)=\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)
$$

The traceable number $t(G)$ of G is defined in [10] by

$$
t(G)=\min \{d(s)\}
$$

where the minimum is taken over all linear orderings s of vertices of G. Thus if G is a connected graph of order $n \geqslant 2$, then $t(G) \geqslant n-1$. Furthermore, $t(G)=n-1$ if and only if G is traceable. As with Hamiltonian numbers of graphs, there is an alternative way to define the traceable number of a connected graph. It was shown in [10] that the traceable number of a connected graph G is the minimum length of a spanning walk in G. All of the results stated in this section appear in [10].

Theorem 1.1. For every nontrivial connected graph G,

$$
1 \leqslant h(G)-t(G) \leqslant \operatorname{diam}(G)
$$

Furthermore, $h(G)-t(G)=1$ if and only if G is Hamiltonian.

Theorem 1.2. Let G be a nontrivial connected graph of order n such that l is the length of a longest path in G and p is the maximum size of a spanning linear forest in G. Then

$$
2 n-2-p \leqslant t(G) \leqslant 2 n-2-l
$$

For a vertex v in a connected graph G, the eccentricity $e(v)$ of v is the largest distance between v and a vertex of G. The diameter $\operatorname{diam}(G)$ of a connected graph G is the largest eccentricity among all vertices of G.

Theorem 1.3. If T is a nontrivial tree of order n, then

$$
t(T)=2 n-2-\operatorname{diam}(T) .
$$

If G is a connected graph and H is a connected spanning subgraph of G, then $d_{G}(u, v) \leqslant d_{H}(u, v)$ for every two vertices u and v of G and so $t(G) \leqslant t(H)$. In particular, if G is a connected graph and T is a spanning tree of G, then $t(G) \leqslant t(T)$.

Theorem 1.4. If G is a connected graph of order $n \geqslant 3$, then

$$
n-1 \leqslant t(G) \leqslant 2 n-4
$$

Furthermore,
(a) $t(G)=2 n-4$ if and only if $G=K_{3}$ or $G=K_{1, n-1}$;
(b) $t(G)=2 n-5$ if and only if (1) $n=4$ and $G \neq K_{1,3}$, or (2) $n \geqslant 5$ and $G=K_{1, n-1}+e$ or G is a double star of order n; and
(c) for each pair k, n of integers with $3 \leqslant n-1 \leqslant k \leqslant 2 n-4$, there exists a connected graph of order n with traceable number k.

For a vertex v of a nontrivial connected graph G, the traceable number $t(v)$ of v is defined by

$$
t(v)=\min \{d(s)\},
$$

where the minimum is taken over all linear orderings s of vertices of G whose first term is v. Thus $t(v) \geqslant n-1$ for every vertex v of G. Furthermore, $t(v)=n-1$ if and only if G contains a Hamiltonian path with initial vertex v. Observe that

$$
t(G)=\min \{t(v): v \in V(G)\}
$$

Moreover, the traceable number of a vertex v in a connected graph G is the minimum length of a spanning walk in G whose initial vertex is v.

Theorem 1.5. Let G be a connected graph and let u and v be adjacent vertices of G. Then

$$
|t(u)-t(v)| \leqslant 1
$$

Therefore, if k is an integer such that

$$
\min \{t(v): v \in V(G)\} \leqslant k \leqslant \max \{t(v): v \in V(G)\},
$$

then there exists a vertex w of G such that $t(w)=k$.

Theorem 1.6. If T is a nontrivial tree of order n and v is a vertex of T, then

$$
t(v)=2(n-1)-e(v)
$$

It was observed in [10] that Theorem 1.6 is not true in general for a nontrivial connected graph that is not a tree.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

For a connected graph G, the upper Hamiltonian number $h^{+}(G)$ is defined in [5] by

$$
h^{+}(G)=\max \{d(s)\}
$$

where the maximum is taken over all cyclic orderings s of vertices of G. Obviously, $h(G) \leqslant h^{+}(G)$ for every connected graph G. The upper Hamiltonian number of a graph has been studied in [4], [5]. As expected, for a connected graph G, the upper traceable number $t^{+}(G)$ is defined by

$$
t^{+}(G)=\max \{d(s)\}
$$

where the maximum is taken over all linear orderings s of vertices of G. Consequently, $t(G) \leqslant t^{+}(G)$ for every connected graph G. For each integer $n \geqslant 3$, it was shown in [5] that K_{n} and $K_{1, n-1}$ are the only connected graphs G of order n for which $h(G)=h^{+}(G)$. In fact, there is only one nontrivial connected graph G of order n for which $t(G)=t^{+}(G)$. Observe that $t\left(K_{n}\right)=t^{+}\left(K_{n}\right)=n-1$ for $n \geqslant 2$. On the other hand, if $G \neq K_{n}$ is a connected graph of order $n \geqslant 3$, then G contains two nonadjacent vertices x and y such that $d(x, y)=2$. Let x, z, y be an $x-y$ path in G. Let $s: x, z, y, w_{1}, w_{2}, \ldots, w_{n-3}$ and $s^{\prime}: z, x, y, w_{1}, w_{2}, \ldots, w_{n-3}$ be two linear orderings of vertices of G. Then $d\left(s^{\prime}\right)=d(s)+1$ and so $t(G) \neq t^{+}(G)$. We state this observation as follows.

