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PRECOVER CLASSES
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Abstract. In the class of all exact torsion theories the torsionfree classes are cover (pre-
cover) classes if and only if the classes of torsionfree relatively injective modules or relatively
exact modules are cover (precover) classes, and this happens exactly if and only if the tor-
sion theory is of finite type. Using the transfinite induction in the second half of the paper
a new construction of a torsionfree relatively injective cover of an arbitrary module with
respect to Goldie’s torsion theory of finite type is presented.
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In what follows, R stands for an associative ring with the identity element and

R-mod denotes the category of all unitary left R-modules. The basic properties of

rings and modules can be found in [1].

A class G of modules is called abstract, if it is closed under isomorphic copies. If

G is an abstract class of modules, then a homomorphism ϕ : G→M with G ∈ G is

called a G -precover of the module M , if for each homomorphism f : F → M with

F ∈ G there exists a homomorphism g : F → G such that ϕg = f . A G -precover

ϕ of M is said to be a G -cover, if every endomorphism f of G with ϕf = ϕ is an

automorphism of the module G. An abstract class G of modules is called a precover

(cover) class, if every module has a G -precover (G -cover). A more detailed study of

precovers and covers can be found in [17].

Recall that a hereditary torsion theory τ = (T ,F ) for the categoryR-mod consists

of two abstract classes T and F , the τ-torsion class and the τ-torsionfree class,
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respectively, such that Hom (T, F ) = 0 whenever T ∈ T and F ∈ F , the class T

is closed under submodules, factor-modules, extensions and arbitrary direct sums,

the class F is closed under submodules, extensions and arbitrary direct products

and for each module M there exists an exact sequence 0 → T → M → F → 0

such that T ∈ T and F ∈ F . It is easy to see that every module M contains the

unique largest τ -torsion submodule (isomorphic to T ), which is called the τ-torsion

part of the module M and is usually denoted by τ(M). Note that a submodule

K of a module F ∈ F is called τ -pure in F if F/K ∈ F . For two hereditary

torsion theories τ and τ ′ the symbol τ 6 τ ′ means that Tτ ⊆ Tτ ′ and consequently

Fτ ′ ⊆ Fτ . With each hereditary torsion theory τ we associate the Gabriel filter L

of left ideals of R consisting of all left ideals I 6 R with R/I ∈ T . Recall that τ

is said to be of finite type, if L contains a cofinal subset of finitely generated left

ideals. A module Q is called τ-injective, if it is injective with respect to all short

exact sequences 0 → A → B → C → 0, where C ∈ T . Following [14] we say that

a τ -torsionfree module is τ-exact, if any of its τ -torsionfree homomorphic images

is τ -injective. The class of all τ -injective modules will be denoted by Iτ , while

the class of all τ -exact modules will be denoted by Eτ . A τ -torsionfree module is

called τ-cocritical, if any of its proper homomorphic images is τ -torsion. Further,

a hereditary torsion theory τ is called exact, if E(Q)/Q is τ -torsionfree τ -injective

whenever Q is so. Here E(Q) denotes as usual the injective hull of the module Q.

Note that the hereditary torsion theory τ is exact if and only if Eτ = F ∩ Iτ . If τ

is exact and of finite type then it is called perfect. A hereditary torsion theory τ is

called noetherian, if I0 ⊆ I1 ⊆ . . . , I =
⋃

n<ω

In and I ∈ L implies In ∈ L for some

n < ω, In being the left ideals of the ring R. Note that by [12; Proposition 41.1] τ

is noetherian if and only if the class F ∩ Iτ is closed under arbitrary direct sums.

For a module M , the singular submodule Z(M) consists of all elements a ∈ M

the annihilator left ideal (0 : a) = {r ∈ R; ra = 0} of which is essential in R.

Goldie’s torsion theory for the category R-mod is the hereditary torsion theory σ =

(T ,F ), where T = {M ∈ R-mod; Z(M/Z(M)) = M/Z(M)} and F = {M ∈

R-mod; Z(M) = 0}. For more details on torsion theories we refer to [12] or [11].

