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APPROXIMATION OF ENTIRE FUNCTIONS
OF SLOW GROWTH ON COMPACT SETS

G. S. Srivastava and Susheel Kumar

Abstract. In the present paper, we study the polynomial approximation
of entire functions of several complex variables. The characterizations of
generalized order and generalized type of entire functions of slow growth have
been obtained in terms of approximation and interpolation errors.

1. Introduction

The concept of generalized order and generalized type for entire transcendental
functions was given by Seremeta [5] and Shah [6]. Hence, let L0 denote the class of
functions h(x) satisfying the following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and
tends to ∞ as x→∞,

(ii) lim
x→∞

h[{1 + 1/ψ(x)}x]
h(x) = 1 for every function ψ(x) such that ψ(x) → ∞ as

x→∞.
Let Λ denote the class of functions h(x) satisfying conditions (i) and

(iii) lim
x→∞

h(cx)
h(x) = 1 for every c > 0, that is h(x) is slowly increasing.

For an entire transcendental function f(z) =
∞∑
n=1

bnz
n, M(r) = max

|z|=r
|f(z)| and

functions α(x) ∈ Λ, β(x) ∈ L0, the generalized order is given by

ρ(α, β, f) = lim sup
r→∞

α[logM(r)]
β(log r) .

Further, for α(x), β−1(x) and γ(x) ∈ L0, generalized type of an entire transcen-
dental function f(z) is given as

σ(α, β, ρ, f) = lim sup
r→∞

α[logM(r)]
β[{γ(r)}ρ] ,
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where 0 < ρ <∞ is a fixed number.
Let g : CN → C,N ≥ 1, be an entire transcendental function. For z = (z1, z2, . . . , zN ) ∈
CN , we put

S(r, g) = sup
{
|g(z)| : |z1|2 + |z2|2 + · · ·+ |zN |2 = r2} , r > 0 .

Then we define the generalized order and generalized type of g(z) as

ρ(α, β, g) = lim sup
r→∞

α[logS(r, g)]
β(log r)

and

σ(α, β, ρ, g) = lim sup
r→∞

α[logS(r, g)]
β[{γ(r)}ρ] .

Let K be a compact set in CN and let ‖ · ‖K denote the sup norm on K. The
function ΦK(z) = sup

(
|p(z)|1/n : p− polynomial, deg p ≤ n , ‖p‖K ≤ 1 , n ∈ N

)
,

z ∈ CN is called the Siciak extremal function of the compact set K (see [2] and
[3]). Given a function f defined and bounded on K, we put for n = 1, 2, . . .

E1
n(f,K) = ‖f − tn‖K ;

E2
n(f,K) = ‖f − ln‖K ;

E3
n+1(f,K) = ‖ln+1 − ln‖K ;

where tn denotes the nth Chebyshev polynomial of the best approximation to f on
K and ln denotes the nth Lagrange interpolation polynomial for f with nodes at
extremal points of K (see [2] and [3]).

The generalized order of an entire function of several complex variables has
been characterized by Janik [3]. His characterization of order in terms of the above
errors has been obtained under the condition

(1.1)
∣∣∣d(β−1[cα(x)])

d(log x)

∣∣∣ ≤ b ; x ≥ a .

Clearly (1.1) is not satisfied for α(x) = β(x). Thus in this case, the corresponding
result of Janik is not applicable. In the present paper we define generalized order
and generalized type of entire functions of several complex variables in a new way.
Our results apply satisfactorily to entire functions of slow growth and generalize
many previous results.

Let Ω be the class of functions h(x) satisfying conditions (i) and

(iv) there exist a function δ(x) ∈ Λ and constants x0, c1 and c2 such that

0 < c1 ≤
d{h(x)}

d{δ(log x)} ≤ c2 <∞ for all x > x0 .