Observation 2.1. Let G be a nontrivial connected graph of order n. Then

$$
t(G)=t^{+}(G) \text { if and only if } G=K_{n} .
$$

As an illustration, we now establish the upper traceable numbers of complete multipartite graphs and the hypercubes.

Proposition 2.2. If $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$, where $n=n_{1}+n_{2}+\ldots+n_{k}$ and $k \geqslant 2$, then

$$
t^{+}(G)=2 n-k-1
$$

Proof. For each integer i with $1 \leqslant i \leqslant k$, let $V_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n_{i}}\right\}$ be a partite set of G. Then

$$
s_{0}: v_{1,1}, v_{1,2}, \ldots, v_{1, n_{1}}, v_{2,1}, v_{2,2}, \ldots, v_{2, n_{2}}, \ldots, v_{k, 1}, v_{k, 2}, \ldots, v_{k, n_{k}}
$$

is a linear ordering of vertices of G. Since

$$
d\left(s_{0}\right)=(k-1)+\sum_{i=1}^{k} 2\left(n_{i}-1\right)=2 n-k-1
$$

it follows that $t^{+}(G) \geqslant 2 n-k-1$. On the other hand, let $s: x_{1}, x_{2}, \ldots, x_{n}$ be an arbitrary linear ordering of vertices of G. Since $\operatorname{diam}(G)=2$, it follows that $d\left(x_{j}, x_{j+1}\right)=1$ or $d\left(x_{j}, x_{j+1}\right)=2$ for $1 \leqslant j \leqslant n-1$. Furthermore, there are at most $\sum_{i=1}^{k}\left(n_{i}-1\right)=n-k$ pairs $x_{j}, x_{j+1}(1 \leqslant j \leqslant n-1)$ for which $d\left(x_{j}, x_{j+1}\right)=2$. Thus

$$
d(s) \leqslant 2(n-k)+1 \cdot[(n-1)-(n-k)]=2 n-k-1
$$

and so $t^{+}(G) \leqslant 2 n-k-1$. Therefore, $t^{+}(G)=2 n-k-1$.
Proposition 2.3. For each integer $n \geqslant 2$,

$$
t^{+}\left(Q_{n}\right)=2^{n-1}(2 n-1)-n+1
$$

Proof. First, we show that $t^{+}\left(Q_{n}\right) \leqslant 2^{n-1}(2 n-1)-n+1$. Let s be an arbitrary linear ordering of $V\left(Q_{n}\right)$ with $d(s)=t^{+}\left(Q_{n}\right)$. Since $\operatorname{diam}\left(Q_{n}\right)=n$ and for each vertex v in Q_{n} there is exactly one vertex in Q_{n} whose distance from v is n, it follows that there are at most 2^{n-1} terms in $d(s)$ equal to n. Consequently, each of the remaining $2^{n-1}-1$ terms in $d(s)$ is at most $n-1$. Thus

$$
d(s) \leqslant 2^{n-1} n+\left(2^{n-1}-1\right)(n-1)=2^{n-1}(2 n-1)-n+1
$$

and so $t^{+}\left(Q_{n}\right) \leqslant 2^{n-1}(2 n-1)-n+1$.
Next we show that $t^{+}\left(Q_{n}\right) \geqslant 2^{n-1}(2 n-1)-n+1$. Since the result is true for Q_{2}, we may assume that $n \geqslant 3$. Let $G=Q_{n}$. Then G consists of two disjoint copies G_{1} and G_{2} of Q_{n-1}, where the corresponding vertices of G_{1} and G_{2} are adjacent.

For each vertex v of G, there is a unique vertex \bar{v} of G such that $d(v, \bar{v})=n=$ $\operatorname{diam}\left(Q_{n}\right)$. Necessarily, exactly one of v and \bar{v} belongs to G_{1} for each vertex v of G. It is well-known that Q_{n} is Hamiltonian for $n \geqslant 2$ and so Q_{n} is traceable. Let $P: v_{1}, v_{2}, \ldots, v_{2^{n-1}}$ be a Hamiltonian path in G_{1}. Now define a linear ordering s of $V(G)$ by

$$
s: v_{1}, \bar{v}_{1}, v_{2}, \bar{v}_{2}, \ldots, v_{2^{n-1}}, \bar{v}_{2^{n-1}}
$$

Since $d\left(v_{i}, \bar{v}_{i}\right)=n$ and $d\left(v_{i}, v_{i+1}\right)=1$ for $1 \leqslant i \leqslant 2^{n-1}-1$, it follows by the triangle inequality that

$$
n=d\left(v_{i}, \bar{v}_{i}\right) \leqslant d\left(v_{i}, v_{i+1}\right)+d\left(v_{i+1}, \bar{v}_{i}\right)=1+d\left(v_{i+1}, \bar{v}_{i}\right) .
$$

Thus $d\left(v_{i+1}, \bar{v}_{i}\right) \geqslant n-1$, which implies that $d\left(v_{i+1}, \bar{v}_{i}\right)=n-1$. Hence

$$
t^{+}\left(Q_{n}\right) \geqslant d(s)=2^{n-1} n+\left(2^{n-1}-1\right)(n-1)=2^{n-1}(2 n-1)-n+1
$$

as desired.
If $s: v_{1}, v_{2}, \ldots, v_{n}$ is an arbitrary linear ordering of vertices of a connected graph, then for each vertex v_{i}, both $d\left(v_{i-1}, v_{i}\right) \leqslant e\left(v_{i}\right)(2 \leqslant i \leqslant n)$ and $d\left(v_{i}, v_{i+1}\right) \leqslant e\left(v_{i}\right)$ $(1 \leqslant i \leqslant n-1)$. Thus, If G is a connected graph of order $n \geqslant 2$ and $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then

$$
t^{+}(G) \leqslant \sum_{i=1}^{n-1} e\left(v_{i}\right)
$$

Since the eccentricity of a vertex in G is at most the diameter of G, we have the following observation, which provides an upper bound for the upper traceable number of a graph in terms of its order and diameter.

