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A SUBCLASS OF HARMONIC FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY DZIOK-SRIVASTAVA OPERATOR

G. Murugusundaramoorthy1, K. Vijaya1, and R. K. Raina2

Abstract. Making use of the Dziok-Srivastava operator, we introduce a new
class of complex valued harmonic functions which are orientation preserving
and univalent in the open unit disc and are related to uniformly convex
functions. We investigate the coefficient bounds, distortion inequalities and
extreme points for this generalized class of functions.

1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function
in a complex domain Ω if both u and v are real and harmonic in Ω. In any
simply-connected domain D ⊂ Ω, we can write f = h + g, where h and g are
analytic in D. We call h the analytic part and g the co-analytic part of f . A
necessary and sufficient condition for f to be locally univalent and orientation
preserving in D is that |h′(z)| > |g′(z)| in D (see [3]).

Denote by H the family of functions

(1) f = h+ g

which are harmonic, univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} so that f is normalized by f(0) = h(0) = fz(0)− 1 = 0. Thus, for
f = h+ g ∈ H, we may express

(2) f(z) = z +
∞∑
m=2

amz
m +

∞∑
m=1

bmzm , |b1| < 1 .

where the analytic functions h and g are of the forms

h(z) = z +
∞∑
m=2

amz
m , g(z) = b1z +

∞∑
m=2

bmz
m (0 ≤ b1 < 1) .

We note that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well known class S of normalized univalent
functions if the co-analytic part of f is identically zero, that is g ≡ 0.
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Let the Hadamard product (or convolution) of two power series

φ(z) = z +
∞∑
m=2

φmz
m

and

ψ(z) = z +
∞∑
m=2

ψmz
m

in S be defined by

(φ ∗ ψ)(z) = φ(z) ∗ ψ(z) = z +
∞∑
m=2

φmψmz
m .

For complex parameters α1, . . . , αp and β1, . . . , βq (βj 6= 0,−1,−2 . . . ;
j = 1, . . . , q) the generalized hypergeometric function pFq(z) is defined by

pFq(z) ≡ pFq(α1, . . . , αp;β1, . . . , βq; z) :=
∞∑
m=0

(α1)m . . . (αp)m
(β1)m . . . (βq)m

zm

m!(3)

(p ≤ q + 1; p, q ∈ N0 := N ∪ {0}; z ∈ U) ,

where N denotes the set of all positive integers, and (a)m is the Pochhammer
symbol defined by

(4) (a)m =
{

1 , m = 0
a(a+ 1)(a+ 2) . . . (a+m− 1) , m ∈ N .

For real values of αi > 0 (i = 1, . . . , p), βj > 0 (j = 1, . . . , q); p ≤ q + 1;
p, q ∈ N0 = N ∪ {0}, let

H(α1, . . . , αp;β1, . . . , βq) : S → S
be a linear operator defined by[(

H(α1, . . . , αp;β1, . . . , βq)
)
(φ)
]
(z) := z pFq(α1, . . . , αp;β1, . . . , βq; z) ∗ φ(z)

= z +
∞∑
m=2

Γ(α1,m) am zm ,(5)

where

(6) Γ(α1,m) = (α1)m−1 . . . (αp)m−1

(β1)m−1 . . . (βq)m−1

1
(m− 1)! .

For notational simplicity, we use the notation Hp
q [α1, β1] for H(α1, . . . αp;β1,

. . . , βq) in the sequel. It follows from (5) that
H1

0 [1]φ(z) = φ(z) , H1
0 [2]φ(z) = zφ′(z) .

The linear operator Hp
q [α1, β1] is the Dziok-Srivastava operator (see [4]), which

contains such well known operators as the Hohlov linear operator, Saitho generalized
linear operator, the Carlson-Shaffer linear operator [2], the Ruscheweyh derivative
operator [10] as well as its generalized versions, the Bernardi-Libera-Livingston
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operator, and the Srivastave-Owa fractional derivative operator. One may refer to
[2], [4] and [12] for more details concerning these operators.

