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ONLY IF FOR ANY MONOTONE INCREASING OPEN COVER OF

IT THERE EXISTS A STAR-FINITE OPEN REFINEMENT
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Abstract. We get the following result. A topological space is strongly paracompact if
and only if for any monotone increasing open cover of it there exists a star-finite open
refinement. We positively answer a question of the strongly paracompact property.
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In this paper we assume all spaces are T2.

|u| is the cardinal number of a set u.

A set u which consists of some sunsets of a topological space X is locally fi-

nite if for any x ∈ X there exists an open subset U of X , such that x ∈ U and

|{V ; V ∩ U 6= ϕ, V ∈ u}| is a finite cardinal number.

A set u which consists of subsets of a topological space X is star-finite if for any

U ∈ u, |{V ; V ∩ U 6= ϕ, V ∈ u}| is a finite cardinal number.

A set u which consists of subsets of a topological space X is star < k (k is a

cardinal number) if for any U ∈ u, |{V ; V ∩ U 6= ϕ, V ∈ u}| < k.

A topological space is paracompact if for any open cover of it there exists a locally

finite open refinement. A topological space is strongly paracompact if for any open

cover of it there exists a star-finite open refinement.

On the paracompactness of a topological space there is the following theorem.

Theorem 1. A topological space is paracompact if and only if for any monotone

increasing open cover of it there exists a locally finite open refinement.
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Comparing the strong paracompactness with the paracompactness, there is the

following question.

Question 1. If for any monotone increasing open cover of a topological space

there exists a star-finite open refinement, is it strongly paracompact?1

In the nineties of the last century, the following question on strong paracompact-

ness was posed.

Question 2. If for any infinite open cover u of a topological space X there exists

a star < |u| open refinement, is it strongly paracompact?

Theorem 2. If X is a topological space, the following conditions are equivalent.

(1) For any infinite open cover u of X there exists a star < |u| open refinement.

(2) For any infinite monotone increasing open cover u of X there exists a star < |u|

open refinement.

(3) For any infinite monotone increasing open cover u of X there exists a star-finite

open refinement.

P r o o f. (1) =⇒ (2). This is obvious.

(2) =⇒ (3). Let u be any infinite monotone increasing open cover of X . We make

the proof by transfinite induction with respect to |u| = k.

(a) If k = ω, a star < |u| open refinement of u is a star-finite open refinement of u.

(b) If k > ω, we assume that for any infinite monotone increasing open cover of

u, if |u| < k, there exists a star-finite open refinement.

|u| = k. If cof(k) < k, then there is a subcover u1 of u such that |u1| = cof(k).

According to the assumption of the transfinite induction, there exists a star-finite

open refinement of u1. It is a star-finite open refinement of u.

If cof(k) = k, there exists a star < |u| open refinement v of u. In elements of v we

introduce the equivalence relation as follows.

V ≈ V ′ ⇐⇒ there exists a finite subset {Vi ; 1 6 i 6 n} of v, such that V ∩V1 6= ϕ,

Vn ∩ V ′ 6= ϕ, 1 6 i 6 n − 1, Vi ∩ Vi+1 6= ϕ. Let v =
⋃

{vα ; α < k′}, with vα the

equivalence classes of v.

For any α < k′, Wα =
⋃

{V ; V ∈ vα}. Wα is closed and open. Because Wα =

X −
⋃

{Wβ ; β 6= α, β < k′}. |vα| < k. if |vα| = k, cof(k) = ω < k. This is a

contradiction with cof(k) = k. That is, k = k′.

For any α < k, vα = {Vα,β ; β < kα}, kα < k. β = 0, V
′

α,0 = Vα,0 ∪ (X − Wα);

0 < β < kα, V
′

α,β = (
⋃

{Vα,γ ; γ < β}) ∪ (X − Wα) .

1 The project was supported by NSFC (Grant No. 90207015) and the Science Research
Fundation of the Education of Shaanxi Province of China (grant 06JK192).
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vα′ = {V ′

α,β ; β < kα} is a monotone increasing open cover of X and |vα| < k.

According to the assumption of the transfinite induction there exists a star-finite

open refinement w′

α of vα. wα = {W ′ ∩ Wα ; W ′ ∈ w′

α} is a star-finite opencover of

Wα and a refinement of vα. w =
⋃

{wα ; α < k} is a star-finite open refinement of u.

(3) =⇒ (1) u = {Uα ; α < k} is an infinite open cover of X such that |u| = k.

V0 = U0; 0 < α < k, Vα =
⋃

{Uβ ; β < α}. v = {Vα ; α < k} is a monotone

increasing infinite open cover of X. Then there exists a star-finite open refinement

w = {Wβ ; β < k′} of v such that there exists a function f : k′ → k such that for any

β < k′, Wβ ⊂ Vf(β).{Uα∩Wβ ; α < f(β), β < k′} is a star < |u| = k open refinement

of u. For any Uα ∩ Wβ , because w is star-finite, {W ; W ∩ Wβ 6= ϕ, W ∈ w} =

{Wβ1
, . . . , Wβn

}. Then |
⋃

{{Uα ∩ Wβi
; α < f(βi)}, i 6 n}| 6 |f(β1)|+. . .+|f(βn)| =

max{|f(βi)}| ; i 6 n} < k. That is, it is star < |u| = k.

According to Theorem 1 and Theorem 2 the following result is obtained.

Lemma 1. If for any infinite open cover u of a topological space there exists a

star < |u| open refinement, it is paracompact.

On the star-finite property, we have the following results.

