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ON EXTENSION OF V E C T O R POLYMEASURES, II 

IVAN D O B R A K O V 

(Communicated by Miloslav Duchoň ) 

ABSTRACT. We prove a necessary and sufficient condition for extension of a 
vector polymeasure from Cartesian produc t of rings to the Cartesian product of 
generated cr-rings. 

In this addition to [2], we give a necessary and sufficient condition for the 
existence of a unique separately countably additive extension 7 : o~(i?i) x . . . 
x a(Rd) —* Y of a separately countably additive 70: R\ x • • • x Rd —> Y. Here 
Ri is a ring of subsets of a non empty set Ti, o~(Ri) is the generated a-ring, for 
i = 1 , . . . , d, and Y is a Banach space. 

Since for any sequence An G <J(R) , n = 1, 2 , . . . , there is a countable subring 
R' C R such that An E <J(R') for each n = 1,2,... , see [6; §5, Theorems C 
and D], the uniqueness of the extension of a vector polymeasure, see [1; Corollary 
of Lemma 4], implies the following: 

LEMMA. A separately countably additive 70: R\ x • • • x Rd —> Y has a unique 
separately countably additive extension 7 : cr(iti) x ••• x o~(Rd) —> Y if and 
only if 70: R\ x • • • x R'd —:• Y has a separately countably. additive extension 
7: cr(R\) x • • • x a(R'D) —> Y for any countable subrings R[ C Ri. i = 1 , . . . , d. 

Note that [2; Corollary of Theorem 5] gives a necessary and sufficient condi
tion for the extension in the case of countable rings Ri, 1 , . . . , d. The theorem 
below is not limited, but only reducible, to this case. In a sense, the theorem 
is a counterpart of [4; Theorem 9] (with iterated limits there) and [5; Theo
rem 2], which give similar double limit characterizations of Li-representability 
of bounded multilinear operators on x C n ( ^ ) and on xCo(Ti,Xi) respectively. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28B05. 
K e y w o r d s : Cartesian product of rings, vector polymeasure, Kluvanek's extension 

theorem. 
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THEOREM. A separately countably additive 70: R1 x • • • X Rd —• Y has a 
unique separately countably additive extension 7 : cr(Rx) x ••• x cr(Rd) —* Y if 
and only if the limits below exist in Y and 

lim lim lim lim 70(Ai>ni, fe l, A2j f l>fc,..., Ad,n,fc) 
ni—>oo fcx^oo n—>oo fc—>oo 

= lim lim lim lim 7o(-41?n fcl, A 2 ? n / c , . . . , Ad^k), 
n—>oo fc-^-oo ni—>>oo fci—>oo 

lim lim lim lim 7o(-4i,n>fc, A2^M, A3^k,..., Ad„k) 
n2—>-oo fc2—»oo n—voo fc—»oo 

= lim lim lim lim 7o(^i,n,fc, A2>n fc A3,n,fc, • • •, -4d,n,fc) , 
n—>oo fc—>-oo n2—»co fc2—>oo 

lim lim lim lim 7o(-4i jn,fc,..., -Ad_i,n,fc, -Adjnd,fcd) 
nd—>oo fcd—>.oo n—>oo fc—>oo 

= lim lim lim lim 7o(A,n,fc, • • •, ^d-i,n,fc, Ai,nd,fcd) 
n—>-oc fc—>oo nd—>oo fcd—>-oo 

ujbeneL'er 

(-4l,n,fc, • • •, -4d,n,fc) £ #1 x ' *' x Rd , n, k = 1, 2 , . . . 

ana7 lim lim XAun,k(^i) exists for each ti E 7$ ana7 eacb i = 1 , . . . , d. 
n—>-oo fc—>-oo 

P r o o f . The necessity of the conditions follows immediately from [1; 
Theorem 1]. 

Conversely, assume the conditions of the theorem hold. By Lemma, we may 
and will suppose that each Ri, i = 1 , . . . , d, is a countable ring. Having this 
reduction we obtain the existence of the extension 7 by induction in the di
mension d. For d = 1 it follows from K l u v a n e k ' s extension theorem, 
see [7]. Suppose the assertion holds for d — 1, d > 1, and let Ri E Ri, 
i = 1 , . . . , d. Then, by the inductive hypothesis, there are uniquely determined 
separately countably additive extensions 7 i ( J t i , . . . ) : cr(R2) x • • • x a(Rd) —> Y 
and 72(- , i ? 2 , . . . ,Rd): cr(Ri) —• Y". Since R1:...,Rd are countable rings, by 
[1; Theorem 11], there are countably additive measures A :̂ a(Ri) —> [0,1], 
i = 1 , . . . ,d , such that M; E O"(i?;) and Xi(Mi) = 0, i = 1 , . . . , d, imply that 
7i(.Ri, M 2 , . . . , Md) = 0 for each ^ E # 1 , and 7 2(Mi, R'2,... R'd) = 0 for each 
(R2,...,R'd) eR2x...xRd. 

