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SEVERAL ¢-SERIES IDENTITIES FROM THE EULER
EXPANSIONS OF (a;q)oc AND —1

(a39) oo

ZHIZHENG ZHANG!2 AND JIZHEN YANG!

ABSTRACT. In this paper, we first give several operator identities which

extend the results of Chen and Liu, then make use of them to two g-series

identities obtained by the Euler expansions of (a;¢)sc and —L__ Several

(GRS
g-series identities are obtained involving a g-series identity in Ramanujan’s

Lost Notebook.

1. INTRODUCTION
Throughout this paper, assume that 0 < ¢ < 1 and adopt the customary notation
in [6] for g-series. Let

o0

(1) (a:@)oe = [J (1 — ad®).

k=0
For any integer n, the g-shifted factorial (a;q), is given by
(a;9)
(2 a;q)n = 77—~ -
) (a9) (ag™;q) oo
The g-binomial coefficient is defined by
3) m _ (&9
ko (@ Or(@ @)n—rk
We will also use frequently the following equations:

a; =(—a)™" ("il)m
(4) (q/a;q)n = (—a)™"q (@0
(5) (4" 9)00 = (—a)"q~ ("2 ) (q/a; ) (05 9) oo

For convenience, we employ the following notation for multiple g-shifted factorial:

(a1,a2,. ., am; @n = (@15Q)n(a2; O - - - (@i Dn
where n is an integer or co.
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The g-differential operator D, and the ¢-shifted operator are defined by

D {f(@) = ~(f(@) - f(aq)
and

n{f(a)} = flaq),

respectively. These two operators have been introduced in [9} [I0] [IT] due to Rogers,
who applied them for proving Roger-Ramanujan identities. Built on the D, and n,
the operator appeared in the work of Roman [12] and will be denoted by

0=n"'D,.

Two operators introduced in the papers [4] and [5] by Chen and Liu are the
exponential operators constructed from D, and 6:

To0y) = 3 Do)

(¢ Dn

n=0

and
Eo) = 3 ")
2 (G

Then the following operator identities were obtained.

Theorem 1.1 (Chen and Liu, [4] and [5]). Let T(bD,) and E(b8) be respectively
defined as above. Then

(6) T(6D,){

atqoo} atbtq

} (abst; q) oo
asatqoo N asatbsbtq)

(7) T(qu>{

(8) {atqm}:atbtqoo,

(as,at, bs, bt; q) o
(abst/q; Q) oo

By these operator identities, in [4] [5] [7, [8 [13], a lot of g-series identities can be de-
rived. In [T4], Theoremwas extended. Applying generalized operator identities to
some terminating basic hypergeometric series and g¢-integrals, we obtain some sum-
mation formulas involving 3¢2 summation and some g-integrals involving 3¢5 sum-
mation which extend some famous g-integrals, such as the Ismail-Stanton-Viennot
integral, Gasper integral formula.

In this paper, we first give several operator identities which extend the results
of Chen and Liu. Then making use of them to two ¢-series identities obtained by
the Euler expansions of (a;¢q)s and m, several g-series identities are obtained

9) E0){(as,at;q) } =

involving a g-series identity in Ramanujan’s Lost Notebook.
Throughout this paper, n and k are two nonnegative integers.
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2. SEVERAL OPERATOR IDENTITIES

First of all, by induction we give a result which is to be used later.

Lemma 2.1. We have

R if n>k,
(10) 0"{a"} = {(—1)"q”(q"“;q)na’“‘”, if n<k,
T if n>k,
(11) Dq {(L } = {(qk_m'l; q)nak—n 7 Zf n < k7
(12) 0" {a"*} = (—)"(¢"; @)na” ",
(13) Di{a %y = =GR gk g) 0= )

In [I3], we obtained the following operator identity.