Applying the Dziok-Srivastava operator to the harmonic function f = h + g
given by (1), we readily get

(7) Hp
q [α1, β1]f(z) = Hp

q [α1, β1]h(z) +Hp
q [α1, β1] g(z) .

Goodman [5] introduced two interesting subclasses of S, namely, uniformly
convex functions (UCV) and uniformly starlike functions (UST), and Ronning [8]
introduced a subclass of starlike functions Sp corresponding to the class (UCV).

Motivated by the earlier works of [6] to [7], [9] and [13] on the subject of harmonic
functions, we introduce here a new subclass GH([α1], γ) of H.

For 0 ≤ γ < 1, let GH([α1], γ) denote the subfamily of starlike harmonic
functions f ∈ H of the form (1) such that

(8) Re
{

(1 + eiψ)
z(Hp

q [α1, β1]f(z))′

z′(Hp
q [α1, β1]f(z)) − e

iψ
}
≥ γ

for z ∈ U where (Hp
q [α1, β1]f(z))′ = ∂

∂θ (Hp
q [α1, β1]f(reiθ), z′ = ∂

∂θ (z = reiθ) and
Hp
q [α1, β1]f(z) is defined by (7).
We also let VH([α1], γ) = GH([α1], γ)

⋂
VH where VH is the class of harmonic

functions with varying arguments introduced by Jahangiri and Silverman [6]
consisting of functions f of the form (1) in H for which there exists a real number
φ such that

(9) ηm + (m− 1)φ ≡ π(mod 2π) , δm + (m− 1)φ ≡ 0 (m ≥ 2) ,

where ηm = arg(am) and δm = arg(bm).
In this paper we obtain a sufficient coefficient condition for functions f given

by (2) to be in the class GH([α1], γ). It is shown that this coefficient condition is
necessary also for functions belonging to the class VH([α1], γ). Further, distortion
results and extreme points for functions in VH([α1], γ) are also obtained.

2. The class GH([α1], γ)

We begin deriving a sufficient coefficient condition for the functions belonging
to the class GH([α1], γ). This result is contained in the following.

Theorem 1. Let f = h+ g be given by (2). If

(10)
∞∑
m=2

(2m− 1− γ
1− γ |am|+

2m+ 1 + γ

1− γ |bm|
)

Γ(α1,m) ≤ 1− 3 + γ

3− γ b1

where 0 ≤ γ < 1, then f ∈ GH([α1], γ).

Proof. We first show that if the inequality (10) holds for the coefficients of f = h+g,
then the required condition (8) is satisfied. Using (7) and (8), we can write

Re
{

(1 + eiψ)
[z(Hp

q [α1, β1]h(z))′ − z(Hp
q [α1, β1]g(z))′

(Hp
q [α1, β1]h(z)) + (Hp

q [α1, β1]g(z))
− eiψ

]}
= Re A(z)

B(z) ,
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where

A(z) = (1 + eiψ)
[
z
(
Hp
q [α1, β1]h(z)

)′ − z(Hp
q [α1, β1]g(z)

)′]
− eiψ

[(
Hp
q [α1, β1]h(z)

)
+
(
Hp
q [α1, β1]g(z)

)]
and

B(z) =
(
Hp
q [α1, β1]h(z)

)
+
(
Hp
q [α1, β1]g(z)

)
.

In view of the simple assertion that Re (w) ≥ γ if and only if |1−γ+w| ≥ |1+γ−w|,
it is sufficient to show that

(11) |(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0 .