Let (£?! , . . . , JBd) £ ^"(-Ri) X • • • x O-(itd) • For each i = 1 , . . ., d take Ai E 
(Ri)a6 so that .Ei C ^ and \i(Ai~Ei) = 0, and let A;.n,/c E i?;, n, k = 1, 2 , . . . 
be such that Ai,n,k / Ai^n \ A^, see [3; Lemma C in the proof of Theorem 18]. 
Then 

<y1(R1,E2,...,Ed) = 7 i ( i ? i , A 2 , . . . } A d ) = lim lim 70 (#1 , A2>n>fc , . . . , Ad,n,fc) 
n—*oo fc—>oo 
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for each i t i E Ri, and 

j2(Ei,R2, ...,Rd)= j2(Ai,R2,..., Rd) = lim lim 7o(Ai,n,k, R2,..., Rd) 
n—>-oo fc—>-oo 

for each (R2,..., Rd) E R2 x • • • x Rd, by [1; Theorem 1]. 

Suppose i?i?n i E i?i , n i = 1, 2 , . . . are pairwise disjoint, and put Ai,2k-i = 
Rhk and yli,2fc -= 0 for fc -= 1 ,2 , . . . . Then lim ji(Ahni,E2,... ,Ed) = 0. 

Hence, by K l u v a n e k ' s extension theorem, see [7], there is a unique count-
ably additive extension j(-, E2,..., Ed): O~(i?i) E Y of 71 (•, E2,..., Ed): 
fli ^ F . Further we have the equalities: 

y(A1,E2,...,Ed)= lim lim 7 1 ( ^ 1 ^ 1 ^ , ^ 2 , • • •, Ed) 
ni—>-oo fci-^-oo 

= lim lim lim lim 7o(-4i,„1>fel, A2,n,fc, • • • Ad,n,k) 
n i — * o o fci-^-oo n—>oo fc—>-oo 

= lim lim lim lim 7o(-4i,ni;/Cl, ^42,n,fc, • • •, Ad,n,k) 
n—>co fc—>-oo n i - • o o fci—>-oo 

= lim lim 72(^1,-42,n,fc, • • • ,-4d,n,fc) 
n—>-oo fc—>oo 

by the assumption of the theorem. Since analogous equations hold for any 
A[ £ (Ri)a6 such that A[ D Ei and Xi(A[ — Ei) = 0, we may uniquely define 
<y(Ei,E2,...,Ed) = j(Ai,E2,...,Ed). By the assumption, 7 i ( -4 i , n i , f c l , . . . ) : 
a(R2) x ••• x a(Rd) —> Y is separately countably additive for each n1,k1 = 
1,2,. . . , hence ry(E1,...): a(R2) x • • • x a(Rd) —* Y being their set wise it
erated limit is also separately countably additive by the (VHSN)-theorem for 
polymeasures, see the beginning of [1]. The theorem is proved. • 

It will be of interest to solve the following: 

P r o b l e m . Let 70: R\ x • • • x Rd —> Y be separately countably ad
ditive, and suppose that there is a separately countably additive extension 
71: O"(iti) x R2 x • • • x Rd —•» Y of 70, for each Ai E O~(i?i) there is a sepa
rately countably additive extension 7 2 ( ^ 1 , . . . ) : a(R2) x R3 x • • • x Rd —> Y 
of 7 i ( .A i , . . . ) : R2 x • • • x Rd —> Y, ,.. , for each (A1,... ,Ad-i) E a(Ri) x . . . 
x a(Rd-i) there is a countably additive extension jd(A1,..., A i - i , *) : 

a(Rd) —> F of 7 d _ i ( A i , . . . , Ad_i) : i?d —•> Y. Assume analogous subsequent 
extensions exist when we start from a(R2),... ,a(Rd) and end on cr( i t i ) , . . . 
. . . ,a(Rd-i) respectively. Are then all the d final set functions mutually equal 
on cr(iti) x ••• x a(Rd)l 
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