In the first part of this note we will characterize the exact torsion theories for

which the corresponding torsionfree class is a precover class. It is shown that this is

just the case of torsion theories of finite type and that this is equivalent to the facts

that F is a cover class, Eτ is a precover class and Eτ is a cover class. Moreover,

these conditions are equivalent to that ensuring the existence of “large” F -pure

submodules in arbitrary “large” submodules of τ -torsionfree modules. In view of

the fact that Goldie’s torsion theory is exact (see e.g. [12; Corollary 44.3]) we see

that Goldie’s torsionfree class is a precover class if and only if this torsion theory is

562



of finite type. On the other hand, Teply in [16; Theorem 2.1] proved that Goldie’s

torsion theory is of finite type if and only if the ring R contains no infinite direct

sum of torsionfree left ideals. From this result we easily obtain that the torsionfree

class of Goldie’s torsion theory over the ring Zω =
∏

n<ω

Zn, Zn ∼= Z, is not a precover

class. In the second half of the paper we will give a new construction of a σ-torsiofree

σ-injective cover of an arbitrary module, where σ is Goldie’s torsion theory for the

category R-mod which is of finite type. This construction is based on the transfinite

induction principle.

Lemma 1. Let τ = (T ,F ) be a hereditary torsion theory for the category

R-mod. If F ∩ Iτ is a precover class, then τ is noetherian.

P r o o f. By virtue of [12; Proposition 41.1] it suffices to verify that the class

F ∩Iτ is closed under arbitrary direct sums. So, let {Fα; α ∈ A} be any collection

of elements of F ∩ Iτ and let F =
⊕

α∈A

Fα together with the canonical embeddings

iα : Fα → F be their direct sum. By the hypothesis there exists an (F ∩ Iτ )-

precover ϕ : G→ F of the module F . Now for each α ∈ A there is a homomorphism

fα : Fα → Gwith ϕfα = iα and consequently ψiα = fα for each α ∈ A and a (unique)

homomorphism ψ : F → G. Thus, for each α ∈ A we have ϕψiα = ϕfα = 1F iα,

hence ϕψ = 1F and F belongs to F ∩ Iτ as a direct summand of the module

G ∈ F ∩ Iτ . �

Now we can present the following characterization of exact torsion theories which

are noetherian.

Theorem 2. The following conditions are equivalent for an exact torsion theory

τ = (T ,F ) for the category R-mod:

(i) τ is noetherian;

(ii) τ is of finite type;

(iii) τ is perfect;

(iv) F is a precover class;

(v) F ∩ Iτ is a precover class;

(vi) Eτ is a precover class;

(vii) F is a cover class;

(viii) F ∩ Iτ is a cover class;

(ix) Eτ is a cover class;

(x) if λ is an infinite cardinal then there is a cardinal κ > λ such that for each

module F ∈ F with |F | > κ and each submodule L 6 F with |F/L| 6 λ the

submodule L contains a submodule K such that F/K ∈ F and |F/K| < κ.
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P r o o f. The conditions (i), (ii) and (iii) are equivalent by [12; Proposition 45.1]

and the conditions (iv), (v) and (vi) are equivalent by [2; Theorem 7]. Further, the

conditions (iii) and (vii) are equivalent by [3; Theorem 8] and (vii) is equivalent

to (ix) by [10; Theorem 9]. Finally, (viii) implies (v) trivially, (v) implies (i) by

Lemma 1, the conditions (viii) and (ix) are equivalent since F ∩Iτ = Eτ under the

exactness by [12; Proposition 44.1] and (x) is equivalent to (iv) by [5; Theorem 9].

�

Corollary 3. If σ is Goldie’s torsion theory for the category R-mod, then for

each hereditary torsion theory τ > σ the conditions (i)–(x) from Theorem 2 are

equivalent.

P r o o f. The torsion theory τ is exact by [12; Corollary 44.3]. �

Now we are ready to prove the existence of torsionfree classes which are not pre-

cover classes.

Theorem 4. There are torsionfree classes which are not precover classes.

P r o o f. In [16; Theorem 2.1] it was proved that Goldie’s torsion theory is of

finite type if and only if the ring R contains no infinite direct sum of σ-torsionfree

left ideals. Taking Zn ∼= Z (as rings) for each n < ω, we see that the ring R =
∏

n<ω

Zn

contains the ideal
⊕

n<ω

Zn, where each Zn is obviously a σ-torsionfree ideal of R and

Corollary 3 applies. �

We are going now to prove some simple auxiliary results which will be useful later.

From now on the symbol σ = (T ,F ) will always denote Goldie’s torsion theory for

the category R-mod.

Lemma 5. Let G be any class of modules and let M ∈ R-mod be arbitrary.