Observation 2.4. If G is a nontrivial connected graph of order n, then

$$
t^{+}(G) \leqslant(n-1) \operatorname{diam}(G)
$$

The upper bound for the upper traceable number of a graph described in Observation 2.4 is sharp. For example, $t^{+}\left(C_{n}\right)=(n-1) \operatorname{diam}\left(C_{n}\right)$ for each odd integer $n \geqslant 3$, as we show next.

Proposition 2.5. For each integer $n \geqslant 3$,

$$
t^{+}\left(C_{n}\right)=\left\lceil\frac{(n-1)^{2}}{2}\right\rceil
$$

Proof. Let $C_{n}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and let $d=\operatorname{diam}\left(C_{n}\right)=\lfloor n / 2\rfloor$ be the diameter of C_{n}. We consider two cases according to whether n is odd or n is even.

Case 1. n is odd. Then $n=2 k+1$ for some positive integer k and so $d=k=$ $(n-1) / 2$. By Observation $2.4, t^{+}\left(C_{n}\right) \leqslant(n-1) d$. Let

$$
s_{0}: v_{1}, v_{k+1}, v_{2 k+1}, v_{3 k+1}, \ldots, v_{(2 k+1) k+1}
$$

be a linear ordering of elements of $V\left(C_{n}\right)$, where each subscript is expressed modulo $2 k+1$ as one of the integers $1,2, \ldots, 2 k+1$. Since $d\left(s_{0}\right)=(2 k) k=(n-1) d$, it follows that $t^{+}\left(C_{n}\right) \geqslant(n-1) d$. Thus

$$
t^{+}\left(C_{n}\right)=(n-1) d=\frac{(n-1)^{2}}{2}=\left\lceil\frac{(n-1)^{2}}{2}\right\rceil
$$

if n is odd.
Case 2. n is even. Then $n=2 k$ for some integer $k \geqslant 2$ and so $d=k=n / 2$. Let s be a linear ordering of vertices of C_{n} with $d(s)=t^{+}\left(C_{n}\right)$. Since $\operatorname{diam}\left(C_{n}\right)=k$ and for each $v \in V\left(C_{n}\right)$ there is exactly one vertex in C_{n} whose distance from v is k, it follows that at most k terms in $d(s)$ equal k. Consequently, at least $k-1$ terms in $d(s)$ are $k-1$ or less. Thus

$$
d(s) \leqslant k^{2}+(k-1)^{2}=2 k^{2}-2 k+1=\frac{(n-1)^{2}+1}{2}
$$

and so $t^{+}\left(C_{n}\right) \leqslant \frac{1}{2}\left((n-1)^{2}+1\right)$. On the other hand, let

$$
s_{1}: v_{1}, v_{k+1}, v_{2}, v_{k+2}, v_{3}, v_{k+3}, \ldots, v_{k-1}, v_{(k-1)+k}, v_{k}, v_{2 k}
$$

be a linear ordering of the vertices of C_{n}. Since $d\left(s_{1}\right)=k^{2}+(k-1)^{2}=\frac{1}{2}\left((n-1)^{2}+1\right)$, it follows that $t^{+}\left(C_{n}\right) \geqslant d\left(s_{1}\right)=\frac{1}{2}\left((n-1)^{2}+1\right)$. Therefore,

$$
t^{+}\left(C_{n}\right)=\frac{(n-1)^{2}+1}{2}=\left\lceil\frac{(n-1)^{2}}{2}\right\rceil
$$

if n is even.

3. A Characterization of graphs whose traceable and UPPER TRACEABLE NUMBERS DIFFER BY 1

By Observation 2.1, the complete graph K_{n} of order $n \geqslant 2$ is the only nontrivial connected graph G of order n for which $t(G)=t^{+}(G)$. In this section we first present a characterization of those connected graphs G for which $t^{+}(G)-t(G)=1$.

Theorem 3.1. Let G be a connected graph of order $n \geqslant 3$. Then

$$
t^{+}(G)-t(G)=1 \text { if and only if } G=K_{n}-e \text { or } G=K_{1, n-1} .
$$

Proof. First observe that for $n \geqslant 3, t^{+}\left(K_{n}-e\right)=n$ and $t\left(K_{n}-e\right)=n-1$, while $t^{+}\left(K_{1, n-1}\right)=2 n-3$ and $t\left(K_{1, n-1}\right)=2 n-4$. Hence, if $G=K_{n}-e$ or $G=K_{1, n-1}$, then $t^{+}(G)-t(G)=1$. It remains therefore to verify the converse.