Let Ω be the class of functions h(x) satisfying (i) and

(v) lim
x→∞

d{h(x)}
d(log x) = c3 , 0 < c3 <∞.
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Kapoor and Nautiyal [4] showed that classes Ω and Ω are contained in Λ and
Ω
⋂

Ω = φ. They defined the generalized order ρ(α, α, f) for entire functions as

ρ(α, α, f) = lim
r→∞

sup α[logM(r)]
α(log r) ,

where α(x) either belongs to Ω or to Ω . Ganti and Srivastava [1] defined the
generalized type σ(α, α, ρ, f) of an entire function f(z) having finite generalized
order ρ(α, α, f) as

σ(α, α, ρ, f) = lim sup
r→∞

α[logM(r)]
[α(log r)]ρ .

2. Main results

Theorem 2.1. Let K be a compact set in CN . If α(x) either belongs to Ω or to Ω
then the function f defined and bounded on K, is a restriction to K of an entire
function g of finite generalized order ρ(α, α, g) if and only if

ρ(α, α, g) = lim sup
n→∞

α(n)
α
{
− 1
n logEsn(f,K)

} ; s = 1, 2, 3 .

Proof. Let g be an entire transcendental function. Write ρ = ρ(α, α, g) and

θs = lim sup
n→∞

α(n)
α
{
− 1
n logEsn

} ; s = 1, 2, 3 .

Here Esn stands for Esn
(
g|K ,K

)
, s = 1, 2, 3. We claim that ρ = θs, s = 1, 2, 3. It is

known (see e.g. [7]) that
E1
n ≤ E2

n ≤ (n∗ + 2)E1
n , n ≥ 0 ,(2.1)

E3
n ≤ 2(n∗ + 2)E1

n−1 , n ≥ 1 ,(2.2)

where n∗ =
(
n+N
n

)
. Using Stirling formula for the approximate value of

n! ≈ e−nnn+1/2√2π ,

we get n∗ ≈ nN

N ! for all large values of n. Hence for all large values of n, we have

E1
n ≤ E2

n ≤
nN

N ! [1 + o(1)]E1
n

and

E3
n ≤ 2n

N

N ! [1 + o(1)]E1
n .

Thus θ3 ≤ θ2 = θ1 and it suffices to prove that θ1 ≤ ρ ≤ θ3. First we prove that
θ1 ≤ ρ. Using the definition of generalized order, for ε > 0 and r > r0(ε), we have

logS (r, g) ≤ α−1{ρα(log r)
}
,

where ρ = ρ+ ε provided r is sufficiently large. Without loss of generality, we may
suppose that

K ⊂ B = {z ∈ CN : |z1|2 + |z2|2 + · · ·+ |zN |2 ≤ 1} .



140 G. S. SRIVASTAVA AND S. KUMAR

Then
E1
n ≤ E1

n(g,B) .
Now following Janik ([3, p.324]), we get

E1
n(g,B) ≤ r−nS(r, g) , r ≥ 2 , n ≥ 0

or

logE1
n ≤ −n log r + α−1{ρα(log r)

}
.

Putting r = exp
[
α−1{α(n)/ρ}

]
in the above inequality, we obtain

logE1
n ≤ −n

[
α−1{α(n)/ρ}

]
+ n

or
α(n)

α
{

1− 1
n logE1

n

} ≤ ρ .
Taking limits as n→∞, we get

lim sup
n→∞

α(n)
α
{
− 1
n logE1

n

} ≤ ρ .
Since ε > 0 is arbitrary small. Therefore finally we get
(2.3) θ1 ≤ ρ .
Now we will prove that ρ ≤ θ3. If θ3 =∞, then there is nothing to prove. So let us
assume that 0 ≤ θ3 <∞. Therefore for a given ε > 0 there exist n0 ∈ N such that
for all n > n0, we have

0 ≤ α(n)
α
{
− 1
n logE3

n

} ≤ θ3 + ε = θ3

or

E3
n ≤ exp

[
− nα−1{α(n)/θ3}

]
.

Now from the property of maximum modulus, we have

S(r, g) ≤
∞∑
n=0

E3
nr
n ,

S(r, g) ≤
n0∑
n=0

E3
nr
n +

∞∑
n=n0+1

rn exp
[
− nα−1{α(n)/θ3}

]
.