A homomorphism ϕ : G → M with G ∈ Coprod(G ) is a Coprod(G )-precover of the

moduleM if and only if for each homomorphism f : F →M with F ∈ G there exists

a homomorphism g : F → G such that ϕg = f .

P r o o f. Only the sufficiency requires verification. So, let F =
⊕

λ∈Λ

Fλ together

with the canonical injections ιλ : Fλ → F be an element of Coprod(G ) and let

f : F →M be an arbitrary homomorphism. Now we shall consider the commutative

squares

Fλ
ιλ

//

gλ

��

F

f

��

Fλ
ιλ

//

gλ

��

F

g

��

G
ϕ

// M G G
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where gλ : Fλ → G making the left square commutative exists by the hypothesis for

each λ ∈ Λ and the homomorphism g : F → G making the right square commutative

for each λ ∈ Λ exists by the universal property of direct sums. Now ϕgιλ = ϕgλ = fιλ
for each λ ∈ Λ and so ϕg = f by the same argument. �

Lemma 6. Let σ = (T ,F ) be Goldie’s torsion theory for the category R-

mod. If σ is noetherian then every element of the class F ∩ Iσ is a direct sum of

indecomposable injective modules.

P r o o f. It is easy to see that the elements of F ∩ Iσ are just the σ-torsionfree

injective modules (see e.g. [16; Lemma 1]. Thus it suffices to show that each non-zero

element of F ∩Iσ contains an indecomposable injective submodule, since this class

is closed under arbitrary direct sums by the hypothesis that σ is noetherian. Proving

indirectly, let E ∈ F be the injective hull of a cyclic module Ru, E = E(Ru), which

contains no indecomposable injective submodule. Thus we have E = E0 = Q1 ⊕E1,

E1 = Q2 ⊕ E2, . . ., En = Qn+1 ⊕ En+1, . . . So, for each n < ω we obtain E =

Q1⊕ . . .⊕Qn⊕En. Setting Q =
⊕

n<ω

Qn, where Q0 = 0, and taking K 6 E maximal

with respect to K ∩Q = 0, we easily get that E = K⊕Q. So, u ∈ K⊕Q1⊕ . . .⊕Qn
for some n < ω and consequently Ru ⊆ K ⊕Q1 ⊕ . . .⊕Qn. Hence Ru ∩Qn+1 = 0,

which contradicts the fact that Ru is essential in E. From this the assertion now

easily follows. �

Lemma 7. Let σ = (T ,F ) be Goldie’s torsion theory for the category R-mod.

If E ∈ F is an indecomposable injective module, then E is σ-cocritical.

P r o o f. It clearly suffices to verify that each non-zero submodule of E is essential

in E. Proving indirectly, let U, V be non-zero submodules of E such that U ∩V = 0.

Since E(U) and E(V ) are submodules of E, it remains to verify that E(U)∩E(V ) = 0

in view of the obvious fact that E(U)⊕E(V ) is a direct summand of E in this case.

However, for 0 6= w ∈ E(U)∩E(V ) there are elements r, s ∈ R such that 0 6= rw ∈ U

and 0 6= srw ∈ U ∩ V , which is a contradiction completing the proof. �

Remark 8. Let σ = (T ,F ) be Goldie’s torsion theory for the category R-

mod. If σ is noetherian, it is of finite type and so F and F ∩Iσ are cover classes by

Corollary 3 above. It should be noted thatF is a cover class by [15; Theorem] and [7;

Corollary 4.1] (for some other aspects see also [4]). The known construction of anF∩

Iσ-cover (see e.g. [7; Corollary 4.5]) starts with an arbitrary (F ∩Iσ)-precover, uses

the inductivity of the corresponding pure submodules and then produces the (F ∩

Iσ)-cover as a suitable factor-module of the given precover. Thus the construction

uses the property of covers which asserts that the corresponding kernel contains no
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non-zero relatively pure submodule. In the rest of this paper we are going to give

a direct construction of an (F ∩ Iσ)-cover of an arbitrary module which uses the

transfinite induction rather than Zorn’s Lemma for relatively pure submodules.

Construction 9. Let {Hλ; λ ∈ Λ} be any representative set of indecomposable

σ-torsionfree (i.e. non-singular) injective modules. Now ifM is an arbitrary module,

then for each λ ∈ Λ and each 0 6= f ∈ Hom (Hλ,M) we take an isomorphic copy

Hλf of Hλ and consider the set G of all couples (Hλf , f̃) with λ ∈ Λ and 0 6= f ∈

Hom (Hλ,M), where f̃ : Hλf →M means the composition of f with the isomorphism

of Hλf onto Hλ. We denote by ν the cardinality of this set if it is infinite and we

put ν = |G |+ 1 in the opposite case. Without loss of generality we can assume that

G is well-ordered, i.e. that G = {(Hα, fα); α < ν}, where fα is a non-zero element

of Hom(Hα,M). Now we are ready to start our construction.