Substituting for A(z) and B(z) the appropriate expressions in (11), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2− γ)|z| −
∞∑
m=2

(2m− γ)Γ(α1,m)|am| |z|m −
∞∑
m=1

(2m+ γ)Γ(α1,m)|bm| |z|m

− γ|z|−
∞∑
m=2

(2m−2− γ)Γ(α1,m)|am| |z|m−
∞∑
m=1

(2m+2 +γ)Γ(α1,m)|bm| |z|m

≥ 2(1− γ)|z|
{

1− 3 + γ

1− γ b1 −
( ∞∑
m=2

[2m− 1− γ
1− γ Γ(α1,m)|am|

+ 2m+ 1 + γ

1− γ Γ(α1,m)|bm|
])}

≥ 0

by virtue of the inequality (10). This implies that f ∈ GH
(
[α1], γ

)
. �

Now we obtain the necessary and sufficient condition for function f = h+ g be
given with condition (9).

Theorem 2. Let f = h+ g be given by (2). Then f ∈ VH
(
[α1], γ

)
if and only if

(12)
∞∑
m=2

{2m− 1− γ
1− γ |am|+

2m+ 1 + γ

1− γ |bm|
}

Γ(α1,m) ≤ 1− 3 + γ

1− γ b1

where 0 ≤ γ < 1.

Proof. Since VH
(
[α1], γ

)
⊂ GH

(
[α1], γ

)
, we only need to prove the necessary part

of the theorem. Assume that f ∈ VH
(
[α1], γ

)
, then by virtue of (7) to (8), we

obtain

Re
{

(1 + eiψ)
[z(Hp

q [α1, β1]h(z))′ − z(Hp
q [α1, β1]g(z))′

(Hp
q [α1, β1]h(z)) + (Hp

q [α1, β1]g(z))
− (eiψ + γ)

]}
≥ 0 .
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The above inequality is equivalent to

Re
{(
z +

( ∞∑
m=2

[m(1 + eiψ)− γ − eiψ]Γ(α1,m)|am|zm

−
∞∑
m=2

[m(1 + eiψ) + γ + eiψ]Γ(α1,m)|bm|zm
))

×
(
z +

∞∑
m=2

Γ(α1,m)|am|zm +
∞∑
m=2

Γ(α1,m)|bm|zm
)−1}

= Re
{(

(1− γ) +
∞∑
m=2

[m(1 + eiψ)− eiψ − γ]Γ(α1,m)|am|zm−1

− z

z

∞∑
m=2

[m(1 + eiψ) + eiψ + γ]Γ(α1,m)|bm|zm−1
)

×
(

1 +
∞∑
m=2

Γ(α1,m)|am|zm−1 + z

z

∞∑
m=2

Γ(α1,m)|bm|zm−1
)−1}

≥ 0 .

This condition must hold for all values of z, such that |z| = r < 1. Upon choosing
φ according to (9) and noting that Re(−eiψ) ≥ −|eiψ| = −1, the above inequality
reduces to(

(1− γ)− (1− b1)−
[ ∞∑
m=2

(2m− 1− γ)Γ(α1,m)|am|rm−1

+ (2m+ 1 + γ)Γ(α1,m)|bm|rm−1
])

×
(

1−
∞∑
m=2

Γ(α1,m)|am|rm−1 +
∞∑
m=1

Γ(α1,m)|bm|rm−1
)−1
≥ 0 .(13)

If (12) does not hold, then the numerator in (13) is negative for r sufficiently close
to 1. Therefore, there exists a point z0 = r0 in (0,1) for which the quotient in (13) is
negative. This contradicts our assumption that f ∈ VH

(
[α1], γ

)
. We thus conclude

that it is both necessary and sufficient that the coefficient bound inequality (12)
holds true when f ∈ VH

(
[α1], γ

)
. This completes the proof of Theorem 2. �

If we put φ = 2π/k in (9), then Theorem 2 gives the following corollary.

Corollary 1. A necessary and sufficient condition for f = h+ g satisfying (12)
to be starlike is that

arg(am) = π − 2(m− 1)π/k ,
and

arg(bm) = 2π − 2(m− 1)π/k (k = 1, 2, 3, . . . ) .