Let G be a connected graph of order $n \geqslant 3$ such that $t^{+}(G)-t(G)=1$. We claim that $\operatorname{diam}(G)=2$. Assume, to the contrary, that $\operatorname{diam}(G) \neq 2$. If $\operatorname{diam}(G)=1$, then $G=K_{n}$. However, $t^{+}\left(K_{n}\right)=t\left(K_{n}\right)=n-1$. If $\operatorname{diam}(G) \geqslant 3$, then G contains two vertices u and v such that $d(u, v)=3$. Let u, x, y, v be a $u-v$ path in G and let $v_{1}, v_{2}, \ldots, v_{n-4}$ be the remaining vertices of G. Also, let $v_{0}=v$ and

$$
\sum_{i=0}^{n-5} d\left(v_{i}, v_{i+1}\right)=a
$$

For the linear orderings

$$
s_{1}: u, x, y, v, v_{1}, v_{2}, \ldots, v_{n-4}
$$

and

$$
s_{2}: u, y, x, v, v_{1}, v_{2}, \ldots, v_{n-4}, \quad d\left(s_{1}\right)=a+3 \quad \text { and } \quad d\left(s_{2}\right)=a+5
$$

Since $t(G) \leqslant d\left(s_{1}\right)$ and $t^{+}(G) \geqslant d\left(s_{2}\right)$, it follows that $t^{+}(G)-t(G) \geqslant 2$, a contradiction. Thus, $\operatorname{diam}(G)=2$, as claimed.

We now consider two cases, depending on whether G is traceable.
Case 1. G is traceable. Then $t(G)=n-1$. Since $G \neq K_{n}$, the graph G contains at least one pair of nonadjacent vertices. Suppose that G contains two pairs u, v and x, y of nonadjacent vertices. If the vertices $\{u, v\} \cap\{x, y\}=\emptyset$, then every linear ordering s^{\prime} beginning with u, v, x, y has $d\left(s^{\prime}\right) \geqslant n+1$, which is a contradiction. If $\{u, v\} \cap\{x, y\} \neq \emptyset$, say $v=x$, then every linear ordering $s^{\prime \prime}$ beginning with u, v, y has $d\left(s^{\prime \prime}\right) \geqslant n+1$, a contradiction. Hence G contains exactly one pair of nonadjacent vertices and so $G=K_{n}-e$.

Case 2. G is not traceable. Then $t(G)=n+k-2$ for some integer $k \geqslant 2$. Thus G contains k pairwise vertex-disjoint paths $G_{1}, G_{2}, \ldots, G_{k}$ such that $\left\{V\left(G_{1}\right)\right.$, $\left.V\left(G_{2}\right), \ldots, V\left(G_{k}\right)\right\}$ is a partition of $V(G)$. However, G does not contain fewer than k pairwise vertex-disjoint paths with these properties. Suppose that G_{i} is an $x_{i}-y_{i}$ path for $1 \leqslant i \leqslant k$. Furthermore, let x_{i}, \ldots, y_{i} denote the $x_{i}-y_{i}$ path G_{i} for $1 \leqslant i \leqslant k$. Then the linear ordering

$$
s: x_{1}, \ldots, y_{1}, x_{2}, \ldots, y_{2}, \ldots, y_{k-1}, x_{k}, \ldots, y_{k}
$$

of the vertices of G has the property that $d(s)=t(G)=n+k-2$. Furthermore, $d(s)$ contains exactly $k-1$ terms, namely $d\left(y_{i}, x_{i+1}\right)$ for $1 \leqslant i \leqslant k-1$, that equal 2 , with all other terms equal to 1 .

Observe that $x_{i} x_{j}, x_{i} y_{j}, y_{i} y_{j} \notin E(G)$ for all i and j with $1 \leqslant i, j \leqslant k$ and $i \neq j$, for otherwise G contains fewer than k vertex-disjoint paths whose vertex sets form a partition of $V(G)$.

Next we claim that at most one of the paths $G_{i}(1 \leqslant i \leqslant k)$ has order 2 or more. Suppose to the contrary that there are two such paths, say G_{1} and G_{2}. Let s_{0} be a linear ordering of the vertices of G beginning with $x_{1}, x_{2}, y_{1}, y_{2}$ and containing the pairs $y_{i}, x_{i+1}(2 \leqslant i \leqslant k-1)$ as consecutive terms. Then $d\left(s_{0}\right)$ contains at least $3+(k-2)=k+1$ terms equal to 2 . Thus

$$
d\left(s_{0}\right) \geqslant 2(k+1)+[(n-1)-(k+1)]=n+k
$$

which is a contradiction. Thus, as claimed, at most one of the paths $G_{i}(1 \leqslant i \leqslant k)$ has order 2 or more, say G_{1}. Since G is connected and none of $x_{i} x_{j}, x_{i} y_{j}, y_{i} y_{j}$ are edges of G for i and j with $1 \leqslant i, j \leqslant k$ and $i \neq j$, the path G_{1} has order 3 or more. If G_{1} has order 3 , say G_{1} is the path x_{1}, v, y_{1}, then $v x_{i} \in E(G)$ for $2 \leqslant i \leqslant k$ and $x_{1} y_{1} \notin E(G)$ and so $G=K_{1, n-1}$.

