Mathematic Slovaca

Ivan Dobrakov
On extension of vector polymeasures. II.

Mathematica Slovaca, Vol. 45 (1995), No. 4, 377--380

Persistent URL: http://dml.cz/dmlcz/128302

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON EXTENSION OF VECTOR POLYMEASURES, II

IVAN DOBRAKOV
(Communicated by Miloslav Duchoñ)

Abstract

We prove a necessary and sufficient condition for extension of a vector polymeasure from Cartesian product of rings to the Cartesian product of generated σ-rings.

In this addition to [2], we give a necessary and sufficient condition for the existence of a unique separately countably additive extension $\gamma: \sigma\left(R_{1}\right) \times \ldots$ $\times \sigma\left(R_{d}\right) \rightarrow Y$ of a separately countably additive $\gamma_{0}: R_{1} \times \cdots \times R_{d} \rightarrow Y$. Here R_{i} is a ring of subsets of a non empty set $T_{i}, \sigma\left(R_{i}\right)$ is the generated σ-ring, for $i=1, \ldots, d$, and Y is a Banach space.

Since for any sequence $A_{n} \in \sigma(R), n=1,2, \ldots$, there is a countable subring $R^{\prime} \subset R$ such that $A_{n} \in \sigma\left(R^{\prime}\right)$ for each $n=1,2, \ldots$, see $[6 ; \S 5$, Theorems C and D$]$, the uniqueness of the extension of a vector polymeasure, see [1; Corollary of Lemma 4], implies the following:

LEMMA. A separately countably additive $\gamma_{0}: R_{1} \times \cdots \times R_{d} \rightarrow Y$ has a unique separately countably additive extension $\gamma: \sigma\left(R_{1}\right) \times \cdots \times \sigma\left(R_{d}\right) \rightarrow Y$ if and only if $\gamma_{0}: R_{1}^{\prime} \times \cdots \times R_{d}^{\prime} \rightarrow Y$ has a separately countably additive extension $\gamma: \sigma\left(R_{1}^{\prime}\right) \times \cdots \times \sigma\left(R_{D}^{\prime}\right) \rightarrow Y$ for any countable subrings $R_{i}^{\prime} \subset R_{i}, i=1, \ldots, d$.

Note that [2; Corollary of Theorem 5] gives a necessary and sufficient condition for the extension in the case of countable rings $R_{i}, 1, \ldots, d$. The theorem below is not limited, but only reducible, to this case. In a sense, the theorem is a counterpart of [4; Theorem 9] (with iterated limits there) and [5; Theorem 2], which give similar double limit characterizations of L_{1}-representability of bounded multilinear operators on $\times C_{0}\left(T_{i}\right)$ and on $\times C_{0}\left(T_{i}, X_{i}\right)$ respectively.

[^0]Theorem. A separately countably additive $\gamma_{0}: R_{1} \times \cdots \times R_{d} \rightarrow Y$ has a unique separately countably additive extension $\gamma: \sigma\left(R_{1}\right) \times \cdots \times \sigma\left(R_{d}\right) \rightarrow Y$ if and only if the limits below exist in Y and

$$
\begin{aligned}
& \lim _{n_{1} \rightarrow \infty} \lim _{k_{1} \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(A_{1, n_{1}, k_{1}}, A_{2, n, k}, \ldots, A_{d, n, k}\right) \\
&=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \lim _{k_{1} \rightarrow \infty} \gamma_{0}\left(A_{1, n_{1}, k_{1}}, A_{2, n, k}, \ldots, A_{d, n, k}\right) \\
& \begin{aligned}
\lim _{n_{2} \rightarrow \infty} \lim _{k_{2} \rightarrow \infty} & \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(A_{1, n, k}, A_{2, n_{2}, k_{2}}, A_{3, n, k}, \ldots, A_{d, n, k}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n_{2} \rightarrow \infty} \lim _{k_{2} \rightarrow \infty} \gamma_{0}\left(A_{1, n, k}, A_{2, n_{2}, k_{2}}, A_{3, n, k}, \ldots, A_{d, n, k}\right),
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n_{d} \rightarrow \infty} \lim _{k_{d} \rightarrow \infty} & \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(A_{1, n, k}, \ldots, A_{d-1, n, k}, A_{d, n_{d}, k_{d}}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n_{d} \rightarrow \infty} \lim _{k_{d} \rightarrow \infty} \gamma_{0}\left(A_{1, n, k}, \ldots, A_{d-1, n, k}, A_{d, n_{d}, k_{d}}\right)
\end{aligned}
$$

whenever

$$
\left(A_{1, n, k}, \cdots, A_{d, n, k}\right) \in R_{1} \times \cdots \times R_{d}, \quad n, k=1,2, \ldots
$$

and $\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \chi_{A_{i}, n, k}\left(t_{i}\right)$ exists for each $t_{i} \in T_{i}$ and each $i=1, \ldots, d$.
Proof. The necessity of the conditions follows immediately from [1; Theorem 1].