3. Distortion and extreme points

In this section we obtain the distortion bounds for the functions f ∈ VH
(
[α1], γ

)
that lead to a covering result for the family VH

(
[α1], γ

)
.
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Theorem 3. If f ∈ VH
(
[α1], γ

)
then

|f(z)| ≤ (1 + |b1|)r + β1

α1

(1− γ
3− γ −

3 + γ

3− γ |b1|
)
r2

and

|f(z)| ≥ (1− |b1|)r −
β1

α1

(1− γ
3− γ −

3 + γ

3− γ |b1|
)
r2 .

Proof. We will only prove the right-hand inequality of the above theorem. The
arguments for the left-hand inequality are similar and so we omit it. Let f ∈
VH
(
[α1], γ

)
taking the absolute value of f , we obtain

|f(z)| ≤ (1 + |b1|)r +
∞∑
m=2

(|am|+ |bm|)rm

≤ (1 + b1)r + r2
∞∑
m=2

(|am|+ |bm|) .

This implies that

|f(z)| ≤ (1 + |b1|)r + β1

α1

(1− γ
3− γ

) ∞∑
m=2

[(3− γ
1− γ

)α1

β1
|am|+

(3− γ
1− γ

)α1

β1
|bm|

]
r2

≤ (1 + |b1|)r + β1

α1

(1− γ
3− γ

)[
1− 3 + γ

1− γ |b1|
]
r2

≤ (1 + |b1|)r + β1

α1

(1− γ
3− γ −

3 + γ

3− γ |b1|
)
r2 ,

which establishes the desired inequality. �

As a consequence of the above theorem and Corollary 1, we state the following
covering lemma.

Corollary 2. Let f = h+ g and of the form (2) be so that f ∈ VH
(
[α1], γ

)
. Then{

w : |w| < 3α1 − β1 − (α1 − β1)γ
(3− γ)α1

(1− b1)
}
⊂ f(U) .

For a compact family, the maximum or minimum of the real part of any conti-
nuous linear functional occurs at one of the extreme points of the closed convex
hull. Unlike many other classes, characterized by necessary and sufficient coefficient
conditions, the family VH([α1], γ) is not a convex family. Nevertheless, we may still
apply the coefficient characterization of the VH([α1], γ) to determine the extreme
points.

Theorem 4. The closed convex hull of VH
(
[α1], γ

)
(denoted by clco VH

(
[α1], γ

)
)

is {
f(z) = z +

∞∑
m=2
|am|zm +

∞∑
m=1
|bm|zm :

∞∑
m=2

m
[
|am|+ |bm|

]
< 1− b1

}
.
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By setting λm = (1−γ)
(2m−1−γ)Γ(α1,m) and µm = (1+γ)

(2m+1+γ)Γ(α1,m) , then for b1 fixed, the
extreme points for clco VH

(
[α1], γ

)
are

(14)
{
z + λmxz

m + b1z
}
∪
{
z + b1z + µmxzm

}
where m ≥ 2 and |x| = 1− |b1|.

Proof. Any function f in clcoVH
(
[α1], γ

)
may be expressed as

f(z) = z +
∞∑
m=2
|am|eiηmzm + b1z +

∞∑
m=2
|bm|eiδmzm ,

where the coefficients satisfy the inequality (10). Set

h1(z) = z , g1(z) = b1z , hm(z) = z + λme
iηmzm , gm(z) = b1z + µme

iδmzm

for m = 2, 3, . . . . Writing Xm = |am|
λm

, Ym = |bm|
µm

, m = 2, 3, . . . and X1 =
1−

∑∞
m=2Xm; Y1 = 1−

∑∞
m=2 Ym, we get

f(z) =
∞∑
m=1

(
Xmhm(z) + Ymgm(z)

)
.