Now for r > 1, we have

(2.4) S(r, g) ≤ A1r
n0 +

∞∑
n=n0+1

rn exp
[
− nα−1{α(n)/θ3}

]
,

where A1 is a positive real constant. We take
(2.5) N(r) = α−1(θ3α[log{(N + 1)r}]

)
.
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Now if r is sufficiently large, then from (2.4) and (2.5) we have

S(r, g) ≤ A1r
n0 + rN(r)

∑
n0+1≤n≤N(r)

exp
[
− nα−1{α(n)/θ3}

]
+

∑
n>N(r)

rn exp
[
− nα−1{α(n)/θ3}

]
or

S(r, g) ≤ A1r
n0 + rN(r)

∞∑
n=1

exp
[
− nα−1{α(n)/θ3}

]
+

∑
n>N(r)

rn exp
[
− nα−1{α(n)/θ3}

]
.(2.6)

Now we have
lim sup
n→∞

(
exp[−nα−1{α(n)/θ3}]

)1/n = 0 .

Hence the first series in (2.6) converges to a positive real constant A2. So from
(2.6) we get

S(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

n>N(r)

rn exp
[
− nα−1{α(n)/θ3}

]
,

S(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

n>N(r)

rn exp
[
− n log{(N + 1)r}

]
,

S(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

n>N(r)

( 1
N + 1

)n
,

S(r, g) ≤ A1r
n0 +A2r

N(r) +
∞∑
n=1

( 1
N + 1

)n
.(2.7)

It can be easily seen that the series in (2.7) converges to a positive real constant
A3. Therefore from (2.7), we get

S(r, g) ≤ A1r
n0 +A2r

N(r) +A3 ,

S(r, g) ≤ A2r
N(r)[1 + o(1)

]
,

logS(r, g) ≤
[
1 + o(1)

]
N(r) log r ,

logS(r, g) ≤ [1 + o(1)]α−1(θ3α
[

log{(N + 1)r}
]
) log r ,

logS(r, g) ≤
[
1 + o(1)

][
α−1{(θ3 + δ)α[log{(N + 1)r}]}

]
,

where δ > 0 is suitably small.
Hence

α[logS(r, g)] ≤ (θ3 + δ)α[log{(N + 1)r}]

α [logS(r, g)]
α[log r] ≤ (θ3 + δ)

[
1 + o(1)

]
.
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Proceedings to limits as r →∞, since δ is arbitrarily small, we get

ρ ≤ θ3 .

Now let f be a function defined and bounded on K and such that for s = 1, 2, 3

θs = lim sup
n→∞

α(n)
α
{
− 1
n logEsn

}
is finite. We claim that the function

g = l0 +
∞∑
n=1

(ln − ln−1)

is the required entire continuation of f and ρ(α, α, g) = θs. Indeed, for every d1 > θs

α(n)
α
{
− 1
n logEsn

} ≤ d1

provided n is sufficiently large. Hence

Esn ≤ exp
[
− nα−1{α(n)/d1}

]
.

Using the inequalities (2.1), (2.2) and converse part of theorem, we find that the
function g is entire and ρ(α, α, g) is finite. So by (2.3), we have ρ(α, α, g) = θs, as
claimed. This completes the proof of Theorem 2.1. �

Next we prove

Theorem 2.2. Let K be a compact set in CN such that ΦK is locally bounded
in CN . Set G(x, σ, ρ) = α−1[{σ α(x)}1/ρ], where ρ is a fixed number, 1 < ρ <∞.
Let α(x) ∈ Ω and dG(x,σ,ρ)

d log x = O(1) as x → ∞ for all 0 < σ < ∞. Then the
function f defined and bounded on K, is a restriction to K of an entire function g
of generalized type σ(α, α, ρ, g) if and only if

σ(α, α, ρ, g) = lim sup
n→∞

α(n/ρ){
α
(

ρ
ρ−1 log[Esn(f,K)]−1/n

)}ρ−1 , s = 1, 2, 3 .