E(d6){a*(at,as;q)s }

_ k (CLS, a’ta d57 dt? q)oo qika Q/CLS, Q/at .
(14) =a (adst/q)oo 3¢2 07 q2/ad8t7 q,q9 ) -

This identity can be rewritten by

e (at,as, dt, ds; q)eo
(adst/q; @)oo

k
(15) xS (-1) m (a/at, 4/as:9); (1)-k;

= (¢2/adst; q);

E(d@){ak(at, as; @)oo} =

Next we give three operator identities which are extensions of Theorem
They specialize to Theorem [1.1] by setting k& = 0.

Theorem 2.2. We have
k

k ,
(16) T(qu){ (at,as;q)oo} =d' (at, (asddtt (ils 14) oo ;: [ } Cdet qq) (g) .

E(d8){a " (at, as; q)oc }
k—1

—ak (at,as,dtqk,dsqk;q)w Z (q adstq ;q)nq(n;rl) _El "
(adstq" =15 q)sc (g, dtg¥, dsq¥; q)n a

_p (at, as, dt, ds; q) s (q’ﬂq) (adst/q; Qnir (vi1y(  d\™
17 =a k(a (2) _ =
17) (adst/q; q) o LZ_:O (@ Q)n (dt,ds;@)nin © ( a)
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where |d/a| < 1, and
—k

O v

K (adtsq_k; q)oo i(_l)n (qk, q1+k/adst; Dn n
(at,as,dtq=*,dsq="; q)oo (q,q"*k/dt, ' +F [ds; q)n

n=0

INE sy (adtsiq)os < (6%30)n (a/adst; @)nik
18 _ 1 ( 5 ) 3 5 3 —g)" .
18 ( d> T at,as, i ds; g Z‘; (@ @)n (q/dt,q/ds; @)n+r
Proof. We note that the rule of Leibniz for D (see [4])
19 Dps@sta) = Y )| Db @) 0p Hata).
k=0

Therefore, we have

a = dr a
T(qu){ (at’GS;Q)oo} =2 (¢; ‘I)an { (at,a«S;q)oo}

) . 1
Ty g —
J @D (atq?,asq?; q)oo

o0 d” n
_ j(j—n)
- il
nz:%( q)n;O
_ i d" zn:qj(jfn) m (@ Dk k- nﬂ{ L }
= (6o = 3@ Qk—;  Uatg?, asq’; q) o
:i = dinqj(jfn) [n] (@ Q) akijnfj{ ‘ 1 ‘ }
== (@ D)n I Qr—j T atg?, asq’; q) o
:Z d](q7 k ]Z dn 7nj n{ i 1 . }
= (4:9);(¢ @) (atq?, asq?; q) o
k ryn . 00 ;
k] d\i = (dg=iDy)" 1
k q
= Qa . —_ - -
JZ:O L7 (a> nz;; (4 @)n {(atqkasqf;Q)oo}
S .
k| /d\J . 1
=a" -) -T(dg Dy ————
¢ el (a> (dg q{(atq%asqﬂ;q)m}
" = [k] (gi)j (adstq’; 9) oo
=l \a/ (atgd asql,dt,ds;q)o

s (adst;q)s YTk (at,as;q); (d\I
5 [ laena sy
(at,as,dt,ds; q)co =L (adst;q); \a
We obtain . and can be proved similarly. The proof is completed. [
Taking s = 0 in Theorem we have
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Corollary 2.3.
k

k ,
(20) T(dDQ){ (at(:q)oo } = a* (at, di; q) oo Zo [ﬂ (at:9); (g) '

Jj=

E(df){a""(at;q)ec } = a " (at, dtq"; q)

nt1 d\mn
(21) XZ (¢" q @ q)%kq(z)(_a)

where |d/a| < 1, and

ak k41
T(qu){m} = (— ﬁ)kq( 2 )m
> k; )n "
22 Xg((qq;q%n i)

where |q/at| < 1.

Further, setting k=1 or ¢t =0 in , we get the following results of Chen and
Liu.

Corollary 2.4 (Chen and Liu, [5]).