In particular, putting

f1(z) = z + b1z and fm(z) = z + λmxz
m + b1z + µmyzm ,

(m ≥ 2, |x|+ |y| = 1− |b1|)

we see that extreme points of clcoVH
(
[α1], γ

)
⊂
{
fm(z)

}
.

To see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) = 1
2
{
f1(z) + λ2(1− |b1|)z2}+ 1

2{f1(z)− λ2(1− |b1|)z2} ,
a convex linear combination of functions in clco VH

(
[α1], γ

)
.

To see that fm is not an extreme point if both |x| 6= 0 and |y| 6= 0, we will show
that it can then also be expressed as a convex linear combinations of functions in
clco VH

(
[α1], γ

)
. Without loss of generality, assume |x| ≥ |y|. Choose ε > 0 small

enough so that ε < |x|
|y| . Set A = 1 + ε and B = 1−

∣∣ εx
y

∣∣. We then see that both

t1(z) = z + λmAxz
m + b1z + µmyBzm

and

t2(z) = z + λm(2−A)xzm + b1z + µmy(2−B)zm

are in clco VH
(
[α1], γ

)
and that

fm(z) = 1
2
{
t1(z) + t2(z)

}
.

The extremal coefficient bounds show that functions of the form (14) are the
extreme points for clco VH([α1], γ), and so the proof is complete. �
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4. Inclusion relation

Following Avici and Zlotkiewicz [1] (see also Ruscheweyh [11]), we refer to the
δ-neighborhood of the function f(z) defined by (2) to be the set of functions F for
which

(15)

Nδ(f) =
{
F (z) = z +

∞∑
m=2

Amz
m +

∞∑
m=1

Bmzm,

∞∑
m=2

m
(
|am −Am|+ |bm −Bm|+ |b1 −B1|

)
≤ δ
}
.

In our case, let us define the generalized δ-neighborhood of f to be the set

Nδ(f) =
{
F :

∞∑
m=2

Γ(α1,m)
[
(2m− 1− γ)(|am −Am|+ (2m+ 1 + γ)

)
|bm −Bm|

]
+ (1− γ)|b1 −B1| ≤ (1− γ)δ

}
.(16)

Theorem 5. Let f be given by (2). If f satisfies the conditions

(17)
∞∑
m=2

m(2m−1−γ)|am|Γ(α1,m)+
∞∑
m=1

m(2m+1+γ)|bm|Γ(α1,m) ≤ (1−γ) ,

where 0 ≤ γ < 1 and

(18) δ = 1− γ
3− γ

(
1− 3 + γ

1− γ |b1|
)
,

then N(f) ⊂ GH
(
[α1], γ

)
.

Proof. Let f satisfy (17) and F (z) be given by

F (z) = z +B1z +
∞∑
m=2

(
Amz

m +Bmzm
)

which belongs to N(f). We obtain

(3 + γ)|B1|+
∞∑
m=2

((2m− 1− γ)|Am|+ (2m+ 1 + γ)|Bm|) Γ(α1,m)

≤ (3 + γ)|B1 − b1|+ (3 + γ)|b1|

+
∞∑
m=2

Γ(α1,m) [(2m− 1− γ)|Am − am|+ (2m+ 1 + γ)|Bm − bm|]

+
∞∑
m=2

Γ(α1,m) [(2m− 1− γ)|am|+ (2m+ 1 + γ)|bm|]
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≤ (1− γ)δ + (3 + γ)|b1|

+ 1
3− γ

∞∑
m=2

mΓ(α1,m) ((2m− 1− γ)|am|+ (2m+ 1 + γ)|bm|)

≤ (1− γ)δ + (3 + γ)|b1|+
1

3− γ [(1− γ)− (3 + γ)|b1|] ≤ 1− γ .

Hence for δ = 1−γ
3−γ

(
1− 3+γ

1−γ |b1|
)
, we infer that F (z) ∈ GH

(
[α1], γ

)
which concludes

the proof of Theorem 5. �
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