Before proving the Theorem 2.2 we state and prove a lemma.

Lemma 2.1. Let K be a compact set in CN such that ΦK is locally bounded in
CN . Set G(x, µ, λ) = α−1[{µα(x)}1/λ] , where λ is a fixed number, 1 < λ < ∞.
Let α(x) ∈ Ω and dG(x,µ,λ)

d log x = O(1) as x→∞ for all 0 < µ <∞. Let (pn)n∈N be
a sequence of polynomials in CN such that

(i) deg pn ≤ n, n ∈ N ;
(ii) for a given ε > 0 there exists n0 ∈ N such that

‖pn‖K ≤ exp
(
− λ− 1

λ
nα−1

[{ 1
µ
α(n/λ)

}1/(λ−1)])
.

Then
∑∞
n=0 pn is an entire function and σ(α, α, λ,

∑∞
n=0 pn) ≤ µ provided

∑∞
n=0 pn

is not a polynomial.
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Proof. By assumption, we have

‖pn‖Krn ≤ rn exp
(
− λ− 1

λ
nα−1

[{ 1
µ
α(n/λ)

}1/(λ−1)])
, n ≥ n0 , r > 0 .

If α(x) ∈ Ω, then by assumptions of lemma, there exists a number b > 0 such that
for x > a, we have ∣∣∣dG(x, µ, λ)

d log x

∣∣∣ < b .

Let us consider the function

φ(x) = rx exp
(
− λ− 1

λ
xα−1

[{ 1
µ
α(x/λ)

}1/(λ−1)])
.

Using the technique of Seremeta [5], it can be easily seen that the maximum value
of φ(x) is attained for a value of x given by

x∗(r) = λα−1{µ[α{log r − a(r)}]λ−1} ,
where

a(r) = dG(x/λ, 1/µ, λ− 1)
d log x .

Thus

(2.8) ‖pn‖Krn ≤ exp
{
bλα−1[µ{α(log r + b)}λ−1]

}
, n ≥ n0 , r > 0 .

Let us write Kr = {z ∈ CN : ΦK(z) < r, r > 1}, then for every polynomial p of
degree ≤ n, we have (see [3])

|pn(z)| ≤ ‖pn‖KΦnK(z) , z ∈ CN .

So the series
∑∞
n=0 pn is convergent in every Kr, r > 1, whence

∑∞
n=0 pn is an

entire function. Put

M∗(r) = sup
{
‖pn‖K rn : n ∈ N, r > 0} .

On account of (2.8), for every r > 0, there exists a positive integer ν(r) such that

M∗(r) = ‖pν(r)‖K rν(r)

and

M∗(r) > ‖pn‖K rn , n > ν(r) .

It is evident that ν(r) increases with r. First suppose that ν(r)→∞ as r →∞.
Then putting n = ν(r) in (2.8), we get for sufficiently large r

(2.9) M∗(r) ≤ exp
{
bλα−1[µ{α(log r + b)}λ−1]

}
.

Put

Fr = {z ∈ CN : ΦK(z) = r} , r > 1
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and

M(r) = sup
{∣∣∣ ∞∑

n=0
pn(z)

∣∣∣ : z ∈ Fr
}
, r > 1 .

Now following Janik ([3] p.323), we have for some positive constant k

(2.10) S
(
r,

∞∑
n=0

pn

)
≤M(kr) ≤ 2M∗(2kr) .

Combining (2.9) and (2.10), we get

S
(
r,

∞∑
n=0

pn

)
≤ 2 exp

{
bλα−1[µ{α(log r + b)}λ−1]

}
or

α[ 1
bλ log{ 1

2S(r,
∑∞
n=0 pn)}]

[α(log 2kr + b)]λ−1 ≤ µ .

Since α(x) ∈ Ω , we get on using (v)

lim sup
r→∞

α [logS(r,
∑∞
n=0 pn)]

[α(log r)]λ ≤ µ

or

σ(α, α, λ,
∞∑
n=0

pn) ≤ µ .