(23) E(6){ —12 ("png
(24)  E@0){a " (~a;q)n} = a;q)ee Y (=b/a)"ql"T ) (—bg™ @)
m=0

3. SEVERAL ¢-SERIES IDENTITIES FROM EXPANSION OF (a;¢)co

From the Euler expansion of (a;q)s (see [3]):

X, (—1)ngl)an
Z ﬁ (a;q)oc »
= (@)
the following identity can be verified.
o0
(25) D (" @)eeq™ = —a7 a7 (—a:0) oo

n=0
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Theorem 3.1. We have

00 k+1 _ —n
) (—adt; q)n qni ("D, —q="/a, q/at; q); .
o (-ag,—dg;q)n” = (¢,—¢'7"/adt;q);

n=

k
1 (—adt; q)e ,Q/at Dj
=—a E (dt)J
( aq, —dq; @) e < q);

(1 +a)(144d)
1+adt/q

(q ,—q/a,q/at;q); 7

q,—q*/adt; q);

Proof. Multiply both sides in equation by a¥*1(at; q)ss. Then

M»

(26) +a

3=0

(27) > a" (—ag™ at; q)eoq” = —a*(at; q)oe + a¥(—a, at; q)oo
Apply the operator E(df) to its both sides with respect to the variable a. Then
ZQ”E (d0){a" ! (—ag" ™, at; q)c } = —E(d0){a*(at; ) }

(28) + E(df){a"(—a,at;q)c } -
Applying Theorem [2.2] and Corollary 2.3 we have

_ an+1 t 7dqn+1 dt: q)
E(d# k+1/_  n+1 t: _ k+1( aq , A, ) sy 4 )oo
(d){a" T (—aq" " at;q) } = @ Cadia™ 9
k+1 n
N LMY —g e, q/atiq);
= (q,—q1 " /adt; q); ’

k
Bl {o¥ atsa)n} = oMt 3 85
7=0

.  (—aat,—d, dt ?)oc ¥, —q/a,q/at;q); ;
B(@0) {a*(~a.atig)c} = a* 7 I

Substituting these three identities into and then using , we obtain (3.1)
after simplifying. This completes the proof. ([

Taking £ = 0 in Theorem we have
Corollary 3.2.

o0

adtv q (7adt; q)n +1
a ——————q¢" +d(1 —at/q q"
Z —aq, —dq; q)n ( / ); (—ag; ¢)n(—=dg; @)nta
(—adt; q) o
29 =— Vx4,
(29) (—aq, —dg; ¢)oo v

Taking ¢t = 0 in Corollary [3.2] we have
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Corollary 3.3.

oo

1
a ——q" +d qn+1
Z —aq, — dq, ) Z ( aq; q ) ( dqa )n+1

nO
1

30 = {l+a.
( ) (_aq7 _dQ; Q)oo

Taking k = 1 in Theorem we have

Corollary 3.4.

—adt;q)n - (—adt; q)n n
a’q E ————q" —ad(1+q)(at — ¢ E q
—aq, —dq; q)n 1+ )n:o (—ag; ¢)n(—dg; @)n+1

+ d*(at — q)(at — ¢?) i (—adt; q)n

q
= (—aq; Qn(—dq; On+2

n

(1+ a)(aq + dg + adg® — adt) (—adt; q) oo
31) = — (aq + dq — adt) ——=>— .
(31) 1 +dq ( )(—aq, —dg; q)o
Taking t = 0 in Corollary [3.4] we have
Corollary 3.5.
2 n
—— q¢"+ad(l+¢ q
Z —aq, dq, Dn T;) —ag; Q)n dq, @nt1

d2 2 n
N Z —aq; q)n dq, )n+2q

n= 0
(1+a)(a+d+ adq) 1
32 = —(a+d)—F+—.
(32 1 +dg (a+d) (—agq, —dq; q)o
Theorem 3.6. We have
= adtq Qn n > adtq"‘*‘k"q)l (i5h) d\?
— dig" 7;) —agq, —dgkt1;q q = dq"”€+1 dtq*; q); ’ ( a)
I Gy ;q)oo i (q’““;q)i q(i;l)(_ g>i
(—aq, _qu+1;Q)oo — (g, dtq" 5 q); a
> "t —adtq®; q); i+1 dy\?
33 (1 i (% )(_ ,)
( ) +a ; q _qu+1 dtqk+1 q) q a )

where |d/a| < 1.