Suppose then that G_{1} has order 4 or more. Each of the vertices $x_{i}(2 \leqslant i \leqslant k)$ must be adjacent to an interior vertex of G_{1}. Thus $x_{1} y_{1} \notin E(G)$, for otherwise, G contains fewer than k vertex-disjoint paths whose vertex sets form a partition of $V(G)$, which is a contradiction. Indeed, we claim that each vertex $x_{i}(2 \leqslant i \leqslant k)$ must be adjacent to every interior vertex of G_{1}; assume, to the contrary, that some vertex x_{i}, say x_{2}, is not adjacent to the interior vertex v of G_{1}. Let s^{*} be a linear ordering of vertices of G beginning with $v, x_{2}, y_{1}, x_{1}, x_{3}, x_{4}, \ldots, x_{k}$. Then $d\left(s^{*}\right)$ contains at least $k+1$ terms equal to 2 . Thus

$$
d\left(s^{*}\right) \geqslant 2(k+1)+[(n-1)-(k+1)]=n+k,
$$

which is a contradiction. Since x_{2} is adjacent to all interior vertices of G_{1}, there is a path in G with the vertex set $V\left(G_{1}\right) \cup\left\{x_{2}\right\}$. However then G contains fewer than k vertex-disjoint paths whose vertex sets form a partition of $V(G)$, which is a contradiction.

4. The upper traceable number of a tree

In this section we establish a formula for the upper traceable number of a tree. In order to do this, we first study the relationship between the upper traceable number and upper Hamiltonian number of a graph.

Proposition 4.1. For every connected graph G of order $n \geqslant 3$,

$$
1 \leqslant h^{+}(G)-t^{+}(G) \leqslant \operatorname{diam}(G)
$$

Proof. Let $s_{c}: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ be a cyclic ordering of vertices of G with $d\left(s_{c}\right)=h^{+}(G)$. Then $s_{l}: v_{1}, v_{2}, \ldots, v_{n}$ is a linear ordering of vertices of G. Since

$$
t^{+}(G) \geqslant d\left(s_{l}\right)=d\left(s_{c}\right)-d\left(v_{1}, v_{n}\right) \geqslant h^{+}(G)-\operatorname{diam}(G)
$$

it follows that $h^{+}(G)-t^{+}(G) \leqslant \operatorname{diam}(G)$. On the other hand, let $s_{l}^{\prime}: v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be a linear ordering of vertices of G with $d\left(s_{l}^{\prime}\right)=t^{+}(G)$. Then $s_{c}^{\prime}: v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$, $v_{n+1}^{\prime}=v_{1}^{\prime}$ is a cyclic ordering of vertices of G. Since

$$
h^{+}(G) \geqslant d\left(s_{c}^{\prime}\right)=d\left(s_{l}^{\prime}\right)+d\left(v_{1}, v_{n}\right) \geqslant t^{+}(G)+1
$$

it follows that $h^{+}(G)-t^{+}(G) \geqslant 1$.

Proposition 4.2. For every nontrivial connected graph G of order n,

$$
h^{+}(G)-t^{+}(G)=\operatorname{diam}(G) \text { if and only if } h^{+}(G)=n \operatorname{diam}(G)
$$

Proof. Let $s_{c}: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ be a cyclic ordering of the vertices of G with $d\left(s_{c}\right)=h^{+}(G)$. Then $s_{l}: v_{1}, v_{2}, \ldots, v_{n}$ is a linear ordering of the vertices of G. First assume that $h^{+}(G)-t^{+}(G)=\operatorname{diam}(G)$. We will show that $d\left(v_{i}, v_{i+1}\right)=$ $\operatorname{diam}(G)$ for $1 \leqslant i \leqslant n$. For each i with $1 \leqslant i \leqslant n$, let

$$
s_{i}: v_{i+1}, v_{i+2}, \ldots, v_{n}, v_{n+1}=v_{1}, v_{2}, \ldots, v_{i} .
$$

Then

$$
t^{+}(G) \geqslant d\left(s_{i}\right)=d\left(s_{c}\right)-d\left(v_{i}, v_{i+1}\right)=h^{+}(G)-d\left(v_{i}, v_{i+1}\right) .
$$

Thus $d\left(v_{i}, v_{i+1}\right) \geqslant h^{+}(G)-t^{+}(G)=\operatorname{diam}(G)$, implying that $d\left(v_{i}, v_{i+1}\right)=\operatorname{diam}(G)$ for each i with $1 \leqslant i \leqslant n$. Therefore, $h^{+}(G)=d(s)=n \operatorname{diam}(G)$.

For the converse, assume that $h^{+}(G)=n \operatorname{diam}(G)$. Since

$$
t^{+}(G) \geqslant d\left(s_{l}\right)=d\left(s_{c}\right)-d\left(v_{1}, v_{n}\right)=n \operatorname{diam}(G)-d\left(v_{1}, v_{n}\right) \geqslant(n-1) \operatorname{diam}(G)
$$

it follows by Observation 2.4 that $t^{+}(G)=(n-1) \operatorname{diam}(G)$. Therefore, $h^{+}(G)-$ $t^{+}(G)=\operatorname{diam}(G)$.