In the case when ν(r) is bounded then M∗(r) is also bounded, whence
∑∞
n=0 pn

reduces to a polynomial. Hence the Lemma 2.1 is proved. �

Proof of Theorem 2.2. Let g be an entire transcendental function. Write σ =
σ(α, α, ρ, g) and

ηs = lim sup
n→∞

α(n/ρ){
α
(

ρ
ρ−1 log[Esn]−1/n

)}ρ−1 , s = 1, 2, 3 .

Here Esn stands for Esn (g|K ,K), s = 1, 2, 3. We claim that σ = ηs, s = 1, 2, 3. Now
following Theorem 2.1, here we prove that η1 ≤ σ ≤ η3. First we prove that η1 ≤ σ.
Using the definition of generalized type, for ε > 0 and r > r0(ε), we have

S (r, g) ≤ exp
(
α−1[σ {α(log r)}ρ]

)
,

where σ = σ + ε provided r is sufficiently large. Thus following Theorem 2.1, here
we have

E1
n ≤ r−n exp

(
α−1[σ {α(log r)}ρ]

)
E1
n ≤ exp

[
− n log r + (α−1[σ {α(log r)}ρ])

]
.(2.11)

Let r = r(n) be the unique root of the equation

(2.12) α
[n log r

ρ

]
= σ {α(log r)}ρ .
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Then

(2.13) log r ' α−1
{ 1
σ
α(n/ρ)

}1/(ρ−1)
= G(n/ρ, 1/σ, ρ− 1) .

Using (2.12) and (2.13) in (2.11), we get

E1
n ≤ exp

[
− nG(n/ρ, 1/σ, ρ− 1) + n

ρ
G(n/ρ, 1/σ, ρ− 1)

]
,

ρ

ρ− 1 log[E1
n]−1/n ≥ α−1

{( 1
σ
α(n/ρ)

)1/(ρ−1)}
,

α(n/ρ){
α
(

ρ
ρ−1 log[E1

n]−1/n
)}ρ−1 ≤ σ .

Proceedings to limits, we get

lim sup
n→∞

α(n/ρ){
α
(

ρ
ρ−1 log[E1

n]−1/n
)}ρ−1 ≤ σ

or
η1 ≤ σ .

Since ε > 0 is arbitrarily small, we finally get

(2.14) η1 ≤ σ .

Now we will prove that σ ≤ η3. Suppose that η3 < σ, then for every µ1, η3 < µ1 < σ,
we have

α(n/ρ){
α
(

ρ
ρ−1 log[E3

n]−1/n
)}ρ−1 ≤ µ1

provided n is sufficiently large. Thus

E3
n ≤ exp

(
− ρ− 1

ρ
nα−1

[{ 1
µ1
α(n/ρ)

}1/(ρ−1)])
.

Also by previous lemma, σ ≤ µ1. Since µ1 has been chosen less than σ, we get a
contradiction. Hence

σ ≤ η3 .

Now let f be a function defined and bounded on K such that for s = 1, 2, 3

ηs = lim sup
n→∞

α(n/ρ){
α
(

ρ
ρ−1 log[Esn]−1/n

)}ρ−1

is finite. We claim that the function

g = l0 +
∞∑
n=1

(ln − ln−1)
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is the required entire continuation of f and σ(α, α, ρ, g) = ηs. Indeed, for every
d2 > ηs

α(n/ρ){
α
(

ρ
ρ−1 log[Esn]−1/n

)}ρ−1 ≤ d2

provided n is sufficiently large. Hence

Esn ≤ exp
(
− ρ− 1

ρ
nα−1

[{ 1
d2
α(n/ρ)

}1/(ρ−1)])
.

Using the inequalities (2.1), (2.2) and previous lemma, we find that the function
g is entire and σ(α, α, ρ, g) is finite. So by (2.14), we have σ(α, α, ρ, g) = ηs, as
claimed. This completes the proof of the Theorem 2.2. �
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