Proof. can be rewritten by

(34) Zq” “F(—ag", at; @)oo = —a” " (at; @)oo + a” FT (—a, at; ¢)
n=0
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Apply the operator E(d#) to its both sides with respect to the variable a. Then

> q"E(d0){a " (—aq""", at; q)o } = —E(dB) {a~ "V (at; q)oo }
n=0

+ E(d@){af(kﬂ)(—a, at; @)oo } -
By Theorem [2:2] and Corollary [2:3] we have

k (_aqn+1a Clt, _dqn+k+17 dtqk7 q)oo
(—adtq™t; q)s

> ,—adtqg"*: g i1 d\"
X Z d PR d ) q( 2 ) —_—— s
— (q,—dq tq~; q)s a

E(d@){a‘k(—aq"H, at; q)oo} =a

E(df){a~ " (at;q)oc } = a= Y (at, dtd"; q) o
(qk+1

(@) ey (_dY
X;(q,dtq’““;q)iq (a ’

—(k+1) (_a7 ata _qu+l7 dtqk+1; Q)OO
(—adtq*; q)so
k (¢"1, — k. i1 i
I q<“<*§)~
—~ (q, —qu‘H dtght1; q); a

Substituting these three identities into and then using , we obtain the
theorem. 0

Taking k = 0 in Theorem [3.6] we have

E(d@){a_(kH) (—a,at;q)x} =a

Corollary 3.7.

G-y (zadti ) n_ o (—adt;q)oo) Z( 1 q(igl)<_é>i

— (—aq, —dg; q)n (—aq, —dg; q)os =2 (dtg; q): a

(—adt; q) (igl)( d)i’

_\radtiq)i _a
— (—dq. dtg; q);

(35) +(1+at) 3

3

a
where |d/a| < 1.

Taking t = 0 in Corollary [3.7] we obtain the following Ramanujan’s identity.
Corollary 3.8.

oo o0

> %dqq)q et S (T (g

n=0 (_aqa ( aq, dQ7 Q)oo =0

o (=1ngU ) (dfa)n
(%) tl+a )nz::() (—dg;q)n 7

where |d/a| < 1.
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Note. This identity is a formula in Ramanujan’s Lost Notebook, and its proofs
are given by Andrews [I} [2]. In [5], Chen and Liu gave also a simple proof by using
the method of the operator identity.

4. SEVERAL ¢-SERIES IDENTITIES FROM EXPANSION OF ﬁ

From the Euler expansion of (see [3]):

1
(a;9) 0o

o0

1 " 1
,; @0~ (@)

the following identity can be verified.

o

1 1
(37) Z " = a ' — —a ',
2 (agh ) @ 0

From this identity, by the operator T'(dD, we can obtain the following results.

Theorem 4.1. We have
k+1

A k A
k+1 (a;@)nt; (dN\I 1 k] (a,at;q); rd\J
(d; tq)j——————(—) = -
Zq Dn Z[ j ](G’Q)J (adt; @) n+j (a) “ z:: J] (adt;q); (a)
(a,d; q 00 d\’
38 - (at; .
(38) adt $ @)oo H @) (a)
Proof. By 7 we have
o akH1 ok ak
(39) N porrrres e Sl e el o
“— (aq", at; q)o (a,at;q)oc  (at; @)oo
Apply the operator T'(dD,) to its both sides with respect to the variable a. Then
o0 ak+1 ok
" T(dDy)d —————— ¢ =T (dDy) ————
,;q ( Q){(aq",at;q)m} ( Q){(mat;q)m}
k
a
40 —T(dDy) —— ¢ .
“0) ( q){(at;q)oo}
By Theorem and Corollary we have
ak—H (adtq”' Q)
T(dD,)d —————— + = gF*! 11720
( q){ (aq™, at; @)oo } “ (ag™, at,dq™, dt; q) 0o
k+1 A
k+1] (aq", at;q); (d\7
41 — -
“ | e G

J=0

ok a k a,a J
(42) T<qu>{W}:“kW;H adttqq> Cf)
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and

k .
@) ran =t g 2 e ()

Substituting these three identities into and then using , we obtain the
theorem. O

Taking k = 0 in Theorem 1] we have
Corollary 4.2.