We put G0 = 0 and proceed by the transfinite induction. So, let α < ν be an

arbitrary ordinal and let Gβ and ϕβ : Gβ → M , β < α, have been already defined

in such a way that Gγ ⊆ Gβ and ϕγ = ϕβ |Gγ whenever γ 6 β < α. If α is a limit

ordinal then we simply put Gα =
⋃

β<α

Gβ and ϕα =
⋃

β<α

ϕβ in the natural way. Now

let α = β + 1 be a successor ordinal. If there is a monomorphism g : Hβ → Gβ such

that ϕβg = fβ, then we put Gα = Gβ and ϕα = ϕβ . In the opposite case we put

Gα = Gβ ⊕Hβ and ϕα will be the corresponding natural evaluation map given by

ϕβ and fβ. Finally, we put G =
⋃

α<ν

Gα and ϕ =
⋃

α<ν

ϕα. Now we are ready to prove

that the homomorphism ϕ : G→M is an (F ∩ Iσ)-cover of the module M .

Theorem 10. Let σ = (T ,F ) be Goldie’s torsion theory for the category R-

mod, let M ∈ R-mod be arbitrary and let ϕ : G→M be as in Construction 9. If σ

is noetherian, then ϕ is an (F ∩ Iσ)-cover of the module M .

P r o o f. It follows immediately from Construction 9 and Lemmas 5 and 6 that

ϕ is an (F ∩ Iσ)-precover of the module M , every σ-torsionfree σ-injective module

being a direct sum of directly indecomposable injective modules. In order to show

that ϕ is in fact an (F ∩Iσ)-cover of the moduleM let us consider the commutative

square

(∗)

G
ϕ

//

f

��

M

F
ψ

// M

where ψ is a G -precover of M . Clearly, Ker f ⊆ Kerϕ and since Im f ∼= G/Ker f ∈

F , Ker f is σ-pure in G and consequently, Ker f is an injective module. Assuming

Ker f 6= 0 we see that Kerϕ contains by Lemma 6 an indecomposable σ-torsionfree
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injective module H . Now we shall explore the construction of the module G. Taking

0 6= v ∈ H arbitrarily, we have v ∈ Gα1
⊕ . . .⊕Gαn

for suitable indices α1 < . . . <

αn < ν such that the element v has a non-zero component in each Gαi
, i = 1, . . . , n.

From this fact it immediately follows thatH 6 Gα1
⊕. . .⊕Gαn

and so if pi : G→ Gαi

are the canonical projections, then Im (pi|H) ∼= H/Ker(pi|H) ∈ T ∩ F = 0 by

Lemma 7 whenever Ker(pi|H) 6= 0. Thus σi = pi|H : H → Gαi
is an isomorphism for

each i = 1, . . . , n. Assume first that n > 1. In this case the mapping σn−1H : H → G

is a monomorphism and for each u ∈ Gαn
we have ϕ(σn − 1H)σ−1

n (u) = ϕ(σn −

1H)(v1 + . . . + vn) = ϕ
(

vn −
n
∑

i=1

vi

)

= −ϕ
(n−1

∑

i=1

vi

)

= −
n−1
∑

i=1

fαi
(vi) = fαn

(vn) =

fαn
(σnσ

−1
n (u)) = fαn

(u), which contradicts Construction 9 in view of the fact that

for each v ∈ H we have 0 = ϕ(v) = ϕ(v1 + . . . + vn) = fα1
(v1) + . . . fαn

(vn).

Now the case n = 1 remains. However, in this case we have H = Gα 6 G for

some α < ν, hence ϕ(H) = fα(Gα) 6= 0, which is a contradiction showing that

f is a monomorphism. Since σ is of finite type, the class F ∩ Iσ is inductive by

[12; Proposition 42.9] and it suffices to use [7; Theorem 3.1] stating that ϕ is an

(F ∩ Iσ)-cover of the module M if and only if in every commutative diagram (∗)

where ψ is an (F ∩ Iσ)-precover of M the homomorphism f is injective. �
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