Lemma 2. Let u, v consist of some subsets of a topological space X . If u, v are

star-finite, then

(1) u ∧ v = {U ∩ V ; U ∈ u, V ∈ v} is star-finite;

(2) {
⋂

Φ; Φ ⊂ u, |Φ| < ω} is star-finite;

(3) {star{x, u} =
⋃

{U ; x ∈ U, U ∈ u} ; x ∈ X} is star-finite;

(4) {star{U, u} =
⋃

{V ; V ∩ U 6= ϕ, V ∈ u} ; U ∈ u} is star-finite.

Theorem 3. If for any infinite monotone increasing open cover of a topological

space there exists a star-finite open refinement, it is strongly paracompact.

P r o o f. Let X be a topological space which satisfies the condition of Theorem 3.

Let u = {Uα ; α < k}(|u| = k) be any infinite open cover of X . We make the proof

by transfinite induction with respect to k = |u|.

If k = ω, α = 0, V0 = U0; 0 < α < ω, Vα =
⋃

{Uβ ; β < α}. v = {Vα ; α < ω}

is a monotone increasing infinite open cover of X. There exists a star-finite open

refinement w = {Wβ ; β < k′} of v such that there exists a function f : k′ → ω such

that for any β < k′, Wβ ⊂ Vf(β). {Uα ∩ Wβ ; α < f(β), β < k′} is a star-finite open

refinement of u. For any Uα ∩ Wβ , because w is star-finite, {W ; W ∩ Wβ 6= ϕ, W ∈

w} = {Wβ1
, . . . , Wβn

}. Thus |
⋃

{{Uα ∩ Wβi
; α < f(βi)}, i 6 n}| 6 |f(β1)| + . . . +

|f(βn)| = max{|f(βi)}| ; i 6 n} < ω. That is, it is star-finite.

If k > ω, we suppose that for any infinite open cover of u, which satisfies the

hypothesis of Theorem 3, if |u| < k, there exists a star-finite open refinement.
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For any infinite open cover u of X , which satisfies the condition of Theorem 3,

|u| = k, α = 0, V0 = U0; if 0 < α < k, Vα =
⋃

{Uβ ; β < α}. v = {Vα ; α < k}

is a monotone increasing infinite open cover of X. There exists a star-finite open

refinement w′ = {W ′

β ; β < k′} of v such that there exists a function f : k′ → k such

that for any β < k′, W ′

β ⊂ Vf(β). According to Lemma 1, X is paracompact. Then

there is an open cover w = {Wβ ; β < k′} of w′ such that for any β < k′, Wβ ⊂ W ′

β .

For any β < k′, {W ′

β ∩ Uα ; α < f(β)} ∪ {X − Wβ} is an open cover of X and

|{W ′

β ∩ Uα ; α < f(β)} ∪ {X − Wβ}| = |f(β)| < k. According to the hypothesis

of the transfinite induction, there exists a star-finite open refinement w′

β of it. Set

wβ = {W ; W ∩ Wβ 6= ϕ, W ∈ w′

β}.

For any x ∈ Wβ , Oβ,x =
⋂

{W ; x ∈ W, W ∈ wβ}. wβ is star-finite. |{W ; x ∈ W ,

W ∈ wβ}| < ω. Oβ,x is an open subset of X. Acording to Lemma 2, {Oβ,x ; x ∈ Wβ}

is star-finite.

Ox =
⋂

{Oβ,x ; x ∈ Wβ}. w is star-finite. |{Oβ,x ; x ∈ Wβ , β < k′}| < ω. Ox is an

open subset of X.

Gx = X −
⋃

{Wβ ; x /∈ Wβ , β < k′}. w′ is star-finite.
⋃

{Wβ ; x /∈ Wβ , β < k′} is

closed. That is, Gx is open.

According to Lemma 2 {star{x, {Wβ ; β < k′}} ; x ∈ X} is star-finite. For any

x ∈ X , Gx ⊂ star{x, {Wβ ; β < k′}}. So{Gx ; x ∈ X} is star-finite.

{Gx ∩ Ox ; x ∈ X} is star-finite.

For any x ∈ X, if y /∈
⋃

{Wβ ; x ∈ Wβ , β < k′}, Gx ∩Gy = ϕ. That is, (Gx ∩Ox)∩

(Gy ∩ Oy) = ϕ.

Because {Wβ ; β < k′} is star-finite,
∣

∣{Wβ ; x ∈ Wβ , β < k′}
∣

∣ < ω. That is, {Wβ ;

x ∈ Wβ , β < k′} = {Wβ1
, . . . , Wβn

}. For any 1 6 i 6 n, {Oβi,y ; y ∈ Wβi
} is finite.

So for any 1 6 i 6 n, {Oβi,y ; Oβi,x∩Oβi,y 6= ϕ ; y ∈ Wβi
} is finite. {Oy ; Ox ∩Oy 6=

ϕ, y ∈ Wβ1
∪ . . . ∪ Wβn

} is finite. {Gy ; Gx ∩Gy 6= ϕ, y ∈ Wβ1
∪ . . . ∪Wβn

} is finite.

{Oy ∩ Gy ; Ox ∩ Gx ∩ Oy ∩ Gy 6= ϕ, y ∈ Wβ1
∪ . . . ∪ Wβn

} is finite.

That is, {Gx ∩ Ox ; x ∈ X} is star-finite. It is a star-finite open refinement of u.

According to the principle of the transfinite induction, for any infinite open cover

of u, there exists a star-finite open refinement.

That is, X is strongly paracompact.

According to Theorem 2, Theorem 3, we can get following.

Theorem 4. If for any infinite open cover u of a topological space there exists a

star < |u| open refinement, it is strongly paracompact.

Theorem 5. If for any monotone increasing open cover of a topological space

there exists a star-finite open refinement, it is strongly paracompact.
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We thus positively answer a question on the strong paracompactness of a topolog-

ical space.
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