It was shown in [5] that

$$
\begin{equation*}
h^{+}\left(P_{n}\right)=\left\lfloor\frac{n^{2}}{2}\right\rfloor \tag{1}
\end{equation*}
$$

for $n \geqslant 2$. We now determine the upper traceable number of the path P_{n} for $n \geqslant 2$.
Proposition 4.3. For each integer $n \geqslant 2$,

$$
t^{+}\left(P_{n}\right)=\left\lfloor\frac{n^{2}}{2}\right\rfloor-1
$$

Proof. Since $h^{+}\left(P_{n}\right)=\left\lfloor\frac{1}{2} n^{2}\right\rfloor$, it follows by Proposition 4.1 that $t^{+}\left(P_{n}\right) \leqslant$ $\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$. To verify that $t^{+}\left(P_{n}\right) \geqslant\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$, it suffices to show that there exists a linear ordering s of the vertices of P_{n} for which $d(s)=\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$. Let P_{n} : $u_{1}, u_{2}, \ldots, u_{n}$ and let us consider two cases according to whether n is odd or n is even.

Case 1. n is odd. Then $n=2 k+1$ for some positive integer k. Let

$$
s_{0}: u_{k+1}, u_{1}, u_{2 k+1}, u_{2}, u_{2 k}, u_{3}, u_{2 k-1}, \ldots, u_{k}, u_{k+2}
$$

be a linear ordering of vertices of P_{n}. Since

$$
\begin{aligned}
d\left(s_{0}\right) & =k+(2 k)+(2 k-1)+(2 k-2)+\ldots+2 \\
& =k+(1+2+3+\ldots+2 k)-1=k+\binom{2 k+1}{2}-1 \\
& =k(2 k+2)-1=\frac{n^{2}-1}{2}-1=\left\lfloor\frac{n^{2}}{2}\right\rfloor-1,
\end{aligned}
$$

it follows that $t^{+}\left(P_{n}\right) \geqslant\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$. Thus $t^{+}\left(P_{n}\right)=\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$ if n is odd.

Case 2. n is even. Then $n=2 k$ for some integer $k \geqslant 2$. Let

$$
s_{1}: u_{k+1}, u_{1}, u_{2 k}, u_{2}, u_{2 k-1}, u_{3}, u_{2 k-2}, \ldots, u_{k-1}, u_{k+2}, u_{k}
$$

be a linear ordering of vertices of P_{n}. Since

$$
\begin{aligned}
d\left(s_{1}\right) & =k+(2 k-1)+(2 k-2)+\ldots+2 \\
& =k+[1+2+3+\ldots+(2 k-1)]-1=k+\binom{2 k}{2}-1 \\
& =2 k^{2}-1=\frac{n^{2}}{2}-1=\left\lfloor\frac{n^{2}}{2}\right\rfloor-1,
\end{aligned}
$$

it follows that $t^{+}\left(P_{n}\right) \geqslant\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$. Thus $t^{+}\left(P_{n}\right)=\left\lfloor\frac{1}{2} n^{2}\right\rfloor-1$ if n is even.
We will now consider trees in general. For each edge e of a tree T, the component number $\mathrm{cn}(e)$ of e is defined in [5] as the minimum order of a component of $T-e$. For example, the edge e_{5} of the tree T of Figure 1(a) has component number 3 since the order of the smaller component of $T-e_{5}$ is 3 . Each edge of this tree is labeled with its component number in Figure 1(b).
T :

Figure 1. Component numbers of edges
An upper bound for the upper Hamiltonian number of a tree was established in [5] in terms of the component numbers of its edges, which we state as follows.

Theorem 4.4. If T is a nontrivial tree, then

$$
h^{+}(T) \leqslant 2 \sum_{e \in E(T)} \mathrm{cn}(e) .
$$

For the tree T of Figure 1,

$$
\sum_{i=1}^{8} \operatorname{cn}\left(e_{i}\right)=1+1+3+1+4+1+2+1=14
$$

Thus $h^{+}(T) \leqslant 28$ by Theorem 4.4. With the aid of Theorem 4.4 and Proposition 4.1, we are able to establish a formula for the upper traceable number of a tree.

Theorem 4.5. If T is a nontrivial tree, then

$$
t^{+}(T)=2 \sum_{e \in E(T)} \operatorname{cn}(e)-1
$$

Proof. By Theorem 4.4 and Proposition 4.1,

$$
t^{+}(T) \leqslant h^{+}(T)-1 \leqslant 2 \sum_{e \in E(T)} \operatorname{cn}(e)-1 .
$$

Thus it remains to show that $t^{+}(T) \geqslant 2 \sum_{e \in E(T)} \mathrm{cn}(e)-1$. Since the theorem holds if T has order 2, we may assume that T has order 3 or more. Suppose that $T_{1}=T$ has order $n \geqslant 3$. Let v_{2} be an end-vertex of T. Furthermore, let Q_{2} be a maximal path in T whose initial edge e_{1} is incident with v_{2} and such that each successive edge in Q_{2} is chosen so that it has the maximum component number (among all edges available). Suppose that Q_{2} is a $v_{2}-v_{3}$ path. Necessarily, v_{3} is an end-vertex of T. Let $T_{2}=T-\left\{v_{2}\right\}$ and let Q_{3} be a maximal path in T_{2} whose initial edge e_{2} is incident with v_{3} and such that each successive edge in Q_{3} is chosen so that it has the maximum component number in T_{2} (among all edges available). We continue this process until we arrive at the $v_{n-1}-v_{n}$ path Q_{n-1}. The final vertex of T is denoted by v_{1}, which is necessarily adjacent to v_{n}. Let $e_{n-1}=v_{n} v_{1}$. This procedure is illustrated in Figure 2 for the tree T of Figure 1, where each $v_{i+1}-v_{i+2}$ path Q_{i+1} for $1 \leqslant i \leqslant n-2$ is indicated in bold.