- (a,d5q)n - (a;@)nt1 (a,d; q)oo

44 a ——="¢" +d(1 —at d; @)t —q" =1 -
W) 0D (g, A =00 D (s (@t g)oc

Specially, taking ¢ = 0 we have
Corollary 4.3.
(45) aY (a,d;)ng" +d Y (dQ)n(a;@n1q" =1 = (a,d;9)s

n=0 n=0

Taking k = 1 in Theorem [£.1] we have

Corollary 4.4.
d q n > a q n+1 d Q)
2 n d(1 n
Z +ad(1+q)(1 ngo it ) ¢
- (a;q n+2(d (])
+d*(1 — at 1 — atq) AU VAR R AL
1w 3 e,
(1—-a)(1- at) (a,d;q) oo

4 = - .
(46) a+d S ~ (adt ) (a +d — adt)

Specially, taking t = 0 we have
Corollary 4.5.

a® > (a,d;q)nq" + ad(1+ q) Y (a;Q)nt1(d; @)nq” +d* D (a5 0)n12(d; @) ng"

n=0 n=0 n=0

(47) = (a+d)(1 - (a,d;q)oc) — ad.

Theorem 4.6. We have
iqn(avd§Q)ni(qk;Q)j (@7 adti Qs (s
= (adtiq)n = (g:9); (a/dt,q =" /d; @)+,

T E (R Yg); (g/adt; ke J

= (©49); (9/d.a/dt;Q)k+1+;

k+1.

1(a,d;q)o o (@), (—1) af) 1+
d(adt%Q)oo; @a; @t awrs,
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where |q/at| < 1.
Proof. We rewrite into the following form:

o0 ok o~ (k+1) q—(k+1)
(49) > q" = _
“— (aq", at; q) o (a,at; @)oo (at;q) oo

Apply the operator T'(dDy) to its both sides with respect to the variable a. Then

00 a_k a—(k-i—l)
nzzoqn - T(qu){ (aq™, at; q) oo } - T(qu){ (a,at; q) oo }

a—(k+D)
50 —T(dDgy)s ———
(50 ( q){(at;q)oo}
By Theorem 2.2 and Corollary we have
—k n
e ) (adig"ig)
T(dDy)y — ¢ = (—d
( q){(aq” at; @)oo } (=d) "qt 2 (agq™, at,dq™, dt; q) oo
(¢"; q q' " /adt; Q)1 j
(51) X (=q)",
JZO %4q /dt ¢ @k
a—(k+1) (k1) (F+2 (adt; q)
T(dD I S G A ( )’—‘X’
(d Q){(a7at~q) } (=d) ¢ (a,at,d,dt; q) o
(52) oy Ly e
o (©:9); (a/d,q/dt; @)r+j+1
and
a,_(k""l) 1 \—k+1) /ry2 1
T(dD (G P
( Q){ (at; ) } ( adt) ¢ " (at, dt; @) o
e k-‘rl 1 q j
53 X ST
(53) zf: (©9); (a/dt;@)k+j+1 ( at)
Substituting these three identities into and then using (), we obtain the
theorem. ([l

Taking k = 0 in Theorem [4.6] we have
Corollary 4.7.

= (a,d;q)n 7~ (g/adt;q)j1 j
= Y ETRNAE
; (adt; q)n, dJZ: (q/d,q/dt; q)Hl( )
1(a ) oo AYAR:
4 -
(54) d (adt Q) oo Z q/dt q) j+1< ) ’

where |q/at| < 1.
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