Conversely, assume the conditions of the theorem hold. By Lemma, we may and will suppose that each $R_{i}, i=1, \ldots, d$, is a countable ring. Having this reduction we obtain the existence of the extension γ by induction in the dimension d. For $d=1$ it follows from Kluvánek's extension theorem, see [7]. Suppose the assertion holds for $d-1, d>1$, and let $R_{i} \in R_{i}$, $i=1, \ldots, d$. Then, by the inductive hypothesis, there are uniquely determined separately countably additive extensions $\gamma_{1}\left(R_{1}, \ldots\right): \sigma\left(R_{2}\right) \times \cdots \times \sigma\left(R_{d}\right) \rightarrow Y$ and $\gamma_{2}\left(\cdot, R_{2}, \ldots, R_{d}\right): \sigma\left(R_{1}\right) \rightarrow Y$. Since R_{1}, \ldots, R_{d} are countable rings, by [1; Theorem 11], there are countably additive measures $\lambda_{i}: \sigma\left(R_{i}\right) \rightarrow[0,1]$, $i=1, \ldots, d$, such that $M_{i} \in \sigma\left(R_{i}\right)$ and $\lambda_{i}\left(M_{i}\right)=0, i=1, \ldots, d$, imply that $\gamma_{1}\left(R_{1}^{\prime}, M_{2}, \ldots, M_{d}\right)=0$ for each $R_{1}^{\prime} \in R_{1}$, and $\gamma_{2}\left(M_{1}, R_{2}^{\prime}, \ldots R_{d}^{\prime}\right)=0$ for each $\left(R_{2}^{\prime}, \ldots, R_{d}^{\prime}\right) \in R_{2} \times \cdots \times R_{d}$.

Let $\left(E_{1}, \ldots, E_{d}\right) \in \sigma\left(R_{1}\right) \times \cdots \times \sigma\left(R_{d}\right)$. For each $i=1, \ldots, d$ take $A_{i} \in$ $\left(R_{i}\right)_{\sigma \delta}$ so that $E_{i} \subset A_{i}$ and $\lambda_{i}\left(A_{i}-E_{i}\right)=0$, and let $A_{i, n, k} \in R_{i}, n, k=1,2, \ldots$ be such that $A_{i, n, k} \nearrow A_{i, n} \searrow A_{i}$, see [3; Lemma C in the proof of Theorem 18]. Then

$$
\gamma_{1}\left(R_{1}, E_{2}, \ldots, E_{d}\right)=\gamma_{1}\left(R_{1}, A_{2}, \ldots, A_{d}\right)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(R_{1}, A_{2, n, k}, \ldots, A_{d, n, k}\right)
$$

ON EXTENSION OF VECTOR POLYMEASURES, II

for each $R_{1} \in R_{1}$, and

$$
\gamma_{2}\left(E_{1}, R_{2}, \ldots, R_{d}\right)=\gamma_{2}\left(A_{1}, R_{2}, \ldots, R_{d}\right)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(A_{1, n, k}, R_{2}, \ldots, R_{d}\right)
$$

for each $\left(R_{2}, \ldots, R_{d}\right) \in R_{2} \times \cdots \times R_{d}$, by [1 ; Theorem 1].
Suppose $R_{1, n_{1}} \in R_{1}, n_{1}=1,2, \ldots$ are pairwise disjoint, and put $A_{1,2 k-1}=$ $R_{1, k}$ and $A_{1,2 k}=\emptyset$ for $k=1,2, \ldots$. Then $\lim _{n_{1} \rightarrow \infty} \gamma_{1}\left(A_{1, n_{1}}, E_{2}, \ldots, E_{d}\right)=0$. Hence, by Kluvánek's extension theorem, see [7], there is a unique countably additive extension $\gamma\left(\cdot, E_{2}, \ldots, E_{d}\right): \sigma\left(R_{1}\right) \in Y$ of $\gamma_{1}\left(\cdot, E_{2}, \ldots, E_{d}\right)$: $R_{1} \rightarrow Y$. Further we have the equalities:

$$
\begin{aligned}
\gamma\left(A_{1}, E_{2}, \ldots, E_{d}\right) & =\lim _{n_{1} \rightarrow \infty} \lim _{k_{1} \rightarrow \infty} \gamma_{1}\left(A_{1, n_{1}, k_{1}}, E_{2}, \ldots, E_{d}\right) \\
& =\lim _{n_{1} \rightarrow \infty} \lim _{k_{1} \rightarrow \infty} \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{0}\left(A_{1, n_{1}, k_{1}}, A_{2, n, k}, \ldots A_{d, n, k}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n_{1} \rightarrow \infty} \lim _{k_{1} \rightarrow \infty} \gamma_{0}\left(A_{1, n_{1}, k_{1}}, A_{2, n, k}, \ldots, A_{d, n, k}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \gamma_{2}\left(E_{1}, A_{2, n, k}, \ldots, A_{d, n, k}\right)
\end{aligned}
$$