For $2 \leqslant i \leqslant n-2$, the edge e_{i} is the initial edge of the $v_{i+1}-v_{i+2}$ path Q_{i+1} in the tree $T_{i}=T-\left\{v_{2}, v_{3}, \ldots, v_{i}\right\}$. Furthermore, let Q_{1} be the $v_{1}-v_{2}$ path in $T=T_{1}$. Consider the linear ordering

$$
s: v_{1}, v_{2}, \ldots, v_{n}
$$

of vertices of T. We show that

$$
\begin{equation*}
d(s)=2 \sum_{e \in E(T)} \mathrm{cn}(e)-1 . \tag{2}
\end{equation*}
$$

To verify (2), we show that for every integer i with $1 \leqslant i \leqslant n-2$, the edge e_{i} is traversed $2 \mathrm{cn}\left(e_{i}\right)$ times by the paths $Q_{1}, Q_{2}, \ldots, Q_{n-1}$, while e_{n-1} is traversed $2 \mathrm{cn}\left(e_{n-1}\right)-1$ times by the paths $Q_{1}, Q_{2}, \ldots, Q_{n-1}$. It is certainly the case when an edge is a pendant edge, so suppose that e is an edge of T that is not a pendant edge.

For each tree T_{j} containing e, let $T_{j, 1}$ and $T_{j, 2}$ be the components of $T_{j}-e$ such that $\left|V\left(T_{j, 1}\right)\right| \leqslant\left|V\left(T_{j, 2}\right)\right|+1$. We claim that if the initial vertex v_{j+1} of the path Q_{j+1} belongs to $T_{j, 1}$, then the terminal vertex v_{j+2} belongs to $T_{j, 2}$, that is, the edge e is traversed by Q_{j+1}. Let $c_{j}=\mathrm{cn}_{T_{j}}(e)$ and $e=x y$ such that x belongs to $T_{j, 1}$.

Figure 2. A step in the proof of Theorem 4.5
If $\left|V\left(T_{j, 1}\right)\right| \leqslant\left|V\left(T_{j, 2}\right)\right|$, then note first that every edge in $T_{j, 1}$ has component number at most $c_{j}-1$. Assume, to the contrary, that the terminal vertex v_{j+2} of the path Q_{j+1} belongs to $T_{j, 1}$. Let $Q_{A}: v_{j+1}=u_{1}, u_{2}, \ldots, u_{k}=x$ and $Q_{B}: v_{j+2}=$ $w_{1}, w_{2}, \ldots, w_{l}=x$ be the $v_{j+1}-x$ path and $v_{j+2}-x$ path, respectively. Obviously, both Q_{A} and Q_{B} are entirely contained in $T_{j, 1}$. Furthermore,

$$
Q_{j+1}: v_{j+1}=u_{1}, u_{2}, \ldots, u_{k^{\prime}}=w_{l^{\prime}}, w_{l^{\prime}-1}, \ldots, w_{1}=v_{j+2}
$$

for some integers k^{\prime} and l^{\prime} with $2 \leqslant k^{\prime} \leqslant k$ and $2 \leqslant l^{\prime} \leqslant l$. This implies that

$$
\operatorname{cn}_{T_{j}}\left(u_{k^{\prime}} u_{k^{\prime}+1}\right) \leqslant \operatorname{cn}_{T_{j}}\left(w_{l^{\prime}} w_{l^{\prime}-1}\right) .
$$

On the other hand, however, observe that

$$
\mathrm{cn}_{T_{j}}\left(u_{k^{\prime}} u_{k^{\prime}+1}\right) \geqslant \mathrm{cn}_{T_{j}}\left(u_{k^{\prime}-1} u_{k^{\prime}}\right)+\mathrm{cn}_{T_{j}}\left(w_{l^{\prime}} w_{l^{\prime}-1}\right)>\mathrm{cn}_{T_{j}}\left(w_{l^{\prime}} w_{l^{\prime}-1}\right),
$$

a contradiction.

If $\left|V\left(T_{j, 1}\right)\right|=\left|V\left(T_{j, 2}\right)\right|+1$, then at most one edge in $T_{j, 1}$ has component number c_{j} and each of the remaining edges in $T_{j, 1}$ has component number at most $c_{j}-1$. Then by a similar argument given for the case where $\left|V\left(T_{j, 1}\right)\right| \leqslant\left|V\left(T_{j, 2}\right)\right|$, if v_{j+1} belongs to $T_{j, 1}$, then v_{j+2} must belong to $T_{j, 2}$.

Now let T^{\prime} and $T^{\prime \prime}$ be the components of $T-e$, where the order of T^{\prime} is $c=\operatorname{cn}(e)$. Suppose that $V\left(T^{\prime}\right)=\left\{v_{n_{1}}, v_{n_{2}}, \ldots, v_{n_{c}}\right\}$, where $n_{1} \leqslant n_{2} \leqslant \ldots \leqslant n_{c}$. Furthermore, let $e=x y$ such that x belongs to T^{\prime}. Necessarily then, $x=v_{n_{c}}$. In each tree T_{j} containing e, let T_{j}^{\prime} and $T_{j}^{\prime \prime}$ be the components of $T_{j}-e$ containing x and y, respectively. Then by the claim given above, we have the following:
(1) $\left|V\left(T_{j}^{\prime}\right)\right| \leqslant\left|V\left(T_{j}^{\prime \prime}\right)\right|$.
(2) v_{1} belongs to $T^{\prime \prime}$.
(3) No two vertices of T^{\prime} are consecutive in s.

If $x \neq v_{n}$, then $e \neq e_{n-1}$. Since $v_{n_{1}+1}, v_{n_{2}+1}, \ldots, v_{n_{c}+1}$ belong to $T^{\prime \prime}$, it follows that e is traversed $2 c$ times by the paths $Q_{1}, Q_{2}, \ldots, Q_{n-1}$. On the other hand, if $x=v_{n}$, then $e=e_{n-1}$. Since $v_{n_{1}+1}, v_{n_{2}+1}, \ldots, v_{n_{c-1}+1}$ belong to $T^{\prime \prime}$, it follows that e is traversed $2 c-1$ times by the paths $Q_{1}, Q_{2}, \ldots, Q_{n-1}$. Thus, as claimed, $d(s)=2 \sum_{e \in E(T)} \operatorname{cn}(e)-1$. Therefore,

$$
t^{+}(T) \geqslant d(s)=2 \sum_{e \in E(T)} \mathrm{cn}(e)-1
$$

providing the desired result.
Since $h^{+}(T) \geqslant t^{+}(T)+1$ for every nontrivial tree T by Proposition 4.1, the following corollary is a consequence of Theorems 4.4 and 4.5.

Corollary 4.6. If T is a nontrivial tree, then

$$
h^{+}(T)=2 \sum_{e \in E(T)} \operatorname{cn}(e) .
$$

We now illustrate Theorem 4.5 and Corollary 4.6. For the tree T of Figure 1, we have seen that $\sum_{i=1}^{8} \operatorname{cn}\left(e_{i}\right)=14$. Thus by Theorem 4.5 and Corollary $4.6, t^{+}(T)=$ $28-1=27$ and $h^{+}(T)=28$. On the other hand, using the technique described in the proof of Theorem 4.5, we obtain a linear ordering $s: v_{1}, v_{2}, \ldots, v_{9}$ of vertices of T with $d(s)=t^{+}(T)=27$. Observe that for the cyclic ordering $s_{c}: v_{1}, v_{2}, \ldots, v_{9}, v_{1}$ of vertices of $T, d\left(s_{c}\right)=h^{+}(T)=28$.

Upper and lower bounds for the upper Hamiltonian number of a tree was established in [5] in terms of its order, as we state now.

Theorem 4.7. Let T be a tree of order $n \geqslant 3$. Then

$$
2 n-2 \leqslant h^{+}(T) \leqslant\left\lfloor n^{2} / 2\right\rfloor .
$$

Moreover,
(a) $h^{+}(T)=2 n-2$ if and only if $T=K_{1, n-1}$,
(b) $h^{+}(T)=\left\lfloor n^{2} / 2\right\rfloor$ if and only if $T=P_{n}$.

The following corollary is a consequence of Proposition 4.1, Theorems 4.5 and 4.7, and Corollary 4.6.

Corollary 4.8. Let T be a tree of order $n \geqslant 3$. Then

$$
2 n-3 \leqslant t^{+}(T) \leqslant\left\lfloor n^{2} / 2\right\rfloor-1
$$

Furthermore,
(a) $t^{+}(T)=2 n-3$ if and only if $T=K_{1, n-1}$,
(b) $t^{+}(T)=\left\lfloor n^{2} / 2\right\rfloor-1$ if and only if $T=P_{n}$.

Acknowledgments. We are grateful to Professor Gary Chartrand for suggesting the concepts of traceable number and upper traceable number to us and kindly providing useful information on this topic.

References

[1] T. Asano, T. Nishizeki and T. Watanabe: An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory 4 (1980), 315-336.
[2] T. Asano, T. Nishizeki and T. Watanabe: An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983), 211-222.
[3] J. C. Bermond: On Hamiltonian walks. Congr. Numer. 15 (1976), 41-51.
[4] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: On the Hamiltonian number of a graph. Congr. Numer. 165 (2003), 51-64.
[5] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004), 37-52.
[6] G. Chartrand and P. Zhang: Introduction to Graph Theory. McGraw-Hill, Boston, 2005.
[7] S. E. Goodman and S. T. Hedetniemi: On Hamiltonian walks in graphs. Congr. Numer. (1973), 335-342.
[8] S. E. Goodman and S. T. Hedetniemi: On Hamiltonian walks in graphs. SIAM J. Comput. 3 (1974), 214-221.
[9] L. Nebeský: A generalization of Hamiltonian cycles for trees. Czech. Math. J. 26 (1976), 596-603.
[10] F. Okamoto, V. Saenpholphat and P. Zhang: Measures of traceability in graphs. Math. Bohem. 131 (2006), 63-83.
[11] V. Saenpholphat and P. Zhang: Graphs with prescribed order and Hamiltonian number. Congr. Numer. 175 (2005), 161-173.
[12] P. Vacek: On open Hamiltonian walks in graphs. Arch Math. (Brno) $27 A$ (1991), 105-111.

Authors' addresses: Futaba Okamoto, Mathematics Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA; Varaporn Saenpholphat, Department of Mathematics, Srinakharinwirot University, Sukhumvit Soi 23, Bangkok, 10110, Thailand; Ping Zhang, Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA.