by the assumption of the theorem. Since analogous equations hold for any $A_{1}^{\prime} \in\left(R_{1}\right)_{\sigma \delta}$ such that $A_{1}^{\prime} \supset E_{1}$ and $\lambda_{1}\left(A_{1}^{\prime}-E_{1}\right)=0$, we may uniquely define $\gamma\left(E_{1}, E_{2}, \ldots, E_{d}\right)=\gamma\left(A_{1}, E_{2}, \ldots, E_{d}\right)$. By the assumption, $\gamma_{1}\left(A_{1, n_{1}, k_{1}}, \ldots\right)$: $\sigma\left(R_{2}\right) \times \cdots \times \sigma\left(R_{d}\right) \rightarrow Y$ is separately countably additive for each $n_{1}, k_{1}=$ $1,2, \ldots$, hence $\gamma\left(E_{1}, \ldots\right): \sigma\left(R_{2}\right) \times \cdots \times \sigma\left(R_{d}\right) \rightarrow Y$ being their set wise iterated limit is also separately countably additive by the (VHSN)-theorem for polymeasures, see the beginning of [1]. The theorem is proved.

It will be of interest to solve the following:

Problem. Let $\gamma_{0}: R_{1} \times \cdots \times R_{d} \rightarrow Y$ be separately countably additive, and suppose that there is a separately countably additive extension $\gamma_{1}: \sigma\left(R_{1}\right) \times R_{2} \times \cdots \times R_{d} \rightarrow Y$ of γ_{0}, for each $A_{1} \in \sigma\left(R_{1}\right)$ there is a separately countably additive extension $\gamma_{2}\left(A_{1}, \ldots\right): \sigma\left(R_{2}\right) \times R_{3} \times \cdots \times R_{d} \rightarrow Y$ of $\gamma_{1}\left(A_{1}, \ldots\right): R_{2} \times \cdots \times R_{d} \rightarrow Y, \ldots$, for each $\left(A_{1}, \ldots, A_{d-1}\right) \in \sigma\left(R_{1}\right) \times \ldots$ $\times \sigma\left(R_{d-1}\right)$ there is a countably additive extension $\gamma_{d}\left(A_{1}, \ldots, A_{d-1}, \cdot\right)$: $\sigma\left(R_{d}\right) \rightarrow Y$ of $\gamma_{d-1}\left(A_{1}, \ldots, A_{d-1}\right): R_{d} \rightarrow Y$. Assume analogous subsequent extensions exist when we start from $\sigma\left(R_{2}\right), \ldots, \sigma\left(R_{d}\right)$ and end on $\sigma\left(R_{1}\right), \ldots$ $\ldots, \sigma\left(R_{d-1}\right)$ respectively. Are then all the d final set functions mutually equal on $\sigma\left(R_{1}\right) \times \cdots \times \sigma\left(R_{d}\right)$?

IVAN DOBRAKOV

REFERENCES

[1] DOBRAKOV, I: On integration in Banach space, VIII (Polymeasures), Czechoslovak Math. J. 37(112) (1987), 487-506.
[2] DOBRAKOV, I: On extension of vector polymeasures, Czechoslovak Math. J. 38(113) (1988), 88-94.
[3] DOBRAKOV, I: On submeasures, I, Dissertationes Math. (Rozprawy Mat.) 112 (1974).
[4] DOBRAKOV, I: Representation of multilinear operators on $\times C_{0}\left(T_{i}\right), I$, Czechoslovak Math. J. 39 (114) (1989), 288-302.
[5] DOBRAKOV, I: Representation of multilinear operators on $\times C_{0}\left(T_{i}, X_{i}\right)$, II, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 11-18.
[6] HALMOS, P. R: Measure Theory, D. Van Nostrand, Toronto, 1950.
[7] KLUVÁNEK, I: The extension and closure of vector measures. In: Vector and Operator Valued Measures and Aplications (D. H. Tucker and H. B. Maynard, eds.), Academic Press, Inc, New York-London, 1973, pp. 175-190.

Received January 7, 1992
Revised January 19, 1994

Mathematical Institute
Slovak Academy of Sciences
Štefánikova 49
SK-814 73 Bratislava SLOVAKIA

E-mail: dobrakov@mau.savba.sk

[^0]: AMS Subject Classification (1991): Primary 28B05.
 Key words: Cartesian product of rings, vector polymeasure, Kluvánek's extension theorem.

